
Developer’s Guide

Borland Software Corporation
100 Enterprise Way, Scotts Valley, CA 95066-3249

Borland®

Kylix™

Delphi™ for Linux®

Refer to the file DEPLOY located in the root directory of your Kylix product for a complete list of files that you can
distribute in accordance with the Kylix License Statement and Limited Warranty.

Borland Software Corporation may have patents and/or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these patents.

COPYRIGHT © 1983, 2001 Borland Software Corporation. All rights reserved. All Inprise and Borland brand and
product names are trademarks or registered trademarks of Borland Software Corporation. Other brand and product
names are trademarks or registered trademarks of their respective holders.

Printed in the U.S.A.

HDB7010WW21001 1E0R0201
0102030405-9 8 7 6 5 4 3 2 1
PDF

iii

Chapter 1
Introduction 1-1
What’s in this manual? 1-1
Manual conventions 1-2
Developer support services 1-2
Ordering printed documentation 1-2

Part I
Programming with Kylix

Chapter 2
Developing applications with Kylix 2-1
Integrated development environment 2-1
Designing applications 2-2
Developing applications 2-2

Creating projects 2-3
Editing code. 2-3
Compiling applications 2-4
Debugging applications 2-4
Deploying applications 2-5

Chapter 3
Using CLX 3-1
Understanding CLX 3-1

Properties, methods, and events 3-3
Properties 3-3
Methods 3-4
Events . 3-4
Widget events 3-4
System events 3-4

What is an object? 3-5
Examining a Kylix object. 3-5
Changing the name of a component . . . 3-7

Inheriting data and code from an object . . . 3-8
Scope and qualifiers 3-8
Private, protected, public, and published

declarations 3-9
Using object variables3-10
Creating, instantiating, and destroying

objects . 3-11
Components and ownership 3-11

Major branches of the CLX hierarchy 3-12
TObject branch 3-13
TPersistent branch 3-14
TComponent branch 3-14
TControl branch 3-16

TWidgetControl branch. 3-17
Using components 3-17

Components on the component palette. . . 3-18
Text controls 3-19

Text control properties. 3-19
Properties of memo controls 3-20

Specialized input controls 3-20
Scroll bars. 3-20
Track bars 3-20
Spin edit controls 3-21

Buttons and similar controls 3-21
Button controls 3-22
Bitmap buttons 3-22
Speed buttons 3-22
Check boxes 3-22
Radio buttons 3-23
Toolbars 3-23

Splitter controls 3-23
Handling lists 3-24

List boxes and check-list boxes 3-24
Combo boxes 3-25
Tree views. 3-25
List views 3-25

Grouping components 3-26
Group boxes and radio groups 3-26
Panels . 3-26
Scroll boxes 3-27
Tab controls 3-27
Page controls 3-27
Header controls 3-27

Providing visual feedback 3-28
Labels . 3-28
Status bars 3-28
Progress bars 3-29
Help and hint properties 3-29

Grids . 3-29
Draw grids 3-29
String grids 3-30

Graphics display. 3-30
Images. 3-30
Shapes. 3-30
Bevels . 3-31
Paint boxes 3-31

Dialog boxes 3-31
Using open dialog boxes 3-31

Using helper objects 3-32
Working with lists 3-32

Contents

iv

Working with string lists 3-32
Loading and saving string lists 3-33
Creating a new string list3-33
Manipulating strings in a list 3-35
Associating objects with a string list . . . 3-37

Creating drawing spaces 3-37
Printing . 3-38
Using streams. 3-38

Chapter 4
Common programming tasks 4-1
Understanding classes. 4-1
Defining classes 4-2
Handling exceptions. 4-4

Protecting blocks of code 4-4
Responding to exceptions 4-5
Exceptions and the flow of control 4-5
Nesting exception responses 4-6

Protecting resource allocations 4-7
What kind of resources need

protection? 4-7
Creating a resource protection block . . . 4-8

Handling RTL exceptions 4-8
What are RTL exceptions? 4-9

Creating an exception handler 4-10
Exception handling statements 4-10
Using the exception instance 4-11
Scope of exception handlers 4-12
Providing default exception

handlers 4-12
Handling classes of exceptions 4-13
Reraising the exception 4-13

Handling component exceptions 4-14
Exception handling with external

sources . 4-14
Silent exceptions 4-15
Defining your own exceptions 4-16

Declaring an exception object type 4-16
Raising an exception 4-16

Using interfaces 4-17
Interfaces as a language feature. 4-17

Implementing interfaces across
the hierarchy. 4-18

Using interfaces with procedures 4-19
Implementing IInterface 4-20
TInterfacedObject 4-20
Using the as operator 4-21
Reusing code and delegation 4-22

Using implements for delegation 4-22

Memory management of interface
objects. 4-23

Using reference counting 4-23
Not using reference counting. 4-24

Working with strings 4-24
Character types 4-25
String types 4-25

Short strings 4-26
Long strings 4-26
WideString 4-27
PChar types. 4-27
OpenString 4-27

Runtime library string handling
routines . 4-27

Wide character routines 4-28
Commonly used long string

routines 4-28
Declaring and initializing strings 4-31
Mixing and converting string types 4-32
String to PChar conversions 4-32

String dependencies 4-32
Returning a PChar local variable. 4-33
Passing a local variable as a PChar . . . 4-33

Compiler directives for strings. 4-34
Strings and characters: related topics 4-34

Working with files 4-35
Manipulating files 4-35

Deleting a file. 4-35
Finding a file 4-36
Changing file attributes 4-37
Renaming a file. 4-38
File date-time routines 4-38

File types with file I/O 4-38
Using file streams 4-39

Creating and opening files 4-39
Using the file handle 4-40
Reading and writing to files 4-40
Reading and writing strings 4-41
Seeking a file 4-41
File position and size 4-42
Copying. 4-42

Object Pascal data types 4-43

Chapter 5
Building applications and shared objects
5-1

Creating applications 5-1
GUI applications. 5-1

User interface models 5-2

v

Setting IDE, project, and compilation
options 5-2

Console applications 5-2
Creating packages and shared object files. . . . 5-3

Working with shared object libraries 5-3
When to use packages and shared

objects . 5-4
Writing database applications 5-4
Building distributed applications 5-5

Distributing applications using TCP/IP . . . 5-5
Using sockets in applications 5-5
Creating Web server applications 5-6

Using data modules and remote data
modules . 5-6

Creating data modules. 5-7
Creating business rules in a data

module 5-7
Accessing a data module from a form 5-7

Programming templates. 5-8
Sharing code: Using the Object Repository . . . 5-8

Sharing items within a project 5-8
Adding items to the Object Repository . . . 5-8
Sharing objects in a team environment . . . 5-9
Using an Object Repository item in a

project . 5-9
Copying an item 5-9
Inheriting an item. 5-10
Using an item 5-10

Using project templates 5-10
Modifying shared items 5-10
Specifying a default project, new form,

and main form 5-11
Reusing components and groups of

components . 5-11
Creating and using component templates . . . 5-11
Enabling Help in CLX applications 5-12

Help system interfaces 5-12
Implementing ICustomHelpViewer 5-13
Communicating with the Help

Manager . 5-13
Asking the Help Manager for

information 5-14
Displaying keyword-based Help 5-15
Displaying tables of contents 5-15
Implementing IExtendedHelpViewer 5-16
Implementing IHelpSelector5-17
Registering Help system objects 5-17

Registering Help viewers5-17
Registering Help selectors 5-18

Using Help in a CLX Application 5-18
How TApplication processes Help 5-18
How controls process Help. 5-18
Calling the Help system directly. 5-19
Using IHelpSystem 5-19

Customizing the IDE Help system 5-20

Chapter 6
Developing the application
user interface 6-1

Controlling application behavior 6-1
Using the main form 6-1
Adding forms 6-2

Linking forms 6-2
Hiding the main form. 6-3
Working at the application level 6-3
Setting up the look and feel of your

application 6-3
Handling the screen 6-4
Managing layout 6-4

Using forms . 6-4
Controlling when forms reside in

memory . 6-5
Displaying an auto-created form. 6-5
Creating forms dynamically 6-5
Creating modeless forms such as

windows 6-6
Using a local variable to create a form

instance 6-6
Passing additional arguments to forms 6-7
Retrieving data from forms. 6-8

Retrieving data from modeless forms . . . 6-8
Retrieving data from modal forms. 6-9

Working with frames 6-11
Creating frames 6-11

Adding frames to the Component
palette 6-12

Using and modifying frames. 6-12
Sharing frames. 6-13

Using action lists 6-13
What is an action? 6-14
Setting up action lists 6-14
What happens when an action fires 6-15

Responding with events 6-15
How actions find their targets 6-17

Updating actions 6-17
Predefined action classes 6-18
Writing action components. 6-18
Registering actions 6-19

vi

Creating and managing menus. 6-19
Designing menus 6-20
Building menus.6-22

Naming menus 6-22
Naming the menu items 6-22
Adding, inserting, and deleting

menu items 6-23
Creating submenus 6-24
Adding images to menu items 6-26
Viewing the menu 6-26

Editing menu items in the Object
Inspector . 6-27

Using the Menu Designer context
menu . 6-27

Commands on the context menu 6-27
Switching between menus at

design time 6-28
Using menu templates 6-29
Saving a menu as a template6-30

Naming conventions for template menu
items and event handlers. 6-31

Manipulating menu items at runtime 6-31
Designing toolbars6-31

Adding a toolbar using a panel
component. 6-32

Adding a speed button to a panel. 6-32
Assigning a speed button’s glyph. 6-33
Setting the initial condition of a

speed button 6-33
Creating a group of speed buttons 6-33
Allowing toggle buttons 6-34

Adding a toolbar using the toolbar
component. 6-34

Adding a tool button 6-34
Assigning images to tool buttons 6-35
Setting tool button appearance and

initial conditions 6-35
Creating groups of tool buttons6-35
Allowing toggled tool buttons 6-36

Responding to clicks 6-36
Assigning a menu to a tool button 6-36

Adding hidden toolbars 6-36
Hiding and showing toolbars 6-37

Chapter 7
Working with controls 7-1
Working with text in controls. 7-1

Setting text alignment 7-1
Adding scroll bars at runtime 7-2
Adding a clipboard to an application 7-3

Selecting text 7-3
Selecting all text 7-4
Cutting, copying, and pasting text 7-4
Deleting selected text 7-5
Disabling menu items. 7-5
Providing a pop-up menu 7-5
Handling the OnPopup event 7-6

Adding graphics to controls 7-7
Indicating that a control is owner-drawn . . . 7-7
Adding graphical objects to a string list . . . 7-8

Adding images to an application 7-8
Sizing owner-draw items 7-8
Drawing owner-draw items 7-9

Chapter 8
Working with graphics 8-1
Overview of graphics programming 8-1

Refreshing the screen 8-2
Types of graphic objects 8-2

Common properties and methods of
Canvas . 8-3

Using the properties of the Canvas
object . 8-5

Using pens 8-5
Using brushes 8-7

Changing the brush color 8-7
Changing the brush style 8-8
Setting the Brush Bitmap property. 8-8

Using Canvas methods to draw graphic
objects. 8-9

Drawing lines and polylines 8-9
Drawing shapes 8-10

Handling multiple drawing objects in your
application . 8-11

Keeping track of which drawing tool
to use . 8-11

Changing the tool with speed buttons . . . 8-12
Using drawing tools. 8-13

Drawing shapes 8-13
Sharing code among event

handlers 8-14
Drawing on a graphic 8-16

Making scrollable graphics 8-16
Adding an image control 8-16

Placing the control 8-16
Setting the initial bitmap size. 8-17
Drawing on the bitmap 8-17

Loading and saving graphics files 8-18
Loading a picture from a file 8-18
Saving a picture to a file 8-19

vii

Replacing the picture 8-19
Using the clipboard with graphics 8-20

Copying graphics to the clipboard 8-21
Cutting graphics to the clipboard. 8-21
Pasting graphics from the clipboard 8-21

Rubber banding example8-22
Responding to the mouse 8-22

What’s in a mouse event?8-23
Responding to a mouse-down action. . . 8-23
Responding to a mouse-up action 8-24
Responding to a mouse move 8-24

Adding a field to a form object to track
mouse actions8-25

Refining line drawing8-26
Tracking the origin point 8-26
Tracking movement. 8-27

Chapter 9
Writing multi-threaded
applications 9-1

Defining thread objects 9-1
Initializing the thread 9-2

Assigning a default priority 9-2
Indicating when threads are freed 9-3

Writing the thread function 9-3
Using the main CLX thread 9-3
Using thread-local variables 9-5
Checking for termination by other

threads 9-5
Handling exceptions in the thread

function 9-5
Writing clean-up code 9-6

Coordinating threads 9-6
Avoiding simultaneous access 9-6

Locking objects 9-6
Using critical sections 9-7
Using the multi-read exclusive-write

synchronizer 9-7
Other techniques for sharing

memory 9-8
Waiting for other threads 9-8

Waiting for a thread to finish
executing 9-8

Waiting for a task to be completed 9-9
Executing thread objects 9-10

Overriding the default priority 9-10
Starting and stopping threads 9-11

Debugging multi-threaded applications 9-11

Chapter 10
Developing cross-platform
applications 10-1

Porting Windows applications to Linux 10-1
Porting techniques 10-2

Platform-specific ports 10-2
Cross-platform ports 10-2
Windows emulation ports 10-2

Porting your application 10-2
CLX versus VCL. 10-4
What CLX does differently 10-5

Look and feel 10-5
Styles . 10-5
Variants 10-5
No registry 10-6
Other differences. 10-6

Missing in CLX 10-6
Features that will not port 10-7
Kylix and Delphi unit comparison 10-8
Differences in CLX object

constructors10-11
Sharing source files between Windows

and Linux. 10-12
Environmental differences between

Windows and Linux. 10-12
Directory structure on Linux 10-14
Writing portable code 10-15

Using conditional directives 10-16
Terminating conditional

directives 10-17
Emitting messages 10-18
Including inline assembler code 10-18

Messages and system events 10-19
Programming differences on Linux 10-20

Cross-platform database applications 10-21
dbExpress differences 10-21
Component-level differences. 10-22
User interface-level differences 10-23
Porting database applications to

Linux . 10-23
Updating data in dbExpress

applications 10-25
Cross-platform Internet applications 10-27

Porting Internet applications to
Linux . 10-27

viii

Chapter 11
Working with packages and
components 11-1

Why use packages? 11-2
Packages and standard shared object

files . 11-2
Runtime packages 11-2

Using packages in an application. 11-3
Dynamically loading packages 11-4
Deciding which runtime packages

to use . 11-4
Custom packages 11-4

Design-time packages 11-4
Installing component packages 11-5

Creating and editing packages 11-6
Creating a package 11-6
Editing an existing package 11-7
Editing package source files manually 11-7
Understanding the structure of a

package . 11-8
Naming packages 11-8
The Requires clause. 11-8
The Contains clause 11-9

Compiling packages 11-9
Package-specific compiler

directives 11-10
Using the command-line compiler

and linker 11-11
Package files created by a successful

compilation 11-11
Deploying packages 11-12

Deploying applications that use
packages 11-12

Distributing packages to other
developers 11-12

Chapter 12
Creating international
applications 12-1

Internationalization and localization 12-1
Internationalization12-1
Localization 12-1

Internationalizing applications 12-2
Enabling application code12-2

Character sets 12-2
Multiple byte character sets 12-2
Wide characters 12-3

Designing the user interface. 12-4

Text . 12-4
Graphic images 12-4
Formats and sort order 12-4
Keyboard mappings 12-5

Isolating resources. 12-5
Creating resource modules 12-5
Using resource modules 12-6

Localizing applications 12-6

Chapter 13
Deploying applications 13-1
Deploying general applications 13-1

Deployment issues 13-2
Using installation programs 13-2

Identifying application files 13-2
Package files 13-2
Helper applications 13-3
Shared object file locations 13-3

Deploying database applications 13-3
Connecting to a database 13-4

Updating configuration files 13-4
Deploying Web applications 13-4

Deployment on Apache. 13-5
Programming for varying host

environments 13-5
Screen resolutions and color depths. 13-6

Considerations when not dynamically
resizing 13-6

Considerations when dynamically
resizing forms and controls 13-6

Accommodating varying color
depths 13-7

Fonts . 13-8
Software license requirements. 13-8

Deploy.txt. 13-8
README . 13-8
No-nonsense license agreement 13-9
GPL license agreement 13-9
Third-party product documentation 13-9

Part II
Developing database applications

Chapter 14
Designing database applications 14-1
Using databases 14-1

Types of databases. 14-2
Database security 14-3

ix

Transactions 14-3
Referential integrity, stored procedures,

and triggers 14-4
Database architecture 14-4

General structure 14-4
The user interface form.14-5
The data module14-5

Using a client dataset with data stored
on disk . 14-6

Using a unidirectional dataset directly. . . . 14-8
Using a client dataset to buffer

records . 14-9
Using a multi-tiered architecture 14-11
Combining approaches 14-12

Chapter 15
Using data controls 15-1
Using common data control features 15-2

Associating a data control with a
dataset . 15-3

Changing the associated dataset
at runtime 15-3

Enabling and disabling the data
source. 15-4

Responding to changes mediated by
the data source15-4

Editing and updating data 15-4
Enabling editing in controls on

user entry 15-5
Editing data in a control 15-5

Disabling and enabling data display 15-6
Refreshing data display 15-6
Enabling mouse, keyboard, and

timer events 15-7
Choosing how to organize the data 15-7

Displaying a single record.15-7
Displaying data as labels. 15-7
Displaying and editing fields in

an edit box 15-8
Displaying and editing text in a

memo control 15-8
Displaying and editing graphics fields

in an image control 15-9
Displaying and editing data in list and

combo boxes 15-9
Handling Boolean field values with

check boxes 15-12
Restricting field values with radio

controls 15-12

Displaying multiple records 15-13
Viewing and editing data with

TDBGrid . 15-14
Using a grid control in its default

state . 15-15
Creating a customized grid. 15-15

Understanding persistent
columns 15-16

Creating persistent columns 15-16
Deleting persistent columns 15-17
Arranging the order of persistent

columns 15-18
Setting column properties at design

time 15-18
Defining a lookup list column 15-19
Putting a button in a column 15-20
Restoring default values to a

column 15-20
Displaying composite fields 15-21
Setting grid options 15-22
Editing in the grid 15-23
Controlling grid drawing. 15-23
Responding to user actions at

runtime 15-24
Navigating and manipulating records 15-25

Choosing navigator buttons to
display 15-26

Hiding and showing navigator
buttons at design time 15-26

Hiding and showing navigator
buttons at runtime 15-26

Displaying fly-over help 15-27
Using a single navigator for multiple

datasets 15-27

Chapter 16
Understanding datasets 16-1
Types of datasets 16-2
Opening and closing datasets 16-2
Determining and setting dataset states 16-3

Inactivating a dataset 16-4
Browsing a dataset 16-5
Enabling dataset editing 16-6
Enabling insertion of new records 16-7
Enabling index-based operations 16-7
Calculating fields 16-8
Filtering records 16-8
Applying updates 16-8

Navigating datasets. 16-8

x

Using the First and Last methods 16-9
Using the Next and Prior methods 16-10
Using the MoveBy method 16-10
Using the Eof and Bof properties 16-10

Eof . 16-11
Bof . 16-11

Marking and returning to records 16-12
Searching datasets 16-14

Using Locate 16-14
Using Lookup. 16-15

Displaying and editing a subset of data
using filters 16-15

Enabling and disabling filtering 16-16
Creating filters 16-16
Setting filter options 16-19

Navigating records in a filtered
dataset . 16-20

Modifying data. 16-20
Editing records 16-21
Adding new records 16-22

Inserting records 16-22
Appending records 16-23

Deleting records 16-23
Posting data to the database 16-23
Canceling changes 16-24
Modifying entire records 16-24

Using dataset events. 16-25
Aborting a method 16-26
Using OnCalcFields 16-26

Chapter 17
Working with field components 17-1
Dynamic field components 17-2
Persistent field components 17-3

Creating persistent fields 17-4
Arranging persistent fields 17-5
Defining new persistent fields 17-5

Defining a data field 17-6
Defining a calculated field 17-7
Defining a lookup field.17-8
Defining an aggregate field 17-10

Deleting persistent field
components 17-10

Setting persistent field properties
and events 17-10

Setting display and edit properties
at design time 17-11

Setting field component properties
at runtime 17-12

Controlling and masking user
input 17-12

Using default formatting for numeric,
date, and time fields 17-13

Handling events 17-13
Working with field component methods

at runtime 17-14
Displaying, converting, and accessing

field values. 17-15
Displaying field component values in

standard controls 17-15
Converting field values 17-16
Accessing field values with the default

dataset property 17-17
Accessing field values with a dataset’s

Fields property. 17-18
Accessing field values with a dataset’s

FieldByName method. 17-18
Checking a field’s current value. 17-19
Setting a default value for a field 17-19
Specifying constraints 17-19
Using object fields 17-20

Displaying ADT and array fields 17-21
Working with ADT fields. 17-21

Using persistent field components. . . 17-22
Using the dataset’s FieldByName

method 17-22
Using the dateset’s FieldValues

property 17-22
Using the ADT field’s FieldValues

property 17-22
Using the ADT field’s Fields

property 17-23
Working with array fields 17-23

Using persistent fields. 17-23
Using the array field’s FieldValues

property 17-23
Using the array field’s Fields

property 17-24
Working with dataset fields 17-24

Displaying dataset fields 17-24
Accessing data in a nested

dataset 17-24
Working with reference fields 17-25

Displaying reference fields 17-25
Accessing data in a reference field . . . 17-25

xi

Chapter 18
Using unidirectional datasets 18-1
Types of unidirectional datasets18-2
Connecting to the Server 18-2
Specifying what data to display18-3

Representing the results of a query.18-3
Specifying a query using

TSQLDataSet 18-4
Specifying a query using

TSQLQuery 18-4
Using parameters in queries 18-4

Representing the records in a table18-6
Representing a table using

TSQLDataSet 18-6
Representing a table using

TSQLTable 18-6
Representing the results of a stored

procedure18-7
Specifying a stored procedure using

TSQLDataSet 18-7
Specifying a stored procedure using

TSQLStoredProc. 18-7
Working with stored procedure

parameters18-7
Fetching the data. 18-9

Preparing the dataset 18-10
Fetching multiple datasets 18-10

Executing commands that do not return
records. 18-11

Specifying the command to execute 18-11
Executing the command 18-12
Creating and modifying server

metadata 18-12
Setting up master/detail relationships 18-13

Setting up master/detail relationships with
TSQLDataSet or TSQLQuery 18-13

Setting up master/detail relationships
with TSQLTable 18-14

Accessing schema information 18-15
Fetching data after using the dataset

for metadata. 18-16
The structure of metadata datasets 18-16

Information about tables 18-17
Information about stored

procedures 18-17
Information about fields 18-18
Information about indexes. 18-19
Information about stored procedure

parameters 18-19

Chapter 19
Connecting to databases 19-1
Controlling connections 19-2

Describing the server connection 19-2
Identifying the driver 19-2
Specifying connection parameters 19-2
Naming a connection description 19-3
Using the Connection Editor 19-3

Opening and closing server
connections 19-4

Opening a connection 19-4
Disconnecting from a database

server 19-5
Controlling server login 19-5
Managing transactions 19-7

Starting a transaction 19-7
Ending a transaction 19-8

Ending a successful transaction 19-8
Ending an unsuccessful transaction . . . 19-9

Specifying the transaction isolation
level . 19-9

Accessing server metadata. 19-10
Working with associated datasets19-11

Closing datasets without disconnecting
from the server.19-11

Iterating through the associated
datasets .19-11

Sending commands to the server 19-12
Debugging database applications 19-13

Using TSQLMonitor to monitor SQL
commands 19-13

Using a callback to monitor SQL
commands 19-14

Chapter 20
Using client datasets 20-1
Working with data using a client dataset. . . . 20-2

Navigating data in client datasets 20-2
Specifying the index to use for

searching 20-3
Executing a search with Goto

methods 20-4
Executing a search with Find

methods 20-4
Specifying the current record after a

successful search 20-5
Searching on partial keys 20-5
Repeating or extending a search 20-5

xii

Limiting what records appear. 20-5
Understanding the differences between

ranges and filters20-6
Specifying ranges 20-6
Modifying a range 20-9
Applying or canceling a range 20-9

Representing master/detail
relationships. 20-10

Making the client dataset a detail
of another dataset 20-10

Using nested detail tables 20-12
Constraining data values 20-13
Making data read-only. 20-14
Editing data 20-14

Undoing changes 20-15
Saving changes 20-15

Sorting and indexing. 20-16
Adding a new index 20-16
Deleting and switching indexes 20-17
Obtaining information about

indexes 20-17
Using indexes to group data. 20-18

Representing calculated values 20-19
Using internally calculated fields in

client datasets 20-19
Using maintained aggregates 20-20

Specifying aggregates 20-20
Aggregating over groups of

records 20-21
Obtaining aggregate values 20-22

Adding application-specific information
to the data 20-22

Copying data from another dataset 20-23
Assigning data directly 20-23
Cloning a client dataset cursor 20-24

Using a client dataset with a provider 20-24
Specifying a data provider 20-25
Getting parameters from the source

dataset . 20-26
Passing parameters to the source

dataset . 20-26
Sending query or stored procedure

parameters 20-27
Limiting records with parameters . . . 20-27

Specifying the command to execute on
the server 20-28

Requesting data from the source
dataset . 20-29

Incremental fetching 20-29

Fetch-on-demand 20-30
Updating records 20-30

Applying updates 20-31
Reconciling update errors. 20-31

Refreshing records. 20-33
Communicating with providers using

custom events 20-33
Using an SQL client dataset 20-34

When to use TSQLClientDataSet 20-34
Setting up an SQL client dataset 20-35
Configuring the internal provider 20-36

Using a client dataset with file-based
data . 20-37

Creating a new dataset 20-37
Creating a new dataset using

persistent fields. 20-38
Creating a dataset using field and

index definitions 20-38
Creating a dataset based on an

existing table 20-39
Loading data from a file or stream 20-40
Merging changes into data 20-40
Saving data to a file or stream 20-41

Chapter 21
Using provider components 21-1
Determining the source of data 21-2
Communicating with the client dataset 21-2
Choosing how to apply updates 21-3
Controlling what information is included

in data packets. 21-4
Specifying what fields appear in

data packets 21-4
Setting options that influence the

data packets 21-4
Adding custom information to

data packets 21-6
Responding to client data requests 21-6
Responding to client update requests 21-7

Editing delta packets before updating
the database 21-8

Influencing how updates are applied 21-8
Screening individual updates 21-10
Resolving update errors on the

provider. 21-10
Applying updates to datasets that do

not represent a single table 21-10
Responding to client-generated events21-11

xiii

Part III
Writing distributed applications

Chapter 22
Creating Internet server
applications 22-1

Terminology and standards. 22-1
Parts of a Uniform Resource Locator. 22-2

URI vs. URL22-2
HTTP request header information 22-2

HTTP server activity. 22-3
Composing client requests 22-3
Serving CGI requests. 22-4
Serving dynamic shared object

requests .22-4
Web server applications 22-4

Types of Web server applications 22-4
CGI stand-alone. 22-5
Apache DSO module 22-5

Creating Web server applications. 22-5
The Web module 22-5
The Web Application object 22-6

The structure of a Web server application. . . . 22-6
The Web dispatcher 22-7

Adding actions to the dispatcher 22-7
Dispatching request messages 22-8

Action items .22-8
Determining when action items fire 22-9

The target URL 22-9
The request method type. 22-9
Enabling and disabling action

items .22-9
Choosing a default action item 22-10

Responding to request messages with
action items 22-10

Sending the response 22-11
Using multiple action items 22-11

Accessing client request information 22-11
Properties that contain request header

information 22-11
Properties that identify the target 22-12
Properties that describe the Web

client 22-12
Properties that identify the purpose

of the request 22-12
Properties that describe the expected

response 22-13

Properties that describe the
content. 22-13

The content of HTTP request
messages 22-13

Creating HTTP response messages 22-13
Filling in the response header 22-14

Indicating the response status 22-14
Indicating the need for client

action 22-14
Describing the server application . . . 22-14
Describing the content 22-15

Setting the response content 22-15
Sending the response 22-15

Generating the content of response
messages . 22-16

Using page producer components. 22-16
HTML templates 22-16
Specifying the HTML template. 22-17
Converting HTML-transparent

tags 22-17
Using page producers from an

action item 22-18
Chaining page producers

together 22-18
Using database information in

responses . 22-20
Adding a session to the Web module . . . 22-20
Representing database information

in HTML 22-20
Using dataset page producers 22-20
Using table producers 22-21
Specifying the table attributes 22-21
Specifying the row attributes 22-21
Specifying the columns 22-21
Embedding tables in HTML

documents 22-22
Setting up a dataset table

producer 22-22
Setting up a query table

producer 22-22
Debugging server applications 22-23

Debugging CGI applications 22-23
Debugging as a shared object. 22-23

Debugging Apache DSO
applications 22-23

Compiling an Apache application
for DSO support 22-23

Debugging Apache DSO
applications 22-24

xiv

Chapter 23
Working with sockets 23-1
Implementing services23-1

Understanding service protocols23-2
Communicating with applications 23-2

Services and ports 23-2
Types of socket connections. 23-2

Client connections 23-3
Listening connections 23-3
Server connections 23-3

Describing sockets 23-3
Describing the host 23-4

Choosing between a host name and
an IP address 23-4

Using ports23-5
Using socket components 23-5

Using client sockets23-5
Specifying the target server 23-6
Forming the connection 23-6
Getting information about the

connection 23-6
Closing the connection23-6

Using server sockets 23-6
Specifying the port23-6
Listening for client requests 23-7
Connecting to clients 23-7
Closing server connections 23-7

Responding to socket events 23-7
Error events 23-7
Client events 23-8
Server events 23-8

Events when listening 23-8
Events with client connections 23-8

Reading and writing over socket
connections . 23-9

Non-blocking connections.23-9
Reading and writing events 23-9

Blocking connections. 23-10

Part IV
Creating custom components

Chapter 24
Overview of component creation 24-1
Component Library for Cross Platform

(CLX) . 24-1
Components and classes 24-2
How to create components? 24-2

Modifying existing controls 24-3

Creating controls 24-4
Creating graphic controls. 24-4
Subclassing controls. 24-4
Creating nonvisual components 24-5

What goes into a component? 24-5
Removing dependencies 24-5
Properties, methods, and events 24-6

Properties 24-6
Events . 24-6
Methods. 24-6

Graphics encapsulation. 24-7
Registration 24-7

Creating a new component 24-8
Using the Component wizard 24-8
Creating a component manually. 24-10

Creating a unit file 24-10
Deriving the component 24-10
Registering the component.24-11

Testing uninstalled components. 24-12
Testing installed components 24-13

Chapter 25
Object-oriented programming for
component writers 25-1

Defining new classes 25-1
Deriving new classes 25-2

To change class defaults to avoid
repetition 25-2

To add new capabilities to a class 25-2
Declaring a new component class 25-3

Ancestors, descendants, and class
hierarchies . 25-3

Controlling access. 25-4
Hiding implementation details 25-4
Defining the component writer’s

interface. 25-5
Defining the runtime interface 25-6
Defining the design-time interface 25-6

Dispatching methods 25-7
Static methods 25-7
Virtual methods 25-8

Overriding methods 25-8
Abstract class members 25-9
Classes and pointers 25-9

Chapter 26
Creating properties 26-1
Why create properties? 26-1
Types of properties 26-2

xv

Publishing inherited properties26-3
Defining properties 26-3

The property declaration 26-3
Internal data storage 26-4
Direct access. 26-4
Access methods.26-5

The read method26-6
The write method 26-6

Default property values 26-7
Specifying no default value 26-7

Creating array properties26-8
Creating properties for subcomponents 26-9
Creating properties for interfaces 26-10
Storing and loading properties 26-11

Using the store-and-load mechanism . . . 26-11
Specifying default values 26-11
Determining what to store. 26-12
Initializing after loading 26-13
Storing and loading unpublished

properties 26-13
Creating methods to store and load

property values 26-13
Overriding the DefineProperties

method 26-14

Chapter 27
Creating events 27-1
What are events? 27-1

Events are method pointers 27-2
Events are properties. 27-2
Event types are method-pointer types 27-3

Event-handler types are procedures . . .27-3
Event handlers are optional 27-4

Implementing the standard events. 27-4
Identifying standard events 27-4

Standard events for all controls 27-4
Standard events for widget-based

controls 27-5
Making events visible27-5
Changing the standard event

handling . 27-5
Defining your own events 27-6

Triggering the event 27-6
Two kinds of events 27-7

Defining the handler type27-7
Simple notifications. 27-7
Event-specific handlers.27-7
Returning information from the

handler 27-8

Declaring the event 27-8
Event names start with “On” 27-8

Calling the event. 27-8

Chapter 28
Creating methods 28-1
Avoiding dependencies 28-1
Naming methods 28-2
Protecting methods 28-2

Methods that should be public. 28-3
Methods that should be protected. 28-3
Abstract methods 28-3

Making methods virtual 28-4
Declaring methods 28-4

Chapter 29
Using graphics in components 29-1
Using the canvas 29-1
Working with pictures 29-2

Using a picture, graphic, or canvas 29-2
Loading and storing graphics 29-3

Off-screen bitmaps 29-3
Creating and managing off-screen

bitmaps . 29-4
Copying bitmapped images 29-4

Responding to changes. 29-5

Chapter 30
Making components available
at design time 30-1

Registering components 30-1
Declaring the Register procedure 30-2
Writing the Register procedure 30-2

Specifying the components 30-2
Specifying the palette page 30-3
Using the RegisterComponents

function 30-3
Adding palette bitmaps 30-3
Adding property editors 30-4

Deriving a property-editor class 30-4
Editing the property as text 30-5

Displaying the property value 30-6
Setting the property value 30-6

Editing the property as a whole 30-7
Specifying editor attributes. 30-8
Registering the property editor 30-9

Property categories 30-10
Registering one property at a time 30-10

xvi

Registering multiple properties
at once . 30-11

Specifying property categories 30-12
Using the IsPropertyInCategory

function 30-12
Adding component editors 30-13

Adding items to the context menu 30-13
Specifying menu items 30-14
Implementing commands 30-14

Changing the double-click behavior 30-15
Adding clipboard formats 30-15
Registering the component editor 30-16

Compiling components into packages. 30-16

Chapter 31
Modifying an existing
component 31-1

Creating and registering the component 31-1
Modifying the component class31-2

Overriding the constructor 31-2
Specifying the new default property

value . 31-3

Chapter 32
Creating a graphic component 32-1
Creating and registering the component 32-1
Publishing inherited properties32-2
Adding graphic capabilities 32-3

Determining what to draw 32-3
Declaring the property type 32-3
Declaring the property32-4
Writing the implementation

method 32-4
Overriding the constructor and

destructor32-4
Changing default property values 32-4

Publishing the pen and brush. 32-5
Declaring the class fields 32-5
Declaring the access properties 32-6
Initializing owned classes 32-6
Setting owned classes’ properties 32-7

Drawing the component image 32-8
Refining the shape drawing 32-9

Chapter 33
Customizing a grid 33-1
Creating and registering the component 33-1
Publishing inherited properties 33-2
Changing initial values. 33-3
Resizing the cells 33-4
Filling in the cells 33-4

Tracking the date 33-5
Storing the internal date 33-5
Accessing the day, month, and year . . . 33-6
Generating the day numbers 33-7
Selecting the current day 33-9

Navigating months and years 33-9
Navigating days. 33-10

Moving the selection 33-10
Providing an OnChange event.33-11
Excluding blank cells 33-12

Chapter 34
Making a control data aware 34-1
Creating a data-browsing control 34-1

Creating and registering the
component 34-2

Making the control read-only 34-2
Adding the ReadOnly property 34-2
Allowing needed updates. 34-3

Adding the data link 34-4
Declaring the class field 34-4
Declaring the access properties. 34-5
An example of declaring access

properties 34-5
Initializing the data link. 34-6

Responding to data changes 34-6
Creating a data-editing control 34-7

Changing the default value of
FReadOnly 34-8

Handling mouse-down and key-down
events . 34-8

Responding to mouse-down events . . . 34-8
Responding to key-down events 34-9

Updating the field datalink class 34-10
Modifying the Change method 34-10
Updating the dataset34-11

Index I-1

xvii

1.1 Typefaces and symbols 1-2
3.1 Important base classes 3-12
3.2 Graphic controls 3-16
3.3 Component palette pages3-18
3.4 Text control properties 3-19
3.5 Components for creating and

managing lists 3-32
4.1 RTL exceptions 4-9
4.2 Object Pascal character types 4-25
4.3 String comparison routines 4-29
4.4 Case conversion routines 4-29
4.5 String modification routines 4-29
4.6 Substring routines 4-30
4.7 String handling routines 4-30
4.8 Compiler directives for strings 4-34
4.9 Attribute constants and values 4-36
4.10 File types for file I/O 4-38
4.11 Open modes 4-39
4.12 Share modes 4-39
4.13 Shared modes available for each

open mode 4-40
5.1 Compiler directives for libraries 5-4
6.1 Action categories. 6-18
6.2 Sample captions and their derived

names . 6-22
6.3 Menu Designer context menu

commands 6-27
6.4 Setting speed buttons’ appearance. 6-33
6.5 Setting tool buttons’ appearance6-35
7.1 Properties of selected text. 7-3
7.2 Fixed vs. variable owner-draw

styles . 7-7
8.1 Graphic object types 8-3
8.2 Common properties of the Canvas

object . 8-3
8.3 Common methods of the Canvas

object . 8-4
8.4 Mouse events.8-23
8.5 Mouse-event parameters 8-23
9.1 WaitFor return values 9-9
10.1 Porting techniques. 10-2
10.2 CLX parts 10-4
10.3 Changed or different features 10-7
10.4 Units in Kylix and Delphi. 10-8
10.5 Units in Kylix, not in Delphi 10-10
10.6 Units in Delphi, not in Kylix 10-10

10.7 Differences in the Linux operating
environment. 10-12

10.8 Common Linux directories 10-14
10.9 TWidgetControl protected methods

for responding to system events 10-19
10.10 Comparable data-access

components 10-22
10.11 Properties, methods, and events

for cached updates 10-26
11.1 Compiled package files 11-2
11.2 Design-time packages 11-5
11.3 Package-specific compiler

directives11-10
11.4 Package-specific command-line

compiler switches. 11-11
11.5 Compiled package files11-12
12.1 Estimating string lengths 12-4
12.2 Resbind options. 12-7
15.1 Data controls 15-2
15.2 Column properties 15-19
15.3 Expanded TColumn Title

properties 15-19
15.4 Properties that affect the way

composite fields appear 15-21
15.5 Expanded TDBGrid Options

properties 15-22
15.6 Grid control events 15-24
15.7 TDBNavigator buttons 15-25
16.1 Values for the dataset State

property 16-3
16.2 Navigational methods of datasets 16-9
16.3 Navigational properties of datasets. . . . 16-9
16.4 Operators that can appear in

a filter 16-17
16.5 FilterOptions values 16-19
16.6 Filtered dataset navigational

methods 16-20
16.7 Dataset methods for inserting,

updating, and deleting data 16-21
16.8 Methods that work with entire

records 16-24
16.9 Dataset events. 16-25
17.1 TFloatField properties that affect

data display 17-1
17.2 Special persistent field kinds 17-6
17.3 Field component properties17-11

Tables

xviii

17.4 Field component formatting
routines 17-13

17.5 Field component events. 17-14
17.6 Selected field component methods . . . 17-15
17.7 Special conversion results. 17-17
17.8 Types of object field components 17-20
17.9 Common object field descendant

properties 17-21
18.1 Columns in tables of metadata

listing tables 18-17
18.2 Columns in tables of metadata

listing stored procedures 18-17
18.3 Columns in tables of metadata

listing fields 18-18
18.4 Columns in tables of metadata

listing indexes 18-19
18.5 Columns in tables of metadata listing

parameters 18-19
20.1 Index-based search methods 20-3
20.2 Summary operators for maintained

aggregates 20-21

20.3 Client datasets properties and method
for handling data requests 20-29

21.1 AppServer interface members. 21-3
21.2 Provider options 21-4
21.3 UpdateStatus values 21-8
21.4 UpdateMode values 21-9
21.5 ProviderFlags values 21-9
22.1 Web server application

components 22-4
22.2 MethodType values. 22-9
24.1 Component creation starting points . . . 24-3
25.1 Levels of visibility within an object 25-4
26.1 How properties appear in the

Object Inspector 26-2
29.1 Canvas capability summary 29-2
29.2 Image-copying methods 29-4
30.1 Predefined property-editor types 30-5
30.2 Methods for reading and writing

property values 30-6
30.3 Property-editor attribute flags. 30-8
30.4 Property categories 30-12

Figures
3.1 CLX organization 3-2
3.2 A simple form 3-6
3.3 A simplified hierarchy diagram 3-12
3.4 Three views of the track bar

component 3-21
3.5 A progress bar 3-29
6.1 A frame with data-aware controls and

a data source component 6-13
6.2 Menu terminology. 6-20
6.3 MainMenu and PopupMenu

components 6-20
6.4 Menu Designer for a pop-up menu 6-21
6.5 Menu Designer for a main menu 6-21
6.6 Nested menu structures.6-25
6.7 Select Menu dialog box 6-28
6.8 Sample Insert Template dialog box

for menus 6-29
6.9 Save Template dialog box for

menus . 6-30
14.1 Generic Database Architecture 14-5

14.2 Architecture of a file-based
database application 14-7

14.3 Architecture of a unidirectional
database application 14-8

14.4 Architecture combining a client dataset
and a unidirectional dataset 14-9

14.5 Architecture using a client dataset with
an internal unidirectional dataset 14-10

14.6 Multi-tiered database architecture14-11
15.1 TDBGrid control 15-14
15.2 Buttons on the TDBNavigator

control 15-25
16.1 Relationship of Inactive and

Browse states 16-5
16.2 Relationship of Browse to other

dataset states 16-6
22.1 Parts of a Uniform Resource

Locator . 22-2
22.2 Structure of a Server Application 22-7
24.1 CLX class hierarchy. 24-2

I n t r o d u c t i o n 1-1

C h a p t e r

1
Chapter1Introduction

The Developer’s Guide describes intermediate and advanced development topics, such
as building database applications, writing custom components, and creating Internet
Web server applications using Kylix, Delphi for the Linux operating system. The
Developer’s Guide assumes you are familiar with using Linux and understand
fundamental programming techniques. For an introduction to Kylix programming
and the integrated development environment (IDE), see the online Help and the
Quick Start manual.

What’s in this manual?
This manual contains the following parts:

• Part I, “Programming with Kylix,” describes how to build general-purpose Kylix
applications. This part provides details on programming techniques you can use
in any Kylix application. For example, it describes how to use common Borland
Component Library for Cross Platform (CLX) objects that simplify user interface
development such as handling strings and manipulating text. It also includes
chapters on working with graphics, controls, error and exception handling, and
writing international applications. The chapter on deployment describes the tasks
involved in deploying your application to your application users.

• Part II, “Developing database applications,” describes how to build database
applications using database tools and components. Kylix lets you access SQL
server databases using DBExpress. Your version of Kylix comes with a set of
DBExpress drivers for connecting to specific databases. Additional DBExpress
drivers for connecting to other databases are available for purchase separately.

• Part III, “Writing distributed applications,” describes how to create applications
that are distributed over a local area network. These include Web server
applications, such as Apache and CGI applications. For lower-level support of
distributed applications, this section also describes how to work with socket
components, that handle the details of communication using TCP/IP and related

1-2 D e v e l o p e r ’ s G u i d e

M a n u a l c o n v e n t i o n s

protocols. The components that support sockets and Web server applications are
not available in the standard edition of Kylix.

• Part IV, “Creating custom components,” describes how to design and implement
your own components, and how to make them available on the Component
palette in Kylix’s development environment. A component can represent almost
any program element that you want to manipulate at design time. Implementing
custom components involves deriving a new class from an existing class type in
the CLX class library.

Manual conventions
This manual uses the typefaces and symbols described in Table 1.1 to indicate special
text.

Developer support services
Borland also offers a variety of support options to meet the needs of its diverse
developer community. To find out about support offerings for Kylix, refer to
http://www.borland.com/devsupport. Additional Kylix Technical Information
documents and answers to Frequently Asked Questions (FAQs) are also available at
this Web site.

From the Web site, you can access many newsgroups where Kylix developers
exchange information, tips, and techniques.

Refer also to the Borland Community site at http://community.borland.com. It
provides access to lots of information, articles, code examples, and upcoming news
about Kylix.

Ordering printed documentation
For information about ordering additional documentation, refer to the Web site at
shop.borland.com.

Table 1.1 Typefaces and symbols

Typeface or symbol Meaning

Monospace type Monospaced text represents text as it appears on screen or in Object Pascal
code. It also represents anything you must type.

[] Square brackets in text or syntax listings enclose optional items. Text of this
sort should not be typed verbatim.

Boldface Boldfaced words in text or code listings represent Object Pascal keywords
or compiler options.

Italics Italicized words in text represent Object Pascal identifiers, such as variable
or type names. Italics are also used to emphasize certain words, such as
new terms.

Keycaps This typeface indicates a key on your keyboard. For example, “Press Esc to
exit a menu.”

P r o g r a m m i n g w i t h K y l i x

P a r t

I
PartIProgramming with Kylix

The chapters in “Programming with Kylix” introduce concepts and skills necessary
for creating Kylix applications. They also introduce the concepts discussed in later
sections of the Developer’s Guide.

D e v e l o p i n g a p p l i c a t i o n s w i t h K y l i x 2-1

C h a p t e r

2
Chapter2Developing applications with Kylix

Borland Kylix is an object-oriented, visual programming environment for rapid
development of 32-bit applications. Using Kylix, you can create highly efficient cross-
platform applications with a minimum of manual coding.

Kylix provides a comprehensive class library called the Borland Component Library
for Cross Platform (CLX) and a suite of Rapid Application Development (RAD)
design tools, including application and form templates, and programming wizards.
Kylix supports truly object-oriented programming: the class library includes many
useful objects that you can use while developing applications.

This chapter briefly describes the Kylix development environment. The rest of this
manual provides technical details on developing general-purpose, database, Internet
and Intranet applications, and includes information on writing your own
components.

Integrated development environment
When you start Kylix, you are immediately placed within the integrated
development environment, also called the IDE. This environment provides all the
tools you need to design, develop, test, debug, and deploy applications.

Kylix’s development environment includes a visual form designer, Object Inspector,
Component palette, Project Manager, source code editor, and debugger. You can
move freely from the visual representation of an object (in the form designer), to the
Object Inspector to edit the initial runtime state of the object, to the source code editor
to edit the execution logic of the object. Changing code-related properties, such as the
name of an event handler, in the Object Inspector automatically changes the
corresponding source code. In addition, changes to the source code, such as
renaming an event handler method in a form class declaration, is immediately
reflected in the Object Inspector.

2-2 D e v e l o p e r ’ s G u i d e

D e s i g n i n g a p p l i c a t i o n s

The IDE supports application development throughout the stages of the product life
cycle—from design to deployment. Using the tools in the IDE allows for rapid
prototyping and shortens development time.

A more complete overview of the development environment is presented in the
Quick Start manual included with the product. In addition, the online Help system
provides help on all menus, dialogs, and windows.

Designing applications
Kylix includes all the tools necessary for you to start designing applications:

• A blank window, known as a form, on which to design the UI for your application.
• An extensive class library (CLX) that contains many reusable objects.
• An Object Inspector for examining and changing object traits.
• A Code editor that provides direct access to the underlying program logic.
• A Project Manager for managing the files that make up one or more projects.
• Many other tools such as an integrated debugger to support application

development in the IDE.
• Command-line tools including compilers, linkers, and other utilities.

You can use Kylix to design any kind of 32-bit application—from general-purpose
utilities to sophisticated data access programs or distributed applications. Kylix’s
database tools and data-aware components let you quickly develop powerful
desktop database and client/server applications. Using Kylix’s data-aware controls,
you can view live data while you design your application and immediately see the
results of database queries and changes to the application interface.

Many of the objects provided in the class library are accessible in the IDE from the
component palette. The component palette shows all of the controls, both visual and
nonvisual, that you can place on a form. Each tab contains components grouped by
functionality. By convention, the names of objects in the class library begin with a T,
such as TStatusBar.

One of the revolutionary things about Kylix is that you can create your own
components using Object Pascal. Most of the components provided are written in
Object Pascal. You can add components that you write to the component palette and
customize the palette for your use by including new tabs if needed.

Chapter 5, “Building applications and shared objects” introduces Kylix’s support for
different types of applications.

Developing applications
As you visually design the user interface for your application, Kylix generates the
underlying Object Pascal code to support the application. As you select and modify
the properties of components and forms, the results of those changes appear
automatically in the source code, and vice versa. You can modify the source files
directly with any text editor, including the built-in Code editor. The changes you

D e v e l o p i n g a p p l i c a t i o n s w i t h K y l i x 2-3

D e v e l o p i n g a p p l i c a t i o n s

make are immediately reflected in the visual environment as well. This feature is
called “two-way tools.”

Creating projects

All of Kylix’s application development revolves around projects. When you create an
application in Kylix you are creating a project. A project is a collection of files that
make up an application. Some of these files are created at design time. Others are
generated automatically when you compile the project source code.

You can view the contents of a project in a project management tool called the Project
Manager. The Project Manager lists, in a hierarchical view, the unit names, the forms
contained in the unit (if there is one), and shows the paths to the files in the project.
Although you can edit many of these files directly, it is often easier and more reliable
to use the visual tools in Kylix.

At the top of the project hierarchy, is a group file. You can combine multiple projects
into a project group. This allows you to open more than one project at a time in the
Project Manager. Project groups let you organize and work on related projects, such
as applications that function together or parts of a multi-tiered application. If you are
only working on one project, you do not need a project group file to create an
application.

Project files, which describe individual projects, files, and associated options, have a
.dpr extension. Project files contain directions for building an application or shared
object. When you add and remove files using the Project Manager, the project file is
updated. You specify project options using a Project Options dialog which has tabs
for various aspects of your project such as forms, application, compiler. These project
options are stored in the project file with the project.

Units and forms are the basic building blocks of a Kylix application. A project can
share any existing form and unit file including those that reside outside the project
directory tree. This includes custom procedures and functions that have been written
as standalone routines.

If you add a shared file to a project, realize that the file is not copied into the current
project directory; it remains in its current location. Adding the shared file to the
current project registers the file name and path in the uses clause of the project file.
Kylix automatically handles this as you add units to a project.

When you compile a project, it does not matter where the files that make up the
project reside. The compiler treats shared files the same as those created by the
project itself.

Editing code

The Kylix Code editor is a full-featured ASCII editor. If using the visual
programming environment, a form is automatically displayed as part of a new
project. You can start designing your application interface by placing objects on the
form and modifying how they work in the Object Inspector. But other programming
tasks, such as writing event handlers for objects, must be done by typing the code.

2-4 D e v e l o p e r ’ s G u i d e

D e v e l o p i n g a p p l i c a t i o n s

The contents of the form, all of its properties, its components, and their properties
can be viewed and edited as text in the Code editor. You can adjust the generated
code in the Code editor and add more components within the editor by typing code.
As you type code into the editor, the compiler is constantly scanning for changed and
updating the form with the new layout. You can then go back to the form, view and
test the changes you made in the editor and continue adjusting the form from there.

The Kylix code generation and property streaming systems are completely open to
inspection. The source code for everything that is included in your final executable
file—all of the CLX objects, RTL sources, all of the Kylix project files can be viewed
and edited in the Code editor.

Compiling applications

When you have finished designing your application interface on the form, writing
additional code so it does what you want, you can compile the project from the IDE
or from the command line.

All projects have as a target a single distributable executable file. You can view or test
your application at various stages of development by compiling, building, or
running it:

• When you compile, only units that have changed since the last compile are
recompiled.

• When you build, all units in the project are compiled, regardless of whether or not
they have changed since the last compile. This technique is useful when you are
unsure of exactly which files have or have not been changed, or when you simply
want to ensure that all files are current and synchronized. It's also important to use
Build when you've changed global compiler directives, to ensure that all code
compiles in the proper state. You can also test the validity of your source code
without attempting to compile the project.

• When you run, you compile and then execute your application. If you modified
the source code since the last compilation, the compiler recompiles those changed
modules and relinks your application.

If you have grouped several projects together, you can compile or build all projects in
a single project group at once. Choose Project|Compile All Projects or Project|Build
All Projects with the project group selected in the Project Manager.

Debugging applications

Kylix provides an integrated debugger that helps you find and fix errors in your
applications. The integrated debugger lets you control program execution, monitor
variable values and items in data structures, and modify data values while
debugging.

The integrated debugger can track down both runtime errors and logic errors. By
running to specific program locations and viewing the values of variables, the
functions on the call stack, and the program output, you can monitor how your

D e v e l o p i n g a p p l i c a t i o n s w i t h K y l i x 2-5

D e v e l o p i n g a p p l i c a t i o n s

program behaves and find the areas where it is not behaving as designed. The
debugger is described in online Help.

You can also use exception handling to recognize, locate, and deal with errors.
Exceptions in Kylix are classes, like other classes in Kylix. except, by convention, they
begin with an E rather than the initial T for other classes. Refer to “Handling
exceptions” on page 4-4 for details on exception handling.

Deploying applications

Kylix includes tools to help with application deployment. You can create an
installation package for your application that includes all of the files needed for
running a distributed application. Refer to Chapter 13, “Deploying applications” for
specific information on deployment.

Note Not all versions of Kylix have deployment capabilities.

2-6 D e v e l o p e r ’ s G u i d e

U s i n g C L X 3-1

C h a p t e r

3
Chapter3Using CLX

This chapter presents an overview of the Borland Component Library for Cross
Platform (CLX) and introduces some of the objects that you can use while developing
applications.

Understanding CLX
Kylix is a component-based development environment for two-way visual
development of graphical user interface (GUI), Internet, database, and server
applications. The components are implemented in Linux in a cross-platform version
of the component library called the Borland Component Library for Cross Platform
(CLX, pronounced “clicks”). CLX is designed to radically speed up native Linux
application development time and simplify cross-platform development for the
Linux and Windows operating systems.

Object-oriented programming is an extension of structured programming that
emphasizes code reuse and encapsulation of data with functionality. Once an object
(or, more formally, a class) is created, you and other programmers can use it in
different applications, thus reducing development time and increasing productivity.

CLX is a class library made up of many objects, some of which are also components
or controls, that you use when developing applications.

Figure 3.1 shows the organization of CLX including some of the important objects.

3-2 D e v e l o p e r ’ s G u i d e

U n d e r s t a n d i n g C L X

Figure 3.1 CLX organization

CLX objects are active entities that contain all necessary data and the “methods”
(code) that modify the data. The data is stored in the fields and properties of the
objects, and the code is made up of methods that act upon the field and property
values. Each object is declared as a “class.” All CLX objects descend from the ancestor
object TObject including objects that you develop yourself in Object Pascal.

A subset of objects are components. Components in CLX descend from the abstract
class TComponent. Components are objects that you can place on a form or data
module and manipulate at design time. Components appear on the component
palette. You can specify their properties without writing code. All CLX components
descend from the TComponent object.

Components are objects in the true object-oriented programming (OOP) sense
because they

• Encapsulate some set of data and data-access functions

• Inherit data and behavior from the objects they are derived from

• Operate interchangeably with other objects derived from a common ancestor,
through a concept called polymorphism.

TStyleTStream TPersistent

TField

TComponent

Exception

THandleComponent

TGraphic

TControl

TWidgetControlTGraphicControl

TFrameControlTCustomControl

TScrollingWidget

TCustomForm

TObject

TDialog

U s i n g C L X 3-3

U n d e r s t a n d i n g C L X

Unlike most components, objects do not appear on the component palette. Instead, a
default instance variable is declared in the unit of the object, or you have to declare
one yourself.

Visual components—that is, components like TForm and TSpeedButton, which appear
on the screen at runtime—are called controls, and they descend from TControl.
Controls are a special kind of component that is visible to users at runtime. Controls
are a subset of components. You can see controls in the user interface when your
application is running. All controls have properties in common that specify their
visual attributes, such as Height and Width. The properties, methods, and events that
controls have in common are all inherited from TControl.

CLX also includes many nonvisual objects that you can add to your programs by
dropping them onto forms. For example, if you were writing an application that
connects to a database, you might place a TDataSource component on a form.
Although TDataSource is nonvisual, it is represented on the form by an icon (that
doesn’t appear at runtime). You can manipulate the properties and events of
TDataSource in the Object Inspector just as you would those of a visual control.

Detailed reference material on all of the objects in CLX is accessible using online Help
while you are programming.

Properties, methods, and events

CLX is a hierarchy of objects, written in Object Pascal and tied to the Kylix IDE,
where you can develop applications quickly. CLX is based on properties, methods,
and events. It defines the data members (properties), the functions that operate on
the data (methods), and a way to interact with users of the class (events).

Properties
Properties are characteristics of an object that influence either the visible behavior or
the operations of the object. For example, the Visible property determines whether an
object can be seen or not in an application interface. Well-designed properties make
your components easier for others to use and easier for you to maintain.

Here are some of the useful features of properties:

• Unlike methods, which are only available at runtime, you can see and change
properties at design time and get immediate feedback as the components change
in the IDE.

• Properties can be accessed in the Object Inspector where you can modify the
values of your object visually. Setting properties at design time is easier than
writing code and makes your code easier to maintain.

• Because the data is encapsulated, it is protected and private to the actual object.

• The actual calls to get and set the values are methods, so special processing can be
done that is invisible to the user of the object. For example, data could reside in a
table, but could appear as a normal data member to the programmer.

3-4 D e v e l o p e r ’ s G u i d e

U n d e r s t a n d i n g C L X

• You can implement logic that triggers events or modifies other data during the
access of the property. For example, changing the value of one property may
require the modification of another. You can make the change in the methods
created for the property.

• Properties can be virtual.

• A property is not restricted to a single object. Changing a one property on one
object could effect several objects. For example, setting the Checked property on a
radio button effects all of the radio buttons in the group.

Methods
A method is a procedure that is always associated with a class. Methods define the
behavior of an object. Class methods can access all the public, protected, and private
properties and data members of the class and are commonly referred to as member
functions.

Events
An event is an action or occurrence detected by a program. Most modern applications
are said to be event-driven, because they are designed to respond to events. In a
program, the programmer has no way of predicting the exact sequence of actions a
user will perform next. They may choose a menu item, click a button, or mark some
text. You can write code to handle the events you're interested in, rather than writing
code that always executes in the same restricted order.

Regardless of how an event is called, Kylix looks to see if you have written any code
to handle that event. If you have, that code is executed; otherwise, the default event
handling behavior takes place.

Events can be widget events, such as highlighting a menu item, or system events,
such as working with timers or key presses.

Widget events
Widget events are actions that are generated by user interaction with a widget.
Widget events generate a signal that is passed onto the CLX component for
processing. The CLX component has an associated event handler installed for the
signal being passed to it. Examples of widget events are OnChange (the user changed
text in an edit control), OnHightlighted (the user highlighted a menu item on a menu),
and OnReturnPressed (the user pressed Enter in a memo control). These events are
always tied to specific widgets and are defined within those widgets.

System events
System events are events that the operating system generates. For example, the
OnTimer event (the TTimer component issues one of these events whenever a
predefined interval has elapsed), the OnCreate event (the component is being
created), the OnPaint event (a component or widget needs to be redrawn),
OnKeyPress event (a key was pressed on the keyboard), and so on. These are events
that the application programmer must respond to if they are not handled as you
want them to be.

U s i n g C L X 3-5

U n d e r s t a n d i n g C L X

What is an object?

An object, or class, is a data type that encapsulates data and operations on data in a
single unit. Before object-oriented programming, data and operations (functions)
were treated as separate elements.

You can begin to understand objects if you understand Object Pascal records. Records
(analogous to structures in C) are made of up fields that contain data, where each field
has its own type. Records make it easy to refer to a collection of varied data elements.

Objects are also collections of data elements. But objects—unlike records—contain
procedures and functions that operate on their data. These procedures and functions
are called methods.

An object’s data elements are accessed through properties. The properties of CLX
objects have values that you can change at design time without writing code. If you
want a property value to change at runtime, you need to write only a small amount
of code.

The combination of data and functionality in a single unit is called encapsulation. In
addition to encapsulation, object-oriented programming is characterized by
inheritance and polymorphism. Inheritance means that objects derive functionality from
other objects (called ancestors); objects can modify their inherited behavior.
Polymorphism means that different objects derived from the same ancestor support
the same method and property interfaces, which often can be called interchangeably.

Examining a Kylix object
When you create a new project, Kylix displays a new form for you to customize. In
the Code editor, Kylix declares a new class type for the form and produces the code
that creates the new form instance. The generated code looks like this:

unit Unit1;
interface

uses SysUtils, Types, Classes, QGraphics, QControls, QForms, QDialogs;

type
TForm1 = class(TForm) { The type declaration of the form begins here }
private
{ Private declarations }

public
{ Public declarations }

end; { The type declaration of the form ends here }

var
Form1: TForm1;

implementation { Beginning of implementation part }
{$R *.DFM}
end.{ End of implementation part and unit}

The new class type is TForm1, and it is derived from type TForm, which is also a class.

A class is like a record in that they both contain data fields, but a class also contains
methods—code that acts on the object’s data. So far, TForm1 appears to contain no

3-6 D e v e l o p e r ’ s G u i d e

U n d e r s t a n d i n g C L X

fields or methods, because you haven’t added to the form any components (the fields
of the new object) and you haven’t created any event handlers (the methods of the
new object). TForm1 does contain inherited fields and methods, even though you
don’t see them in the type declaration.

This variable declaration declares a variable named Form1 of the new type TForm1.

var
Form1: TForm1;

Form1 represents an instance, or object, of the class type TForm1. You can declare
more than one instance of a class type. Each instance maintains its own data, but all
instances use the same code to execute methods.

Although you haven’t added any components to the form or written any code, you
already have a complete Kylix application that you can compile and run. All it does is
display a blank form.

Suppose you add a button component to this form and write an OnClick event
handler that changes the color of the form when the user clicks the button. The result
might look like this:

Figure 3.2 A simple form

When the user clicks the button, the form’s color changes to green. This is the event-
handler code for the button’s OnClick event:

procedure TForm1.Button1Click(Sender: TObject);
begin

Form1.Color := clGreen;
end;

Objects can contain other objects as data fields. Each time you place a component on
a form, a new field appears in the form’s type declaration. If you create the
application described above and look at the code in the Code editor, this is what you
see:

unit Unit1;

interface

uses SysUtils, Types, Classes, QGraphics, QControls, QForms, QDialogs;

type
TForm1 = class(TForm)

U s i n g C L X 3-7

U n d e r s t a n d i n g C L X

Button1: TButton;{ New data field }
procedure Button1Click(Sender: TObject);{ New method declaration }

private
{ Private declarations }

public
{ Public declarations }

end;

var
Form1: TForm1;

implementation

{$R *.xfm}

procedure TForm1.Button1Click(Sender: TObject);{ The code of the new method }
begin

Form1.Color := clGreen;
end;

end.

TForm1 has a Button1 field that corresponds to the button you added to the form.
TButton is a class type, so Button1 refers to an object.

All the event handlers you write in Kylix are methods of the form object. Each time
you create an event handler, a method is declared in the form object type. The
TForm1 type now contains a new method, the Button1Click procedure, declared
within the TForm1 type declaration. The code that implements the Button1Click
method appears in the implementation part of the unit.

Changing the name of a component
You should always use the Object Inspector to change the name of a component. For
example, suppose you want to change a form’s name from the default Form1 to a
more descriptive name, such as ColorBox. When you change the form’s Name
property in the Object Inspector, the new name is automatically reflected in the
form’s .xfm file (which you do not usually edit manually) and in the Object Pascal
source code that Kylix generates:

unit Unit1;

interface

uses SysUtils, Types, Classes, QGraphics, QControls, QForms, QDialogs;

type
TColorBox = class(TForm){ Changed Form1 to TColorBox }

Button1: TButton;
procedure Button1Click(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
ColorBox: TColorBox;{Changed Form1 to ColorBox }

3-8 D e v e l o p e r ’ s G u i d e

U n d e r s t a n d i n g C L X

implementation

{$R *.xfm}

procedure TColorBox.Button1Click(Sender: TObject);
begin

Form1.Color := clGreen;{ The reference to Form1 didn't change! }
end;

end.

Note that the code in the OnClick event handler for the button hasn’t changed.
Because you wrote the code, you have to update it yourself and correct any
references to the form:

procedure TColorBox.Button1Click(Sender: TObject);
begin

ColorBox.Color := clGreen;
end;

Inheriting data and code from an object

The TForm1 object described on page 3-5 seems simple. TForm1 appears to contain
one field (Button1), one method (Button1Click), and no properties. Yet you can show,
hide, or resize of the form, add or delete standard border icons, and set up the form
to become part of a Multiple Document Interface (MDI) application. You can do these
things because the form has inherited all the properties and methods of CLX
component TForm. When you add a new form to your project, you start with TForm
and customize it by adding components, changing property values, and writing
event handlers. To customize any object, you first derive a new object from the
existing one; when you add a new form to your project, Kylix automatically derives a
new form from the TForm type:

TForm1 = class(TForm)

A derived object inherits all the properties, events, and methods of the object it
derives from. The derived object is called a descendant and the object it derives from is
called an ancestor. If you look up TForm in the online Help, you’ll see lists of its
properties, events, and methods, including the ones that TForm inherits from its
ancestors. An object can have only one immediate ancestor, but it can have many
direct descendants.

Scope and qualifiers

Scope determines the accessibility of an object’s fields, properties, and methods. All
members declared within an object are available to that object and its descendants.
Although a method’s implementation code appears outside of the object declaration,
the method is still within the scope of the object because it is declared within the
object’s declaration.

When you write code to implement a method that refers to properties, methods, or
fields of the object where the method is declared, you don’t need to preface those

U s i n g C L X 3-9

U n d e r s t a n d i n g C L X

identifiers with the name of the object. For example, if you put a button on a new
form, you could write this event handler for the button’s OnClick event:

procedure TForm1.Button1Click(Sender: TObject);
begin

Color := clFuchsia;
Button1.Color := clLime;

end;

The first statement is equivalent to

Form1.Color := clFuchsia

You don’t need to qualify Color with Form1 because the Button1Click method is part of
TForm1; identifiers in the method body therefore fall within the scope of the TForm1
instance where the method is called. The second statement, in contrast, refers to the
color of the button object (not of the form where the event handler is declared), so it
requires qualification.

Kylix creates a separate unit (source code) file for each form. If you want to access
one form’s components from another form’s unit file, you need to qualify the
component names, like this:

Form2.Edit1.Color := clLime;

In the same way, you can access a component’s methods from another form. For
example,

Form2.Edit1.Clear;

To access Form2’s components from Form1’s unit file, you must also add Form2’s unit
to the uses clause of Form1’s unit.

The scope of an object extends to the object’s descendants. You can, however,
redeclare a field, property, or method within a descendant object. Such redeclarations
either hide or override the inherited member.

For more information about scope, inheritance, and the uses clause, see the Object
Pascal Language Guide.

Private, protected, public, and published declarations

When you declare a field, property, or method, the new member has a visibility
indicated by one of the keywords private, protected, public, or published. The
visibility of a member determines its accessibility to other objects and units.

• A private member is accessible only within the unit where it is declared. Private
members are often used within a class to implement other (public or published)
methods and properties.

• A protected member is accessible within the unit where its class is declared and
within any descendant class, regardless of the descendant class’s unit.

• A public member is accessible from wherever the object it belongs to is
accessible—that is, from the unit where the class is declared and from any unit that
uses that unit.

3-10 D e v e l o p e r ’ s G u i d e

U n d e r s t a n d i n g C L X

• A published member has the same visibility as a public member, but the compiler
generates runtime type information for published members. Published properties
appear in the Object Inspector at design time.

For more information about visibility, see the Object Pascal Language Guide.

Using object variables

You can assign one object variable to another object variable if the variables are of the
same type or assignment compatible. In particular, you can assign an object variable
to another object variable if the type of the variable you are assigning to is an ancestor
of the type of the variable being assigned. For example, here is a TSimpleForm type
declaration and a variable declaration section declaring two variables, AForm and
SimpleForm:

type
TSimpleForm = class(TForm)

Button1: TButton;
Edit1: TEdit;

private
{ Private declarations }

public
{ Public declarations }

end;

var
AForm: TForm;
SimpleForm: TSimpleForm;

AForm is of type TForm, and SimpleForm is of type TSimpleForm. Because TSimpleForm
is a descendant of TForm, this assignment statement is legal:

AForm := SimpleForm;

Suppose you write an event handler for the OnClick event of a button. When the
button is clicked, the event handler for the OnClick event is called. Each event handler
has a Sender parameter of type TObject:

procedure TForm1.Button1Click(Sender: TObject);
begin
ƒ
end;

Because Sender is of type TObject, any object can be assigned to Sender. The value of
Sender is always the control or component that responds to the event. You can test
Sender to find the type of component or control that called the event handler using
the reserved word is. For example,

if Sender is TEdit then
DoSomething

else
DoSomethingElse;

U s i n g C L X 3-11

U n d e r s t a n d i n g C L X

Creating, instantiating, and destroying objects

Many of the objects you use in Kylix, such as buttons and edit boxes, are visible at
both design time and runtime. Some, such as common dialog boxes, appear only at
runtime. Still others, such as timers and datasource components, have no visual
representation at runtime.

You may want to create your own objects. For example, you could create a TEmployee
object that contains Name, Title, and HourlyPayRate properties. You could then add a
CalculatePay method that uses the data in HourlyPayRate to compute a paycheck
amount. The TEmployee type declaration might look like this:

type
TEmployee = class(TObject)
private

FName: string;
FTitle: string;
FHourlyPayRate: Double;

public
property Name: string read FName write FName;
property Title: string read FTitle write FTitle;
property HourlyPayRate: Double read FHourlyPayRate write FHourlyPayRate;
function CalculatePay: Double;

end;

In addition to the fields, properties, and methods you’ve defined, TEmployee inherits
all the methods of TObject. You can place a type declaration like this one in either the
interface or implementation part of a unit, and then create instances of the new class
by calling the Create method that TEmployee inherits from TObject:

var
Employee: TEmployee;

begin
Employee := TEmployee.Create;

end;

The Create method is called a constructor. It allocates memory for a new instance
object and returns a reference to the object.

Components on a form are created and destroyed automatically by Kylix. But if you
write your own code to instantiate objects, you are responsible for disposing of them
as well. Every object inherits a Destroy method (called a destructor) from TObject. To
destroy an object, however, you should call the Free method (also inherited from
TObject), because Free checks for a nil reference before calling Destroy. For example,

Employee.Free

destroys the Employee object and deallocates its memory.

Components and ownership

Kylix has a built-in memory-management mechanism that allows one component to
assume responsibility for freeing another. The former component is said to own the
latter. The memory for an owned component is automatically freed when its owner's

3-12 D e v e l o p e r ’ s G u i d e

M a j o r b r a n c h e s o f t h e C L X h i e r a r c h y

memory is freed. The owner of a component—the value of its Owner property—is
determined by a parameter passed to the constructor when the component is created.
By default, a form owns all components on it and is in turn owned by the application.
Thus, when the application shuts down, the memory for all forms and the
components on them is freed.

Ownership applies only to TComponent and its descendants. If you create, for
example, a TStringList or TCollection object (even if it is associated with a form), you
are responsible for freeing the object.

Note Don’t confuse a component’s owner with its parent.

Major branches of the CLX hierarchy
Figure 3.3 is a summary of the Borland Component Library for Cross Platform (CLX)
that shows the major branches of the inheritance tree.

Figure 3.3 A simplified hierarchy diagram

Six important base classes are shown in the figure, and they are described in the
following table:

Table 3.1 Important base classes

Class Description

TObject Signifies the base class and ultimate ancestor of everything in CLX. TObject
encapsulates the fundamental behavior common to all objects in CLX by
introducing methods that perform basic functions such as creating,
maintaining, and destroying an instance of an object.

Exception Specifies the base class of all classes that relate to exceptions. Exception
provides a consistent interface for error conditions, and enables applications
to handle error conditions gracefully.

TPersistent Specifies the base class for all objects that implement properties. Classes
under TPersistent deal with sending data to streams and allow for the
assignment of classes.

U s i n g C L X 3-13

M a j o r b r a n c h e s o f t h e C L X h i e r a r c h y

The next few sections generally describe the main CLX branches. For a complete
picture of the CLX object hierarchy, refer to the CLX Object Hierarchy wall chart that
is included with this product.

TObject branch

The TObject branch includes all objects that descend from TObject but not from
TPersistent. All CLX objects descend from TObject, an abstract class whose methods
define fundamental behavior like construction, destruction, and event handling.
Much of the powerful capability of CLX objects are established by the methods that
TObject introduces. TObject encapsulates the fundamental behavior common to all
objects in CLX by introducing methods that provide:

• The ability to respond when object instances are created or destroyed.
• Class type and instance information on an object, and runtime type information

(RTTI) about its published properties.

TObject is the immediate ancestor of many simple classes that descend from TObject
but not from one of the other base classes. Classes in this branch have one common,
important characteristic, they are transitory. What this means is that these classes do
not have a method to save the state that they are in prior to destruction; they are not
persistent.

If you write classes of your own in Object Pascal, they should descend from TObject.
By deriving new classes from CLX’s base class (or one of its descendants), you
provide your classes with essential functionality and ensure that they work with
CLX.

One of the main groups of classes in this branch is the Exception class. This class
provides a large set of built-in exception classes for automatically handling divide-
by-zero errors, file I/O errors, invalid typecasts, and many other exception
conditions.

Another type of class in the TObject branch are classes that encapsulate data
structures, such as:

TComponent Specifies the base class for all nonvisual components such as TApplication.
TComponent is the common ancestor of all components. This class allows a
component to be displayed on the component palette, lets the component
own other components, and allows the component to be manipulated
directly on a form.

TControl Represents the base class for all controls that are visible at runtime. TControl
is the common ancestor of all visual components and provides standard
visual controls like position and cursor. This class also provides events that
respond to mouse actions.

TWidgetControl Specifies the base class of all user interface objects also called widgets.
Controls under TWidgetControl are widget-based controls that can capture
keyboard input.

Table 3.1 Important base classes (continued)

Class Description

3-14 D e v e l o p e r ’ s G u i d e

M a j o r b r a n c h e s o f t h e C L X h i e r a r c h y

• TBits, a class that stores an “array” of Boolean values
• TList, a linked list class
• TStack, a class that maintains a last-in first-out array of pointers
• TQueue, a class that maintains a first-in first-out array of pointers

TStream is good example of another type of class in this branch. TStream is the base
class type for stream objects that can read from or write to various kinds of storage
media, such as disk files, dynamic memory, and so on. Refer to “Using streams” on
page 3-38 to learn more about streams.

TPersistent branch

Objects in this branch of CLX descend from TPersistent but not from TComponent.
TPersistent adds persistence to objects. Persistence determines what gets saved with a
form file or data module and what gets loaded into the form or data module when it
is retrieved from memory.

Objects in this branch implement properties for components. Properties are only
loaded and saved with a form if they have an owner. The owner must be some
component. This branch introduces the GetOwner function which lets you determine
the owner of the property.

Objects in this branch are also the first to include a published section where
properties can be automatically loaded and saved. A DefineProperties method also
allows you to indicate how to load and save properties.

Other classes in this branch include:

• TGraphicsObject, an abstract base class for graphics objects, such as TBrush, TFont,
and TPen.

• TGraphic, an abstract base class for objects that can store and display visual images
like icons and bitmaps, such as TBitmap and TPicture.

• TStrings, a base class for objects that represent a list of strings.
• TClipboard, a class that contains text or graphics that have been cut or copied from

an application.
• TCollection, TOwnedCollection, and TCollectionItem, classes that maintain indexed

collections of specially defined items.

TComponent branch

TComponent branch contains objects that descend from TComponent but not TControl.
Objects in this branch are components that you can manipulate on forms at design
time. They are persistent objects that can do the following:

• Appear on the component palette and can be changed in the form designer.

• Own and manage other components.

• Load and save themselves.

Several methods in TComponent dictate how components act during design time and
what information gets saved with the component. Streaming is introduced in this

U s i n g C L X 3-15

M a j o r b r a n c h e s o f t h e C L X h i e r a r c h y

branch of CLX. Kylix handles most streaming chores automatically. Properties are
persistent if they are published and published properties are automatically streamed.

The TComponent class also introduces the concept of ownership that is propagated
throughout CLX. Two properties support ownership: Owner and Components. Every
component has an Owner property that references another component as its owner. A
component may own other components. In this case, all owned components are
referenced in the component’s Array property.

A component's constructor takes a single parameter that is used to specify the new
component's owner. If the passed-in owner exists, the new component is added to
the owner's Components list. Aside from using the Components list to reference
owned components, this property also provides for the automatic destruction of
owned components. As long as the component has an owner, it will be destroyed
when the owner is destroyed. For example, since TForm is a descendant of
TComponent, all components owned by the form are destroyed and their memory
freed when the form is destroyed. This assumes that all of the components on the
form clean themselves up properly when their destructors are called.

If a property type is a TComponent or a descendant, the streaming system creates an
instance of that type when reading it in. If a property type is TPersistent but not
TComponent, the streaming system uses the existing instance available through the
property and read values for that instance’s properties.

When creating a form file (a file used to store information about the components on
the form), the form designer loops through its components array and saves all the
components on the form. Each component “knows” how to write its changed
properties out to a stream (in this case, a text file). Conversely, when loading the
properties of components in the form file, the form designer loops through the
components array and loads each component.

The types of classes you’ll find in this branch include:

• TMainMenu, a class that provides a menu bar and its accompanying drop-down
menus for a form.

• TTimer, a class that includes timer functions.
• TOpenDialog, TFontDialog, TFindDialog, TColorDialog, and so on, provide

commonly used dialog boxes.
• TActionList, a class that maintains a list of actions used with components and

controls, such as menu items and buttons.
• TScreen, a class that keeps track of what forms and data modules have been

instantiated by the application, the active form, and the active control within that
form, the size and resolution of the screen, and the cursors and fonts available for
the application to use.

The TComponent branch also includes THandleComponent. This is the base class for
nonvisual components that require a handle to an underlying Qt object such as
dialogs and menus.

Components that do not need a visual interface can be derived directly from
TComponent. To make a tool such as a TTimer device, you can derive from
TComponent. This type of component resides on the component palette but performs

3-16 D e v e l o p e r ’ s G u i d e

M a j o r b r a n c h e s o f t h e C L X h i e r a r c h y

internal functions that are accessed through code rather than appearing in the user
interface at runtime.

TControl branch

The TControl branch consists of components that descend from TControl but not
TWidgetControl. Objects in this branch are controls that are visual objects which the
application user can see and manipulate at runtime. All controls have properties,
methods, and events in common that relate to how the control looks, such as its
position, the cursor associated with the control’s widget, methods to paint or move
the control, and events to respond to mouse actions. Controls can never receive
keyboard input.

Whereas TComponent defines behavior for all components, TControl defines behavior
for all visual controls. This includes drawing routines, standard events, and
containership.

There are two basic types of control:

• Those that have a widget of their own
• Those that use the widget of their “parent”

Controls that have their own widget are called “widget-based” controls and descend
from TWidgetControl. Buttons and check boxes fall into this class.

Controls that use a parent widget are called “graphic” controls and descend from
TGraphicControl. Image controls fall into this class. The main difference between these
types of components is that graphic controls do not have an associated widget, and
thus cannot receive the input focus nor can they contain other controls. Because a
graphic control does not need a handle, its demand on system resources is lessened,
and painting a graphic control is quicker than painting a widget-based control.

TGraphicControl controls must draw themselves and include controls such as:

Notice that these include common paint routines (Repaint, Invalidate, and so on) that
never need to receive focus.

To create a control that can receive input focus or contain other controls, but which
needs a Canvas property and a Paint method, derive a class from TCustomControl.

Table 3.2 Graphic controls

Control Description

TImage Displays graphical images.

TBevel Represents a beveled outline.

TLabel Displays text on a form.

TPaintBox Provides a canvas that applications can use for drawing or rendering an image.

U s i n g C L X 3-17

U s i n g c o m p o n e n t s

TWidgetControl branch

The TWidgetControl branch includes all controls that descend from TWidgetControl.
TWidgetControl is the base class for all widget-based controls or widgets. The term
widget comes from combining “window” and “gadget.” A widget is almost anything
you use in the user interface of an application. Examples of widgets are buttons,
labels, and scroll bars.

The following are features of widgets:

• Widget-based controls have an associated widget.

• Widget-based controls can receive focus while an application is running.

• Other controls may display data, but the user can only use the keyboard to interact
with widget-based controls.

• Widget-based controls can contain other controls.

• A control that contains other controls is called a parent. Only a widget-based
control can be a parent of one or more child controls.

Descendants of TWidgetControl are controls that can receive focus, meaning they can
receive keyboard input from the application user. This implies that many more
standard events apply to them.

This branch includes both controls that are drawn automatically (including TEdit,
TListBox, TComboBox, TPageControl, and so on) and custom controls that Kylix must
draw (such as TDBNavigator). Direct descendants of TWidgetControl typically
implement standard controls, like an edit field, a combo box, list box, or page control,
and, therefore, already know how to paint themselves. The TCustomControl class is
provided for components that require a handle but do not encapsulate a standard
control that includes the ability to repaint itself.

Refer to Chapter 7, “Working with controls” for details on using controls.

Using components
Many visual components are provided in the development environment itself on the
component palette. All visual design work in Kylix takes place on forms. When you
open Kylix or create a new project, a blank form is displayed on the screen. You select
components from the component palette and drop them onto the form. You design
the look and feel of the application’s user interface by arranging the visual
components such as buttons and list boxes on the form. Once a visual component is
on the form, you can adjust its position, size, and other design-time properties. Kylix
takes care of the underlying programming details.

You can also place nonvisible components on forms to capture information from
databases, perform calculations, and manage other interactions. Chapter 6,
“Developing the application user interface” provides details on using forms such as
creating modal forms dynamically, passing parameters to forms, and retrieving data
from forms.

3-18 D e v e l o p e r ’ s G u i d e

U s i n g c o m p o n e n t s

Kylix components are grouped functionally on different pages of the component
palette. For example, commonly used components such as those to create menus, edit
boxes, or buttons are located on the Standard page of the component palette.

At first glance, Kylix’s components appear to be just like any other class. But there are
differences between components in Kylix and the standard class hierarchies that
most programmers work with. Some differences are described here:

• All Kylix components descend from TComponent.

• Components are most often used as is and are changed through their properties,
rather than serving as “base classes” to be subclassed to add or change
functionality. When a component is inherited, it is usually to add specific code to
existing event handling member functions.

• Properties of components intrinsically contain runtime type information.

• Components can be added to the component palette in the Kylix user interface and
manipulated on a form.

Most Linux system events are handled by Kylix components. When you want to
respond to a message, you only need to provide an event handler.

Components on the component palette

The component palette contains a large selection of components that handle a wide
variety of programming tasks. You can add, remove, and rearrange components on
the palette. You can also create component templates and frames that are made up of
several components and add them to the component palette.

The components on the palette are arranged in pages according to their purpose and
functionality. Which pages appear in the default configuration depends on the
version of Kylix you are running. Table 3.3 lists typical default pages and the types of
components they contain.

Table 3.3 Component palette pages

Page name Contents

Standard Standard controls, menus

Additional Specialized controls for use in applications

Common Controls Common controls used for developing a graphical user interface

Dialogs Dialog boxes

dbExpress Database components that use dbExpress

Data Access Dataset provider, client dataset, and data source components

Data Controls Visual, data-aware controls

Internet Components for Internet communication protocols and Web applications

Indy Clients Components for writing Internet client applications

Indy Servers Components for writing Internet server applications

Indy Misc Additional internet components

U s i n g C L X 3-19

U s i n g c o m p o n e n t s

The online Help provides information about many of the components on the default
palette. You can press F1 on the component palette itself or on the component itself
after it has been dropped onto a form to display Help.

Text controls

Many applications present text to the user or allow the user to enter text. The type of
control used for this purpose depends on the size and format of the information.

TEdit and TMaskEdit are simple text controls that include a single line text edit box in
which you can type information. When the edit box has focus, a blinking insertion
point appears.

You can include text in the edit box by assigning a string value to its Text property.
You control the appearance of the text in the edit box by assigning values to its Font
property. You can specify the typeface, size, color, and attributes of the font. The
attributes affect all of the text in the edit box and cannot be applied to individual
characters.

An edit box can be designed to change its size depending on the size of the font it
contains. You do this by setting the AutoSize property to True. You can limit the
number of characters an edit box can contain by assigning a value to the MaxLength
property.

TMaskEdit is a special edit control that validates the text entered against a mask that
encodes the valid forms the text can take. The mask can also format the text that is
displayed to the user.

TMemo is for adding several lines of text.

Text control properties
Following are some of the important properties of text controls:

Use this component: When you want users to do this:

TEdit Edit a single line of text.

TMemo Edit multiple lines of text.

TMaskEdit Adhere to a particular format, such as a postal code or phone number.

Table 3.4 Text control properties

Property Description

Text Determines the text that appears in the edit box or memo control.

Font Controls the attributes of text written in the edit box or memo control.

AutoSize Enables the edit box to dynamically change its height depending on the
currently selected font.

ReadOnly Specifies whether the user is allowed to change the text.

MaxLength Limits the number of characters in simple text controls.

3-20 D e v e l o p e r ’ s G u i d e

U s i n g c o m p o n e n t s

Properties of memo controls
TMemo is another type of edit box, which handles multiple lines of text. The lines in a
memo control can extend beyond the right boundary of the edit box, or they can
wrap onto the next line. You control whether the lines wrap using the WordWrap
property.

Memo controls include other properties such as the following:

• Alignment specifies how text is aligned (left, right, or center) in the component.
• The Text property contains the text in the control. Your application can tell if the

text changes by checking the Modified property.
• Lines contains the text as a list of strings.
• WordWrap determines whether the text will wrap at the right margin.
• WantReturns determines whether the user can insert hard returns in the text.
• WantTabs determines whether the user can insert tabs in the text.
• SelText contains the currently selected (highlighted) part of the text.
• SelStart and SelLength indicate the position and length of the selected part of the

text.

At runtime, you can select all the text in the memo with the SelectAll method.

Specialized input controls

The following components provide additional ways of capturing input.

Scroll bars
The scroll bar component creates a scroll bar that you can use to scroll the contents of
a window, form, or other control. In the OnScroll event handler, you write code that
determines how the control behaves when the user moves the scroll bar.

The scroll bar component is not used very often, because many visual components
include scroll bars of their own and thus don’t require additional coding. For
example, TForm has VertScrollBar and HorzScrollBar properties that automatically
configure scroll bars on the form. To create a scrollable region within a form, use
TScrollBox.

Track bars
A track bar can set integer values on a continuous range. It is useful for adjusting
properties like color, volume and brightness. The user moves the slide indicator by
dragging it to a particular location or clicking within the bar.

• Use the Max and Min properties to set the upper and lower range of the track bar.
• Use SelEnd and SelStart to highlight a selection range. See Figure 3.4.

Use this component: When you want users to do this:

TScrollBar Select values on a continuous range.

TTrackBar Select values on a continuous range (more visually effective than a scroll
bar).

TSpinEdit Select a value from a spinner widget.

U s i n g C L X 3-21

U s i n g c o m p o n e n t s

• The Orientation property determines whether the track bar is vertical or horizontal.
• By default, a track bar has one row of ticks along the bottom. Use the TickMarks

property to change their location. To control the intervals between ticks, use the
TickStyle property and SetTick method.

Figure 3.4 Three views of the track bar component

• Position sets a default position for the track bar and tracks the position at runtime.
• By default, users can move one tick up or down by pressing the up and down

arrow keys. Set LineSize to change that increment.
• Set PageSize to determine the number of ticks moved when the user presses the

Page Up and Page Down keys.

Spin edit controls
A spin edit control is also called an up-down widget, little arrows widget, or spin
button. This control lets the application user change an integer value in fixed
increments, either by clicking the up or down arrow buttons to increase or decrease
the value currently displayed, or by typing the value directly into the spin box.

The current value is given by the Value property; the increment, which defaults to 1,
is specified by the Increment property. Use the Associate property to attach another
component (such as an edit control) to the up-down control.

Buttons and similar controls

Aside from menus, buttons provide the most common way to initiate an action or
command in an application. Kylix offers several button-like controls:

Action lists let you centralize responses to user commands (actions) for objects such
as menus and buttons that respond to those commands. See “Using action lists” on
page 6-13 for details on how to use action lists with buttons and toolbars.

CLX allows you to custom draw buttons individually or application wide. See
Chapter 6, “Developing the application user interface.”

Use this component: To do this:

TButton Present command choices on buttons with text.

TSpeedButton Create grouped toolbar buttons.

TCheckBox Present on/off options.

TRadioButton Present a set of mutually exclusive choices.

TToolBar Arrange tool buttons and other controls in rows and automatically adjust
their sizes and positions.

3-22 D e v e l o p e r ’ s G u i d e

U s i n g c o m p o n e n t s

Button controls
Users click button controls with the mouse to initiate actions. Buttons are labeled
with text that represent the action. The text is specified by assigning a string value to
the Caption property. Most buttons can also be selected by pressing a key on the
keyboard as a keyboard shortcut. The shortcut is shown as an underlined letter on
the button.

You can assign an action to a TButton component by creating an OnClick event
handler for it. Double-clicking a button at design time takes you to the button’s
OnClick event handler in the Code editor.

• Set Cancel to True if you want the button to trigger its OnClick event when the user
presses Esc.

• Set Default to True if you want the Enter key to trigger the button’s OnClick event.

Bitmap buttons
A bitmap button (TBitBtn) is a button control that presents a bitmap image on its face.

• To choose a bitmap for your button, set the Glyph property.
• Use Kind to automatically configure a button with a glyph and default behavior.
• By default, the glyph appears to the left of any text. To move it, use the Layout

property.
• The glyph and text are automatically centered on the button. To move their

position, use the Margin property. Margin determines the number of pixels
between the edge of the image and the edge of the button.

• By default, the image and the text are separated by 4 pixels. Use Spacing to increase
or decrease the distance.

• Bitmap buttons can have 3 states: up, down, and held down. Set the NumGlyphs
property to 3 to show a different bitmap for each state.

Speed buttons
Speed buttons (TSpeedButton), which usually have images on their faces, can function
in groups. They are commonly used with panels to create toolbars.

• To make speed buttons act as a group, give the GroupIndex property of all the
buttons the same nonzero value.

• By default, speed buttons appear in an up (unselected) state. To initially display a
speed button as selected, set the Down property to True.

• If AllowAllUp is True, all of the speed buttons in a group can be unselected. Set
AllowAllUp to False if you want a group of buttons to act like a radio group.

For more information on speed buttons, refer to subtopics in the section “Adding a
toolbar using a panel component” on page 6-32.

Check boxes
A check box is a toggle that lets the user select an on or off state. When the choice is
turned on, the check box is checked. Otherwise, the check box is blank. You create
check boxes using TCheckBox.

• Set Checked to True to make the box appear checked by default.

U s i n g C L X 3-23

U s i n g c o m p o n e n t s

• Set AllowGrayed to True to give the check box three possible states: checked,
unchecked, and grayed.

• The State property indicates whether the check box is checked (cbChecked),
unchecked (cbUnchecked), or grayed (cbGrayed).

Note Check box controls display one of two binary states. The indeterminate state is used
when other settings make it impossible to determine the current value for the check
box.

Radio buttons
Radio buttons, also called option buttons, present a set of mutually exclusive choices.
You can create individual radio buttons using TRadioButton or use the radio group
component (TRadioGroup) to arrange radio buttons into groups automatically. You
can group radio buttons to let the user select one from a limited set of choices. See
“Grouping components” on page 3-26 for more information.

A selected radio button is displayed as a circle filled in the middle. When not
selected, the radio button shows an empty circle. Assign the value True or False to
the Checked property to change the radio button’s visual state.

Toolbars
Toolbars provide an easy way to arrange and manage visual controls. You can create
a toolbar out of a panel component and speed buttons, or you can use the TToolBar
component, then right-click and choose New Button to add tool buttons to the
toolbar.

Using the TToolBar component has several advantages: buttons on a toolbar
automatically maintain uniform dimensions and spacing; other controls maintain
their relative position and height; controls can automatically wrap around to start a
new row when they do not fit horizontally; and TToolBar offers display options like
transparency, pop-up borders, and spaces and dividers to group controls.

You can use a centralized set of actions on toolbars and menus, by creating an action
list. See “Using action lists” on page 6-13 for details on how to use action lists with
buttons and toolbars.

Toolbars can also parent other controls such as edit boxes, combo boxes, and so on.

Splitter controls

A splitter (TSplitter) placed between aligned controls allows users to resize the
controls. Used with components like panels and group boxes, splitters let you divide
a form into several panes with multiple controls on each pane.

After placing a panel or other control on a form, add a splitter with the same
alignment as the control. The last control should be client-aligned, so that it fills up
the remaining space when the others are resized. For example, you can place a panel
at the left edge of a form, set its Alignment to alLeft, then place a splitter (also aligned
to alLeft) to the right of the panel, and finally place another panel (aligned to alLeft or
alClient) to the right of the splitter.

3-24 D e v e l o p e r ’ s G u i d e

U s i n g c o m p o n e n t s

Set MinSize to specify a minimum size the splitter must leave when resizing its
neighboring control. Set Beveled to True to give the splitter’s edge a 3D look.

Handling lists

Lists present the user with a collection of items to select from. Several components
display lists:

Use the nonvisual TStringList and TImageList components to manage sets of strings
and images. For more information about string lists, see “Working with string lists”
on page 3-32.

List boxes and check-list boxes
List boxes (TListBox) and check-list boxes display lists from which users can select
one or more choices from a list of possible options. The choices are represented using
text, graphics, or both.

• Items uses a TStrings object to fill a control with values.
• ItemIndex indicates which item in the list is selected.
• MultiSelect specifies whether a user can select more than one item at a time.
• Sorted determines whether the list is arranged alphabetically.
• Columns specifies the number of columns in the list control.
• ItemHeight specifies the height of each item in pixels. The Style property can cause

ItemHeight to be ignored.
• The Style property determines how a list control displays its items. By default,

items are displayed as strings. By changing the value of Style, you can create
owner-draw list boxes that display items graphically or in varying heights. For
information on owner-draw controls, see “Adding graphics to controls” on
page 7-7.

To create a simple list box,

1 Within your project, drop a list box component from the component palette onto a
form.

2 Size the list box and set its alignment as needed.

3 Double-click the right side of the Items property or choose the ellipsis button to
display the String List Editor.

4 Use the editor to enter free form text arranged in lines for the contents of the list
box.

5 Then choose OK.

Use this component: To display:

TListBox A list of text strings.

TComboBox An edit box with a scrollable drop-down list.

TTreeView A hierarchical list.

TListView A list of (draggable) items with optional icons, columns, and headings.

U s i n g C L X 3-25

U s i n g c o m p o n e n t s

To let users select multiple items in the list box, you can use the ExtendedSelect and
MultiSelect properties.

Combo boxes
A combo box (TComboBox) combines an edit box with a scrollable list. When users
enter data into the control—by typing or selecting from the list—the value of the Text
property changes. If AutoComplete is enabled, the application looks for and displays
the closest match in the list as the user types the data.

Three types of combo boxes are: standard, drop-down (the default), and drop-down
list.

• Use the Style property to select the type of combo box you need.
• Use csDropDown to create an edit box with a drop-down list. Use csDropDownList

to make the edit box read-only (forcing users to choose from the list). Set the
DropDownCount property to change the number of items displayed in the list.

• Use csSimple to create a standard combo box with a fixed list that does not close. Be
sure to resize the combo box so that the list items are all displayed.

• Use csOwnerDrawFixed or csOwnerDrawVariable to create owner-draw combo boxes
that display items graphically or in varying heights. For information on owner-
draw controls, see “Adding graphics to controls” on page 7-7.

At runtime, combo boxes work differently on Kylix than they do in Delphi. On Kylix
(but not on Delphi), you can add a item to a drop down by entering text and pressing
Enter in the edit field of a combo box. You can turn this feature off by setting
InsertMode to ciNone. It is also possible to add empty (no string) items to the list in
the combo box. Also, if you keep pressing the down arrow key, it does not stop at the
last item of the combo box list. It cycles around to the top again.

Tree views
A tree view (TTreeView) displays items in an indented outline. The control provides
buttons that allow nodes to be expanded and collapsed. Indent sets the number of
pixels horizontally separating items from their parents. You can include icons with
items’ text labels and display different icons to indicate whether a node is expanded
or collapsed. You can also include graphics, such as check boxes, that reflect state
information about the items.

To add items to a tree view control at design time, double-click on the control to
display the TreeView Items editor. The items you add become the value of the Items
property.

Tree views can display columns and subitems similar to list views in vsReport mode.

List views
List views, created using TListView, display lists in various formats. Use the
ViewStyle property to choose the kind of list you want:

• vsList displays items as labeled icons that cannot be dragged.
• vsReport displays items on separate lines with information arranged in columns.

The leftmost column contains a small icon and label, and subsequent columns

3-26 D e v e l o p e r ’ s G u i d e

U s i n g c o m p o n e n t s

contain subitems specified by the application. Use the ShowColumnHeaders
property to display headers for the columns.

Grouping components

A graphical interface is easier to use when related controls and information are
presented in groups. Kylix provides several components for grouping components:

Group boxes and radio groups
A group box (TGroupBox) arranges related controls on a form. The most commonly
grouped controls are radio buttons. After placing a group box on a form, select
components from the component palette and place them in the group box. The
Caption property contains text that labels the group box at runtime.

The radio group component (TRadioGroup) simplifies the task of assembling radio
buttons and making them work together. To add radio buttons to a radio group, edit
the Items property in the Object Inspector; each string in Items makes a radio button
appear in the group box with the string as its caption. The value of the ItemIndex
property determines which radio button is currently selected. Display the radio
buttons in a single column or in multiple columns by setting the value of the Columns
property. To respace the buttons, resize the radio group component.

Panels
The TPanel component provides a generic container for other controls. Panels are
typically used to visually group components together on a form. Panels can be
aligned with the form to maintain the same relative position when the form is
resized. The BorderWidth property determines the width, in pixels, of the border
around a panel.

You can also place other controls onto a panel and use the Align property to ensure
proper positioning of all the controls in the group on the form. You can make a panel
alTop aligned so that its position will remain in place even if the form is resized.

The look of the panel can be changed to a raised or lowered look by using the
BevelOuter and BevelInner properties. You can vary the values of these properties to
create different visual 3-D effects. Note that if you merely want a raised or lowered
bevel, you can use the less resource intensive TBevel control instead.

Use this component: When you want this:

TGroupBox A standard group box with a title.

TRadioGroup A simple group of radio buttons.

TPanel A more visually flexible group of controls.

TScrollBox A scrollable region containing controls.

TTabControl A set of mutually exclusive notebook-style tabs.

TPageControl A set of mutually exclusive notebook-style tabs with corresponding
pages, each of which may contain other controls.

THeaderControl Resizable column headers.

U s i n g C L X 3-27

U s i n g c o m p o n e n t s

You can also use one or more panels to build various status bars or information
display areas.

Scroll boxes
Scroll boxes (TScrollBox) create scrolling areas within a form. Applications often need to
display more information than will fit in a particular area. Some controls—such as
list boxes, memos, and forms themselves—can automatically scroll their contents.

Another use of scroll boxes is to create multiple scrolling areas (views) in a window.
Views are common in commercial word-processor, spreadsheet, and project
management applications. Scroll boxes give you the additional flexibility to define
arbitrary scrolling subregions of a form.

Like panels and group boxes, scroll boxes contain other controls, such as TButton and
TCheckBox objects. But a scroll box is normally invisible. If the controls in the scroll
box cannot fit in its visible area, the scroll box automatically displays scroll bars.

Another use of a scroll box is to restrict scrolling in areas of a window, such as a
toolbar or status bar (TPanel components). To prevent a toolbar and status bar from
scrolling, hide the scroll bars, and then position a scroll box in the client area of the
window between the toolbar and status bar. The scroll bars associated with the scroll
box will appear to belong to the window, but will scroll only the area inside the scroll
box.

Tab controls
The tab control component (TTabControl) creates a set of tabs that look like notebook
dividers. You can create tabs by editing the Tabs property in the Object Inspector;
each string in Tabs represents a tab. The tab control is a single panel with one set of
components on it. To create a multipage dialog box, use a page control instead.

Page controls
The page control component (TPageControl) is a page set suitable for multipage
dialog boxes. A page control displays multiple overlapping pages that are TTabSheet
objects. A page is selected in the user interface by clicking a tab on top of the control.

To create a new page in a page control at design time, right-click the control and
choose New Page. At runtime, you add new pages by creating the object for the page
and setting its PageControl property:

NewTabSheet = TTabSheet.Create(PageControl1);
NewTabSheet.PageControl := PageControl1;

To access the active page in code, use the ActivePage property. To change the active
page programmatically, you can set either the ActivePage or the ActivePageIndex
property.

Header controls
A header control (THeaderControl) is a is a set of column headers that the user can
select or resize at runtime. Edit the control’s Sections property to add or modify

3-28 D e v e l o p e r ’ s G u i d e

U s i n g c o m p o n e n t s

headers. You can place the header sections above columns or fields. For example,
header sections might be placed over a list box (TListBox).

Providing visual feedback

There are many ways to provide users with information about the state of an
application. For example, some components—including TForm—have a Caption
property that can be set at runtime to identify the object. You can also create dialog
boxes to display messages. In addition, the following components are especially
useful for providing visual feedback at runtime.

Labels
Labels (TLabel) display text or pixmap fields and are usually placed next to other
controls. You place a label on a form when you need to identify or annotate another
component such as an edit box or when you want to include text on a form. The
standard label component, TLabel, is not a widget-based control, so it cannot receive
focus.

Label properties include the following:

• Caption contains the text string for the label.

• Font, Color, and other properties determine the appearance of the label. Each label
can use only one typeface, size, and color.

• FocusControl links the label to another control on the form. If Caption includes an
accelerator key, the control specified by FocusControl receives focus when the user
presses the accelerator key.

• Transparent determines whether items under the label (such as graphics) are
visible.

Labels usually display read-only static text that cannot be changed by the application
user. The application can change the text while it is executing by assigning a new
value to the Caption property. To add a text object to a form that a user can scroll or
edit, use TEdit.

Status bars
Although you can use a panel to make a status bar, it is simpler to use the status bar
component (TStatusBar). By default, the status bar’s Align property is set to alBottom,
which takes care of both position and size.

Use this component or
property: To do this:

TLabel Display non-editable text.

TStatusBar Display a status region (usually at the bottom of a window).

TProgressBar Show the amount of work completed for a particular task.

Hint and ShowHint Activate fly-by or “tooltip” Help.

HelpContext and HelpFile Link context-sensitive online Help.

U s i n g C L X 3-29

U s i n g c o m p o n e n t s

If you only want to display one text string at a time in the status bar, set its
SimplePanel property to True and use the SimpleText property to control the text
displayed in the status bar.

You can also divide a status bar into several text areas, called panels. To create
panels, edit the Panels property in the Object Inspector, setting each panel’s Width,
Alignment, and Text properties from the Panels editor. Each panel’s Text property
contains the text displayed in the panel.

Progress bars
When your application performs a time-consuming operation, you can use a
progress bar to show how much of the task is completed. A progress bar
(TProgressBar) displays a dotted line that grows from left to right.

Figure 3.5 A progress bar

The Position property tracks the length of the dotted line. Max and Min determine the
range of Position. To make the line grow, increment Position by calling the StepBy or
StepIt method. The Step property determines the increment used by StepIt.

Help and hint properties
Most visual controls can display context-sensitive Help as well as fly-by hints at
runtime. The HelpContext and HelpFile properties establish a Help context number
and Help file for the control.

The Hint property contains the text string that appears when the user moves the
mouse pointer over a control or menu item. To enable hints, set ShowHint to True;
setting ParentShowHint to True causes the control’s ShowHint property to have the
same value as its parent’s.

Grids

Grids display information in rows and columns. If you’re writing a database
application, use the TDBGrid component described in Chapter 15, “Using data
controls”. Otherwise, use a standard draw grid or string grid.

Draw grids
A draw grid (TDrawGrid) displays arbitrary data in tabular format. Write an
OnDrawCell event handler to fill in the cells of the grid.

• The CellRect method returns the screen coordinates of a specified cell, while the
MouseToCell method returns the column and row of the cell at specified screen
coordinates. The Selection property indicates the boundaries of the currently
selected cells.

3-30 D e v e l o p e r ’ s G u i d e

U s i n g c o m p o n e n t s

• The TopRow property determines which row is currently at the top of the grid. The
LeftCol property determines the first visible column on the left. VisibleColCount and
VisibleRowCount are the number of columns and rows visible in the grid.

• You can change the width or height of a column or row with the ColWidths and
RowHeights properties. Set the width of the grid lines with the GridLineWidth
property. Add scroll bars to the grid with the ScrollBars property.

• You can choose to have fixed or non-scrolling columns and rows with the
FixedCols and FixedRows properties. Assign a color to the fixed columns and rows
with the FixedColor property.

• The Options, DefaultColWidth, and DefaultRowHeight properties also affect the
appearance and behavior of the grid.

String grids
The string grid component is a descendant of TDrawGrid that adds specialized
functionality to simplify the display of strings. The Cells property lists the strings for
each cell in the grid; the Objects property lists objects associated with each string. All
the strings and associated objects for a particular column or row can be accessed
through the Cols or Rows property.

Graphics display

The following components make it easy to incorporate graphics into an application.

Images
The image component (TImage) displays a graphical image, like a bitmap, icon, or
drawing. The Picture property determines the graphic to be displayed. Use Center,
AutoSize, Stretch, and Transparent to set display options. For more information, see
“Overview of graphics programming” on page 8-1.

Shapes
The shape component (TShape) displays a geometric shape. It is not a widget-based
control and therefore, it cannot receive user input. The Shape property determines
which shape the control assumes. To change the shape’s color or add a pattern, use
the Brush property, which holds a TBrush object. How the shape is painted depends
on the Color and Style properties of TBrush.

Use this component: To display:

TImage Graphics files

TShape Geometric shapes

TBevel 3D lines and frames

TPaintBox Graphics drawn by your program at runtime

U s i n g C L X 3-31

U s i n g c o m p o n e n t s

Bevels
The bevel component (TBevel) is a line that can appear raised or lowered. Some
components, such as TPanel, have built-in properties to create beveled borders. When
such properties are unavailable, use TBevel to create beveled outlines, boxes, or
frames.

Paint boxes
The paint box component (TPaintBox) allows your application to draw on a form.
Write an OnPaint event handler to render an image directly on the paint box's Canvas.
Drawing outside the boundaries of the paint box is prevented. For more information,
see “Overview of graphics programming” on page 8-1.

Dialog boxes

The dialog box components on the Dialogs page of the component palette make
various dialog boxes available to your applications. These dialog boxes provide
applications with a familiar, consistent interface that enables the user to perform
common file operations such as opening and saving files. Dialog boxes display and/
or obtain data.

Each dialog box opens when its Execute method is called. Execute returns a Boolean
value: if the user chooses OK to accept any changes made in the dialog box, Execute
returns True; if the user chooses Cancel to escape from the dialog box without
making or saving changes, Execute returns False.

Using open dialog boxes
One of the commonly used dialog box components is TOpenDialog. This component
is usually invoked by a New or Open menu item under the File option on the main
menu bar of a form. The dialog box contains controls that let you select groups of files
using a wildcard character and navigate through directories.

The TOpenDialog component makes an Open dialog box available to your
application. The purpose of this dialog box is to let a user specify a file to open. You
use the Execute method to display the dialog box.

When the user chooses OK in the dialog box, the user’s file is stored in TOpenDialog’s
FileName property, which you can then process as you want.

The following code snippet can be placed in an Action and linked to the Action
property of a TMainMenu subitem or be placed in the subitem’s OnClick event:

if OpenDialog1.Execute then
filename := OpenDialog1.FileName;

This code will show the dialog box and if the user presses the OK button, it will copy
the name of the file into a previously declared AnsiString variable named filename.

3-32 D e v e l o p e r ’ s G u i d e

U s i n g h e l p e r o b j e c t s

Using helper objects
CLX includes a variety of nonvisual objects that simplify common programming
tasks. This section describes a few helper objects that make it easier to perform the
following tasks:

• Working with lists
• Working with string lists
• Creating drawing spaces
• Printing
• Using streams

Working with lists

Several CLX objects provide functionality for creating and managing lists:

For more information about these objects, see the online reference.

Working with string lists

Applications often need to manage lists of character strings. Examples include items
in a combo box, lines in a memo, names of fonts, and names of rows and columns in a
string grid. The CLX provides a common interface to any list of strings through an
object called TStrings and its descendant TStringList. TStringList implements the
abstract properties and methods introduced by TStrings, and introduces properties,
events, and methods to

• Sort the strings in the list.
• Prohibit duplicate strings in sorted lists.
• Respond to changes in the contents of the list.

Table 3.5 Components for creating and managing lists

Object Maintains

TList A list of pointers

TObjectList A memory-managed list of instance objects

TComponentList A memory-managed list of components (that is, instances of classes
descended from TComponent)

TQueue A first-in first-out list of pointers

TStack A last-in first-out list of pointers

TObjectQueue A first-in first-out list of objects

TObjectStack A last-in first-out list of objects

TClassList A list of class types

TCollection,
TOwnedCollection, and
TCollectionItem

Indexed collections of specially defined items

TStringList A list of strings

U s i n g C L X 3-33

U s i n g h e l p e r o b j e c t s

In addition to providing functionality for maintaining string lists, these objects allow
easy interoperability; for example, you can edit the lines of a memo (which are an
instance of TStrings) and then use these lines as items in a combo box (also an
instance of TStrings).

You can also work with string-list objects at runtime to perform such tasks as

• Loading and saving string lists
• Creating a new string list
• Manipulating strings in a list
• Associating objects with a string list

Loading and saving string lists
String-list objects provide SaveToFile and LoadFromFile methods that let you store a
string list in a text file and load a text file into a string list. Each line in the text file
corresponds to a string in the list. Using these methods, you could, for example,
create a simple text editor by loading a file into a memo component, or save lists of
items for combo boxes.

The following example loads a copy of the passwd file into a memo field and makes a
backup copy called passwd.bak.

procedure EditFile;
var

FileName: string;{ storage for file name }
begin

FileName := '/etc/passwd';{ set the file name }
with Form1.Memo1.Lines do
begin

LoadFromFile(FileName);{ load from file }
SaveToFile(ChangeFileExt(FileName, '.bak'));{ save into backup file }

end;
end;

Creating a new string list
A string list is typically part of a component. There are times, however, when it is
convenient to create independent string lists, for example to store strings for a lookup
table. The way you create and manage a string list depends on whether the list is
short-term (constructed, used, and destroyed in a single routine) or long-term
(available until the application shuts down). Whichever type of string list you create,
remember that you are responsible for freeing the list when you finish with it.

Short-term string lists
If you use a string list only for the duration of a single routine, you can create it, use
it, and destroy it all in one place. This is the safest way to work with string lists.
Because the string-list object allocates memory for itself and its strings, you should
use a try...finally block to ensure that the memory is freed even if an exception
occurs.

1 Construct the string-list object.
2 In the try part of a try...finally block, use the string list.

3-34 D e v e l o p e r ’ s G u i d e

U s i n g h e l p e r o b j e c t s

3 In the finally part, free the string-list object.

The following event handler responds to a button click by constructing a string list,
using it, and then destroying it.

procedure TForm1.Button1Click(Sender: TObject);
var

TempList: TStrings;{ declare the list }
begin

TempList := TStringList.Create;{ construct the list object }
try

{ use the string list }
finally

TempList.Free;{ destroy the list object }
end;

end;

Long-term string lists
If a string list must be available at any time while your application runs, construct the
list at start-up and destroy it before the application terminates.

1 In the unit file for your application’s main form, add a field of type TStrings to the
form’s declaration.

2 Write an event handler for the main form’s constructor, which executes before the
form appears. It should create a string list and assign it to the field you declared in
the first step.

3 Write an event handler that frees the string list for the form’s OnClose event.

This example uses a long-term string list to record the user’s mouse clicks on the
main form, then saves the list to a file before the application terminates.

unit Unit1;
interface
uses SysUtils, Classes, QGraphics, QControls, QForms, Qialogs;

type
TForm1 = class(TForm)

procedure FormCreate(Sender: TObject);
procedure FormDestroy(Sender: TObject);
procedure FormMouseDown(Sender: TObject; Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);

private
{ Private declarations }

public
{ Public declarations }
ClickList: TStrings;{ declare the field }

end;

var
Form1: TForm1;

implementation

U s i n g C L X 3-35

U s i n g h e l p e r o b j e c t s

{$R *.xfm}

procedure TForm1.FormCreate(Sender: TObject);
begin

ClickList := TStringList.Create;{ construct the list }
end;

procedure TForm1.FormDestroy(Sender: TObject);
begin

ClickList.SaveToFile(ExtractFilePath(Application.ExeName) + '.LOG')); { save the list }
ClickList.Free;{ destroy the list object }

end;

procedure TForm1.FormMouseDown(Sender: TObject; Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);

begin
ClickList.Add(Format('Click at (%d, %d)', [X, Y]));{ add a string to the list }

end;

end.

Manipulating strings in a list
Operations commonly performed on string lists include:

• Counting the strings in a list
• Accessing a particular string
• Locating items in a string list
• Iterating through strings in a list
• Adding a string to a list
• Moving a string within a list
• Deleting a string from a list
• Copying a complete string list

Counting the strings in a list
The read-only Count property returns the number of strings in the list. Since string
lists use zero-based indexes, Count is one more than the index of the last string.

Accessing a particular string
The Strings array property contains the strings in the list, referenced by a zero-based
index. Because Strings is the default property for string lists, you can omit the Strings
identifier when accessing the list; thus

StringList1.Strings[0] := 'This is the first string.';

is equivalent to

StringList1[0] := 'This is the first string.';

Locating items in a string list
To locate a string in a string list, use the IndexOf method. IndexOf returns the index of
the first string in the list that matches the parameter passed to it, and returns –1 if the

3-36 D e v e l o p e r ’ s G u i d e

U s i n g h e l p e r o b j e c t s

parameter string is not found. IndexOf finds exact matches only; if you want to match
partial strings, you must iterate through the string list yourself.

For example, you could use IndexOf to determine whether a given file name is found
among the Items of a list box:

if FileListBox1.Items.IndexOf('solitaire.so') > -1 ...

Iterating through strings in a list
To iterate through the strings in a list, use a for loop that runs from zero to Count – 1.

This example converts each string in a list box to uppercase characters.

procedure TForm1.Button1Click(Sender: TObject);
var

Index: Integer;
begin

for Index := 0 to ListBox1.Items.Count - 1 do
ListBox1.Items[Index] := UpperCase(ListBox1.Items[Index]);

end;

Adding a string to a list
To add a string to the end of a string list, call the Add method, passing the new string
as the parameter. To insert a string into the list, call the Insert method, passing two
parameters: the string and the index of the position where you want it placed. For
example, to make the string “Three” the third string in a list, you would use:

Insert(2, 'Three');

To append the strings from one list onto another, call AddStrings:

StringList1.AddStrings(StringList2); { append the strings from StringList2 to StringList1 }

Moving a string within a list
To move a string in a string list, call the Move method, passing two parameters: the
current index of the string and the index you want assigned to it. For example, to
move the third string in a list to the fifth position, you would use:

Move(2, 4)

Deleting a string from a list
To delete a string from a string list, call the list’s Delete method, passing the index of
the string you want to delete. If you don’t know the index of the string you want to
delete, use the IndexOf method to locate it. To delete all the strings in a string list, use
the Clear method.

This example uses IndexOf and Delete to find and delete a string:

with ListBox1.Items do
begin

BIndex := IndexOf('bureaucracy');
if BIndex > -1 then

Delete(BIndex);
end;

U s i n g C L X 3-37

U s i n g h e l p e r o b j e c t s

Copying a complete string list
You can use the Assign method to copy strings from a source list to a destination list,
overwriting the contents of the destination list. To append strings without
overwriting the destination list, use AddStrings. For example,

Memo1.Lines.Assign(ComboBox1.Items); { overwrites original strings }

copies the lines from a combo box into a memo (overwriting the memo), while

Memo1.Lines.AddStrings(ComboBox1.Items); { appends strings to end }

appends the lines from the combo box to the memo.

When making local copies of a string list, use the Assign method. If you assign one
string-list variable to another—

StringList1 := StringList2;

—the original string-list object will be lost, often with unpredictable results.

Associating objects with a string list
In addition to the strings stored in its Strings property, a string list can maintain
references to objects, which it stores in its Objects property. Like Strings, Objects is an
array with a zero-based index. The most common use for Objects is to associate
bitmaps with strings for owner-draw controls.

Use the AddObject or InsertObject method to add a string and an associated object to
the list in a single step. IndexOfObject returns the index of the first string in the list
associated with a specified object. Methods like Delete, Clear, and Move operate on
both strings and objects; for example, deleting a string removes the corresponding
object (if there is one).

To associate an object with an existing string, assign the object to the Objects property
at the same index. You cannot add an object without adding a corresponding string.

Creating drawing spaces

For objects that must render their own images, you can create abstract drawing
spaces using TCanvas. The TCanvas object encapsulates a paint device (Qt painter),
which handles all drawing for both forms, visual containers (such as panels) and the
printer object (covered in “Printing” on page 3-38). Using the canvas object, you no
longer have to worry about allocating pens, brushes, palettes, and so on—all the
allocation and deallocation are handled for you.

TCanvas includes a large number of primitive graphics routines to draw lines, shapes,
polygons, and fonts onto any control that contains a canvas. For example, the
following code shows a button event handler that draws a line from the upper left
corner to the middle of the form and outputs text onto the form:

procedure TForm1.Button1Click(Sender: TObject);
begin

Canvas.Pen.Color := clBlue;
Canvas.MoveTo(10, 10);
Canvas.LineTo(100, 100);

3-38 D e v e l o p e r ’ s G u i d e

U s i n g h e l p e r o b j e c t s

Canvas.Brush.Color := clred;
Canvas.Font.Name := ‘Arial’;
Canvas.TextOut(Canvas.PenPos.x, Canvas.PenPos.y,’This is the end of the line’);

end;

TCanvas is used in Kylix where drawing is required or possible, and it makes
drawing graphics both fail-safe and easy.

See the online help under TCanvas for a complete listing of properties and methods.

Printing

The TPrinter object is a paint device that paints on a printer. It generates postscript
and sends that to lpr, lp, or another print command. The printer object uses TCanvas
(which is identical to the form's TCanvas) so that anything that can be drawn on a
form can be printed as well. To print an image, call the BeginDoc method followed by
whatever canvas graphics you want to print (including text through the TextOut
method) and send the job to the printer by calling the EndDoc method.

This example uses a button and a memo on a form. When the user clicks the button,
the content of the memo is printed with a 200-pixel border around the page.

To run this example successfully, add Printers to your uses clause.
procedure TForm1.Button1Click(Sender: TObject);
var

r: TRect;
i: Integer;

begin
with Printer do

begin
r := Rect(200,200,(Pagewidth - 200),(PageHeight - 200));
BeginDoc;
for i := 0 to Memo1.Lines.Count do
Canvas.TextOut(200,200 + (i *

Canvas.TextHeight(Memo1.Lines.Strings[i])),
Memo1.Lines.Strings[i]);

Canvas.Brush.Color := clBlack;
Canvas.FrameRect(r);
EndDoc;

end;
end;

For more information on the use of the TPrinter object, look in the online help under
TPrinter.

Using streams

Streams are just ways of reading and writing data. Steams provide a common
interface for reading and writing to different media such as memory, strings, sockets,
and blob streams.

U s i n g C L X 3-39

U s i n g h e l p e r o b j e c t s

In the following streaming example, one file is copied to another one using streams.
The application includes two edit controls (From and To) and a Copy File button.

procedure TForm1.CopyFileClick(Sender: TObject);
var

stream1, stream2:TStream;
begin

stream1:=TFileStream.Create(From.Text,fmOpenRead or fmShareDenyWrite);
try

stream2 := TFileStream.Create(To.Text fmOpenCreate or fmShareDenyRead);
try
stream2.CopyFrom(Stream1,Stream1.Size);

finally
stream2.Free;

finally
stream1.Free

end;

Use specialized stream objects to read or write to storage media. Each descendant of
TStream implements methods for accessing a particular medium, such as disk files,
dynamic memory, and so on. TStream descendants include TFileStream,
TStringStream, and TMemoryStream. In addition to methods for reading and writing,
these objects permit applications to seek to an arbitrary position in the stream.
Properties of TStream provide information about the stream, such as size and current
position.

3-40 D e v e l o p e r ’ s G u i d e

C o m m o n p r o g r a m m i n g t a s k s 4-1

C h a p t e r

4
Chapter4Common programming tasks

This chapter discusses how to perform some of the common programming tasks in
Kylix:

• Understanding classes
• Defining classes
• Handling exceptions
• Using interfaces
• Working with strings
• Working with files

Understanding classes
A class is an abstract definition of properties, methods, events, and class members
(such as variables local to the class). When you create an instance of a class, this
instance is called an object. The term object is often used more loosely in the Kylix
documentation and where the distinction between a class and an instance of the class
is not important, the term “object” may also refer to a class.

Although Kylix includes many classes in CLX, you are likely to need to create
additional classes if you are writing object-oriented programs. The classes you write
must descend from TObject or one of its descendants. A class type declaration
contains three possible sections that control the accessibility of its fields and methods:

Type
TClassName = Class(TObject)

public
{public fields}
{public methods}

protected
{protected fields}
{protected methods}

private
{private fields}
{private methods}

end;

4-2 D e v e l o p e r ’ s G u i d e

D e f i n i n g c l a s s e s

• The public section declares fields and methods with no access restrictions; class
instances and descendant classes can access these fields and methods.

• The protected section includes fields and methods with some access restrictions;
descendant classes can access these fields and methods.

• The private section declares fields and methods that have rigorous access
restrictions; they cannot be accessed by class instances or descendant classes.

The advantage of using classes comes from being able to create new classes as
descendants of existing ones. Each descendant class inherits the fields and methods
of its parent and ancestor classes. You can also declare methods in the new class that
override inherited ones, introducing new, more specialized behavior.

The general syntax of a descendant class is as follows:

Type
TClassName = Class (TParentClass)

public
{public fields}
{public methods}

protected
{protected fields}
{protected methods}

private
{private fields}
{private methods}

end;

If no parent class name is specified, the class inherits directly from TObject. TObject
defines only a handful of methods, including a basic constructor and destructor.

For more information about the syntax, language definitions, and rules for classes,
see the Object Pascal Language Guide online Help on Class types.

Defining classes
Kylix allows you to declare classes that implement the programming features you
need to use in your application. Some versions of Kylix include a feature called class
completion that simplifies the work of defining and implementing new classes by
generating skeleton code for the class members you declare.

To define a class,

1 In the IDE, start with a project open and choose File|New Unit to create a new
unit where you can define the new class.

2 Add the uses clause and type section to the interface section.

3 In the type section, write the class declaration. You need to declare all the member
variables, properties, methods, and events.

C o m m o n p r o g r a m m i n g t a s k s 4-3

D e f i n i n g c l a s s e s

TMyClass = class; {This implicitly descends from TObject}
public

.

.

.

.

.

.

private
.
.
.

published {If descended from TPersistent or below}
.
.
.

Note You should only include the published section for objects descended from
TPersistent or below.

If you want the class to descend from a specific class, you need to indicate that
class in the definition:

TMyClass = class(TParentClass); {This descends from TParentClass}

For example:

type TMyButton = class(TButton)
property Size: Integer;
procedure DoSomething;

end;

If your version of Kylix includes class completion: place the cursor within a
method definition in the interface section and press Ctrl+Shift+C (or right-click and
select Complete Class at Cursor). Kylix completes any unfinished property
declarations and creates the empty methods you need in the implementation
section. (If you do not have class completion, you’ll need to write the code
yourself, completing property declarations and writing the methods.)

Given the example above, if you have class completion, Kylix adds read and write
specifiers to your interface declaration, including any supporting fields or
methods:

type TMyButton = class(TButton)
property Size: Integer read FSize write SetSize;
procedure DoSomething;

private
FSize: Integer;
procedure SetSize(const Value: Integer);

It also adds the following code to the implementation section of the unit.

{ TMyButton }
procedure TMyButton.DoSomething;
begin

end;
procedure TMyButton.SetSize(const Value: Integer);
begin
FSize := Value;
end;

4-4 D e v e l o p e r ’ s G u i d e

H a n d l i n g e x c e p t i o n s

4 Fill in the methods. For example, to make it so the button beeps when you call the
DoSomething method, add the Beep between begin and end.

{ TMyButton }
procedure TMyButton.DoSomething;
begin

Beep;
end;

procedure TMyButton.SetSize(const Value: Integer);
begin

FSize := Value;
DoSomething;

end;

Note that the button also beeps when you call SetSize to change the size of the
button.

For more information about the syntax, language definitions, and rules for classes
and methods, see the Object Pascal Language Guide online Help on Class types and
methods.

Handling exceptions
Kylix provides a mechanism to handle errors in a consistent manner. Exception
handling allows the application to recover from errors if possible and to shut down if
need be, without losing data or resources. Error conditions in Kylix are indicated by
exceptions. This section describes the following tasks for using exceptions to create
safe applications:

• Protecting blocks of code
• Protecting resource allocations
• Handling RTL exceptions
• Handling component exceptions
• Exception handling with external sources
• Silent exceptions
• Defining your own exceptions

Protecting blocks of code

To make your applications robust, your code needs to recognize exceptions when
they occur and respond to them. If you don't specify a response, the application will
present a message box describing the error. Your job, then, is to recognize places
where errors might happen, and define responses, particularly in areas where errors
could cause the loss of data or system resources.

When you create a response to an exception, you do so on blocks of code. When you
have a series of statements that all require the same kind of response to errors, you
can group them into a block and define error responses that apply to the whole block.

C o m m o n p r o g r a m m i n g t a s k s 4-5

H a n d l i n g e x c e p t i o n s

Blocks with specific responses to exceptions are called protected blocks because they
can guard against errors that might otherwise either terminate the application or
damage data.

To protect blocks of code you need to understand

• Responding to exceptions
• Exceptions and the flow of control
• Nesting exception responses

Responding to exceptions
When an error condition occurs, the application raises an exception, meaning it
creates an exception object. Once an exception is raised, your application can execute
cleanup code, handle the exception, or both.

Executing cleanup code
The simplest way to respond to an exception is to guarantee that some cleanup code
is executed. This kind of response doesn't correct the condition that caused the error
but lets you ensure that your application doesn't leave its environment in an unstable
state. You typically use this kind of response to ensure that the application frees
allocated resources, regardless of whether errors occur.

Handling an exception
This is a specific response to a specific kind of exception. Handling an exception
clears the error condition and destroys the exception object, which allows the
application to continue execution. You typically define exception handlers to allow
your applications to recover from errors and continue running. Types of exceptions
you might handle include attempts to open files that don't exist, writing to full disks,
or calculations that exceed legal bounds. Some of these, such as “File not found,” are
easy to correct and retry, while others, such as running out of memory, might be
more difficult for the application or the user to correct.

To handle exceptions effectively, you need to understand the following:

• Creating an exception handler
• Exception handling statements
• Using the exception instance
• Scope of exception handlers
• Providing default exception handlers
• Handling classes of exceptions
• Reraising the exception

Exceptions and the flow of control
Object Pascal makes it easy to incorporate error handling into your applications
because exceptions don't get in the way of the normal flow of your code. In fact, by
moving error checking and error handling out of the main flow of your algorithms,
exceptions can simplify the code you write.

4-6 D e v e l o p e r ’ s G u i d e

H a n d l i n g e x c e p t i o n s

When you declare a protected block, you define specific responses to exceptions that
might occur within that block. When an exception occurs in that block, execution
immediately jumps to the response you defined, then leaves the block.

Example The following code that includes a protected block. If any exception occurs in the
protected block, execution jumps to the exception-handling part, which beeps.
Execution resumes outside the block.

try
AssignFile(F, FileName);
Reset(F);
ƒ

except
on Exception do Beep;

end;
ƒ { execution resumes here, outside the protected block }

Nesting exception responses
Your code defines responses to exceptions that occur within blocks. Because Pascal
allows you to nest blocks of code, you can customize responses even within blocks
that already contain customized responses.

In the simplest case, for example, you can protect a resource allocation, and within
that protected block, define blocks that allocate and protect other resources.
Conceptually, that might look something like this:

You can also use nested blocks to define local handling for specific exceptions that
overrides the handling in the surrounding block. Conceptually, that looks something
like this:

C o m m o n p r o g r a m m i n g t a s k s 4-7

H a n d l i n g e x c e p t i o n s

You can also mix different kinds of exception-response blocks, nesting resource
protections within exception handling blocks and vice versa.

Protecting resource allocations

One key to having a robust application is ensuring that if it allocates resources, it also
releases them, even if an exception occurs. For example, if your application allocates
memory, you need to make sure it eventually releases the memory, too. If it opens a
file, you need to make sure it closes the file later.

Keep in mind that exceptions don't come just from your code. A call to an RTL
routine, for example, or another component in your application might raise an
exception. Your code needs to ensure that if these conditions occur, you release
allocated resources.

To protect resources effectively, you need to understand the following:

• What kind of resources need protection?

• Creating a resource protection block

What kind of resources need protection?
Under normal circumstances, you can ensure that an application frees allocated
resources by including code for both allocating and freeing. When exceptions occur,
however, you need to ensure that the application still executes the resource-freeing
code.

Some common resources that you should always be sure to release are:

• Files

• Memory

• Objects

Example The following event handler allocates memory, then generates an error, so it never
executes the code to free the memory:

procedure TForm1.Button1Click(Sender: TComponent);
var

APointer: Pointer;
AnInteger, ADividend: Integer;

begin
ADividend := 0;
GetMem(APointer, 1024);{ allocate 1K of memory }
AnInteger := 10 div ADividend;{ this generates an error }
FreeMem(APointer, 1024);{ it never gets here }

end;

Although most errors are not that obvious, the example illustrates an important
point: When the division-by-zero error occurs, execution jumps out of the block, so
the FreeMem statement never gets to free the memory.

To guarantee that the FreeMem gets to free the memory allocated by GetMem, you
need to put the code in a resource-protection block.

4-8 D e v e l o p e r ’ s G u i d e

H a n d l i n g e x c e p t i o n s

Creating a resource protection block
To ensure that you free allocated resources, even in case of an exception, you embed
the resource-using code in a protected block, with the resource-freeing code in a
special part of the block. Here's an outline of a typical protected resource allocation:

{ allocate the resource }
try

{ statements that use the resource }
finally

{ free the resource }
end;

The key to the try..finally block is that the application always executes any
statements in the finally part of the block, even if an exception occurs in the
protected block. When any code in the try part of the block (or any routine called by
code in the try part) raises an exception, execution halts at that point. Once an
exception handler is found, execution jumps to the finally part, which is called the
cleanup code. After the finally part is executed, the exception handler is called. If no
exception occurs, the cleanup code is executed in the normal order, after all the
statements in the try part.

Example The following code illustrates an event handler that allocates memory and generates
an error, but still frees the allocated memory:

procedure TForm1.Button1Click(Sender: TComponent);
var

APointer: Pointer;
AnInteger, ADividend: Integer;

begin
ADividend := 0;
GetMem(APointer, 1024);{ allocate 1K of memory }
try

AnInteger := 10 div ADividend;{ this generates an error }
finally

FreeMem(APointer, 1024);{ execution resumes here, despite the error }
end;

end;

The statements in the finally block do not depend on an exception occurring. If no
statement in the try part raises an exception, execution continues through the finally
block.

Handling RTL exceptions

When you write code that calls routines in the runtime library (RTL), such as
mathematical functions or file-handling procedures, the RTL reports errors back to
your application in the form of exceptions. By default, RTL exceptions generate a
message that the application displays to the user. You can define your own exception
handlers to handle RTL exceptions in other ways.

There are also silent exceptions that do not, by default, display a message.

C o m m o n p r o g r a m m i n g t a s k s 4-9

H a n d l i n g e x c e p t i o n s

RTL exceptions are handled like any other exceptions. To handle RTL exceptions
effectively, you need to understand the following:

• What are RTL exceptions?
• Creating an exception handler
• Exception handling statements
• Using the exception instance
• Scope of exception handlers
• Providing default exception handlers
• Handling classes of exceptions
• Reraising the exception

What are RTL exceptions?
The runtime library's exceptions are defined in the SysUtils unit, and they all descend
from a generic exception-object type called Exception. By convention, all exception
classes should descend from Exception. It provides the string for the message that
RTL exceptions display by default.

Several kinds of exceptions are raised by the RTL, as described in the following table.

For a list of all of the RTL exception types, see the SysUtils unit.

Table 4.1 RTL exceptions

Error type Cause Meaning

Input/output Error accessing a file
or I/O device

Most I/O exceptions are related to error codes
returned when accessing a file.

Heap Error using dynamic
memory

Heap errors can occur when there is insufficient
memory available, or when an application
disposes of a pointer that points outside the
heap.

Integer math Illegal operation on
integer-type
expressions

Errors include division by zero, numbers or
expressions out of range, and overflows.

Floating-point math Illegal operation on
real-type expressions

Floating-point errors can come from either a
hardware coprocessor or the software emulator.
Errors include invalid instructions, division by
zero, and overflow or underflow.

Typecast Invalid typecasting
with the as operator

Objects can only be typecast to compatible types.

Conversion Invalid type
conversion

Type-conversion functions such as IntToStr,
StrToInt, and StrToFloat raise conversion
exceptions when the parameter cannot be
converted to the desired type.

Hardware System condition Hardware exceptions indicate that either the
processor or the user generated some kind of
error condition or interruption, such as an access
violation, stack overflow, or keyboard interrupt.

Variant Illegal type coercion Errors can occur when referring to variants in
expressions where the variant cannot be coerced
into a compatible type.

4-10 D e v e l o p e r ’ s G u i d e

H a n d l i n g e x c e p t i o n s

Creating an exception handler

An exception handler is code that handles a specific exception or exceptions that
occur within a protected block of code. In general Kylix programming, it is very rare
that you will need to write an exception handler. Most exceptions can be handled
using try..finally blocks as described in “Protecting blocks of code” on page 4-4 and
“Protecting resource allocations” on page 4-7.

To define an exception handler, embed the code you want to protect in an exception-
handling block and specify the exception handling statements in the except part of
the block. Here is an outline of a typical exception-handling block:

try
{ statements you want to protect }

except
{ exception-handling statements }

end;

The application executes the statements in the except part only if an exception occurs
during execution of the statements in the try part. Execution of the try part
statements includes routines called by code in the try part. That is, if code in the try
part calls a routine that doesn't define its own exception handler, execution returns to
the exception-handling block, which handles the exception.

When a statement in the try part raises an exception, execution immediately jumps to
the except part, where it steps through the specified exception-handling statements,
or exception handlers, until it finds a handler that applies to the current exception.

Once the application locates an exception handler that handles the exception, it
executes the statement, then automatically destroys the exception object. Execution
continues at the end of the current block.

Exception handling statements
Each on statement in the except part of a try..except block defines code for handling a
particular kind of exception. The form of these exception-handling statements is as
follows:

on <type of exception> do <statement>;

Example You can define an exception handler for division by zero to provide a default result:

function GetAverage(Sum, NumberOfItems: Integer): Integer;
begin

try
Result := Sum div NumberOfItems;{ handle the normal case }

except
on EDivByZero do Result := 0;{ handle the exception only if needed }

end;
end;

Note that this is clearer than having to test for zero every time you call the function.
Here's an equivalent function that doesn't take advantage of exceptions:

function GetAverage(Sum, NumberOfItems: Integer): Integer;
begin

C o m m o n p r o g r a m m i n g t a s k s 4-11

H a n d l i n g e x c e p t i o n s

if NumberOfItems <> 0 then{ always test }
Result := Sum div NumberOfItems{ use normal calculation }

else Result := 0;{ handle exceptional case }
end;

The difference between these two functions really defines the difference between
programming with exceptions and programming without them. This example is
quite simple, but you can imagine a more complex calculation involving hundreds of
steps, any one of which could fail if one of dozens of inputs were invalid.

By using exceptions, you can spell out the “normal” expression of your algorithm,
then provide for those exceptional cases when it doesn't apply. Without exceptions,
you have to test every single time to make sure you're allowed to proceed with each
step in the calculation.

Using the exception instance
Most of the time, an exception handler doesn't need any information about an
exception other than its type, so the statements following on..do are specific only to
the type of exception. In some cases, however, you might need some of the
information contained in the exception instance.

To read specific information about an exception instance in an exception handler,
you use a special variation of on..do that gives you access to the exception instance.
The special form requires that you provide a temporary variable to hold the instance.

Example If you create a new project that contains a single form, you can add a scroll bar and a
command button to the form. Double-click the button and add the following line to
its click-event handler:

ScrollBar1.Max := ScrollBar1.Min - 1;

That line raises an exception because the maximum value of a scroll bar must always
exceed the minimum value. The default exception handler for the application opens a
dialog box containing the message in the exception object. You can override the
exception handling in this handler and create your own message box containing the
exception's message string:

try
ScrollBar1.Max := ScrollBar1.Min - 1;

except
on E: EInvalidOperation do

MessageDlg('Ignoring exception: ' + E.Message, mtInformation, [mbOK], 0);
end;

The temporary variable (E in this example) is of the type specified after the colon
(EInvalidOperation in this example). You can use the as operator to typecast the
exception into a more specific type if needed.

Note Never destroy the temporary exception object. Handling an exception automatically
destroys the exception object. If you destroy the object yourself, the application
attempts to destroy the object again, generating an access violation.

4-12 D e v e l o p e r ’ s G u i d e

H a n d l i n g e x c e p t i o n s

Scope of exception handlers
You do not need to provide handlers for every kind of exception in every block. In
fact, you only need handlers for exceptions that you want to handle specially within
a particular block.

If a block does not handle a particular exception, execution leaves that block and
returns to the block that contains the code that called the block, with the exception
still raised. This process repeats with increasingly broad scope until either execution
reaches the outermost scope of the application or a block at some level handles the
exception.

Providing default exception handlers
You can provide a single default exception handler to handle any exceptions you
haven't provided specific handlers for. To do that, you add an else part to the except
part of the exception-handling block:

try
{ statements }

except
on ESomething do

{ specific exception-handling code };
else

{ default exception-handling code };
end;

Adding default exception handling to a block guarantees that the block handles
every exception in some way, thereby overriding all handling from the containing
block.

Caution It is not advisable to use this all-encompassing default exception handler. The else
clause handles all exceptions, including those you know nothing about. In general,
your code should handle only exceptions you actually know how to handle. If you
want to handle cleanup and leave the exception handling to code that has more
information about the exception and how to handle it, then you can do so use an
enclosing try..finally block:

try
try
{ statements }
except
on ESomething do { specific exception-handling code };

end;
finally

{cleanup code };
end;

For another approach to augmenting exception handling, see Reraising the
exception.

C o m m o n p r o g r a m m i n g t a s k s 4-13

H a n d l i n g e x c e p t i o n s

Handling classes of exceptions
Because exception objects are part of a hierarchy, you can specify handlers for entire
parts of the hierarchy by providing a handler for the exception class from which that
part of the hierarchy descends.

Example The following block outlines an example that handles all integer math exceptions
specially:

try
{ statements that perform integer math operations }

except
on EIntError do { special handling for integer math errors };

end;

You can still specify specific handlers for more specific exceptions, but you need to
place those handlers above the generic handler, because the application searches the
handlers in the order they appear in, and executes the first applicable handler it
finds. For example, this block provides special handling for range errors, and other
handling for all other integer math errors:

try
{ statements performing integer math }

except
on ERangeError do { out-of-range handling };
on EIntError do { handling for other integer math errors };

end;

Note that if the handler for EIntError came before the handler for ERangeError,
execution would never reach the specific handler for ERangeError because
ERangeError descends from EIntError.

Reraising the exception
Sometimes when you handle an exception locally, you actually want to augment the
handling in the enclosing block, rather than replacing it. Of course, when your local
handler finishes its handling, it destroys the exception instance, so the enclosing
block's handler never gets to act. You can, however, prevent the handler from
destroying the exception, giving the enclosing handler a chance to respond.

Example When an exception occurs, you might want to record the error in a log file, then
proceed with the standard handling. To do that, you declare a local exception
handler that displays the message then calls the reserved word raise. This is called
reraising the exception, as shown in this example:

try
{ statements }
try

{ special statements }
except

on ESomething do
begin
{ handling for only the special statements }
raise;{ reraise the exception }

end;
end;

4-14 D e v e l o p e r ’ s G u i d e

H a n d l i n g e x c e p t i o n s

except
on ESomething do ...;{ handling you want in all cases }

end;

If code in the { statements } part raises an ESomething exception, only the handler in
the outer except part executes. However, if code in the { special statements } part
raises ESomething, the handling in the inner except part is executed, followed by the
more general handling in the outer except part.

By reraising exceptions, you can easily provide special handling for exceptions in
special cases without losing (or duplicating) the existing handlers.

Handling component exceptions

Kylix's components raise exceptions to indicate error conditions. Most component
exceptions indicate programming errors that would otherwise generate a runtime
error. The mechanics of handling component exceptions are no different than
handling RTL exceptions.

Example A common source of errors in components is range errors in indexed properties. For
example, if a list box has three items in its list (0..2) and your application attempts to
access item number 3, the list box raises a “List index out of bounds” exception.

The following event handler contains an exception handler to notify the user of
invalid index access in a list box:

procedure TForm1.Button1Click(Sender: TObject);
begin

ListBox1.Items.Add('a string');{ add a string to list box }
ListBox1.Items.Add('another string');{ add another string... }
ListBox1.Items.Add('still another string');{ ...and a third string }
try

Caption := ListBox1.Items[3];{ set form caption to fourth string in list box }
except

on EStringListError do
MessageDlg('List box contains fewer than four strings', mtWarning, [mbOK], 0);

end;
end;

If you click the button once, the list box has only three strings, so accessing the fourth
string (Items[3]) raises an exception. Clicking a second time adds more strings to the
list, so it no longer causes the exception.

Exception handling with external sources

HandleException provides default handling of exceptions for the application.
Normally, you do not need to call TApplication.HandleException. However, you may
need it when writing shared object files or callback functions. You can use
TApplication.HandleException to block an exception from escaping from your code
particularly when the code is being called from an external source that does not
support exceptions.

C o m m o n p r o g r a m m i n g t a s k s 4-15

H a n d l i n g e x c e p t i o n s

For example, if an exception passes through all the try blocks in the application code,
the application automatically calls the HandleException method, which displays a
dialog box indicating that an error has occurred. You can use HandleException in this
fashion:

try
{ statements }

except
Application.HandleException(Self);

end;

For all exceptions but EAbort, HandleException calls the OnException event handler, if
one exists. Therefore, if you want to both handle the exception, and provide this
default behavior as CLX does, you can add a call to HandleException to your code:

try
{ special statements }

except
on ESomething do
begin
{ handling for only the special statements }
Application.HandleException(Self);{ call HandleException }

end;
end;

Note Do not call HandleException from within a thread’s exception handling code.

For more information, search for exception handling routines in the Help index.

Silent exceptions

Kylix applications handle most exceptions that your code doesn't specifically handle
by displaying a message box that shows the message string from the exception object.
You can also define “silent” exceptions that do not, by default, cause the application
to show the error message.

Silent exceptions are useful when you don't intend to report an exception to the user,
but you want to abort an operation. Aborting an operation is similar to using the
Break or Exit procedures to break out of a block, but can break out of several nested
levels of blocks.

Silent exceptions all descend from the standard exception type EAbort. The default
exception handler for Kylix CLX applications displays the error-message dialog box
for all exceptions that reach it except those descended from EAbort.

Note For console applications, an error-message dialog is displayed on any unhandled
EAbort exceptions.

There is a shortcut for raising silent exceptions. Instead of manually constructing the
object, you can call the Abort procedure. Abort automatically raises an EAbort
exception, which will break out of the current operation without displaying an error
message.

4-16 D e v e l o p e r ’ s G u i d e

H a n d l i n g e x c e p t i o n s

Example The following code shows a simple example of aborting an operation. On a form
containing an empty list box and a button, attach the following code to the button's
OnClick event:

procedure TForm1.Button1Click(Sender: TObject);
var

I: Integer;
begin

for I := 1 to 10 do{ loop ten times }
begin

ListBox1.Items.Add(IntToStr(I));{ add a numeral to the list }
if I = 7 then Abort;{ abort after the seventh one }

end;
end;

Defining your own exceptions

In addition to protecting your code from exceptions generated by the runtime library
and various components, you can use the same mechanism to manage exception
conditions in your own code.

To use exceptions in your code, you need to complete these steps:

• Declaring an exception object type
• Raising an exception

Declaring an exception object type
As a convention, all exception classes should be derived from Exception or one of the
other standard exceptions. That way, if you raise your new exception in a block of
code that isn't protected by a specific exception handler for that exception, one of the
standard handlers will handle it instead.

Example For example, consider the following declaration:

type
EMyException = class(Exception);

If you raise EMyException but don't provide a specific handler for it, a handler for
Exception (or a default exception handler) will still handle it. Because the standard
handling for Exception displays the name of the exception raised, you can see that it is
your new exception that is raised.

Raising an exception
To indicate a disruptive error condition in an application, you can raise an exception
that involves constructing an instance of that type and calling the reserved word
raise.

To raise an exception, call the reserved word raise, followed by an instance of an
exception object. This allows you to establish an exception as coming from a
particular address. When an exception handler actually handles the exception, it
finishes by destroying the exception instance, so you never need to do that yourself.

C o m m o n p r o g r a m m i n g t a s k s 4-17

U s i n g i n t e r f a c e s

Raising an exception sets the ErrorAddr variable in the System unit to the address
where the application raised the exception. You can refer to ErrorAddr in your
exception handlers, for example, to notify the user where the error occurred. You can
also specify a value in the raise clause which will appear in ErrorAddr when an
exception occurs.

Warning Do not assign a value to ErrorAddr yourself. It is intended as read only.

To specify an error address for an exception, add the reserved word at after the
exception instance, followed by an address expression such as an identifier.

For example, given the following declaration,

type
EPasswordInvalid = class(Exception);

you can raise a “password invalid” exception at any time by calling raise with an
instance of EPasswordInvalid, like this:

if Password <> CorrectPassword then
raise EPasswordInvalid.Create('Incorrect password entered') at SomeProcedure;

Using interfaces
Kylix’s interface keyword allows you to create and use interfaces in your application.
Interfaces are a way extending the single-inheritance model of CLX by allowing a
single class to implement more than one interface, and by allowing several classes
descended from different bases to share the same interface. Interfaces are useful
when the same sets of operations, such as streaming, are used across a broad range of
objects.

Interfaces as a language feature

An interface is like a class that contains only abstract methods and a clear definition
of their functionality. Strictly speaking, interface method definitions include the
number and types of their parameters, their return type, and their expected behavior.
Interface methods are usually named to indicate the purpose of the interface. It is the
convention to name interfaces according to their behavior and to preface them with a
capital I. For example, an IMalloc interface would allocate, free, and manage memory.
Similarly, an IPersist interface could be used as a general base interface for
descendants, each of which defines specific method prototypes for loading and
saving the state of an object to a storage, stream, or file.

An interface has the following syntax:

IMyObject = interface
Procedure MyProcedure;

end;

A simple example of declaring an interface is:

type
IEdit = interface

4-18 D e v e l o p e r ’ s G u i d e

U s i n g i n t e r f a c e s

procedure Copy; stdcall;
procedure Cut; stdcall;
procedure Paste; stdcall;
function Undo: Boolean; stdcall;

end;

Like abstract classes, interfaces themselves can never be instantiated. To use an
interface, you need to obtain it from an implementing class.

To implement an interface, you must define a class that declares the interface in its
ancestor list, indicating that it will implement all of the methods of that interface:

TEditor = class(TInterfacedObject, IEdit)
procedure Copy; stdcall;
procedure Cut; stdcall;
procedure Paste; stdcall;
function Undo: Boolean; stdcall;

end;

While interfaces define the behavior and signature of their methods, they do not
define the implementations. As long as the class’s implementation conforms to the
interface definition, the interface is fully polymorphic, meaning that accessing and
using the interface is the same for any implementation of it.

Implementing interfaces across the hierarchy
Using interfaces offers a design approach to separating the way a class is used from
the way it is implemented. Two classes can implement the same interface without
requiring that they descend from the same base class. This polymorphic invocation of
the same methods on unrelated objects is possible as long as the objects implement
the same interface. For example, consider the interface,

IPaint = interface
procedure Paint;

end;

and the two classes,

TSquare = class(TPolygonObject, IPaint)
procedure Paint;

end;

TCircle = class(TCustomShape, IPaint)
procedure Paint;

end;

Whether or not the two classes share a common ancestor, they are still assignment
compatible with a variable of IPaint as in

var
Painter: IPaint;

begin
Painter := TSquare.Create;
Painter.Paint;
Painter := TCircle.Create;
Painter.Paint;

end;

C o m m o n p r o g r a m m i n g t a s k s 4-19

U s i n g i n t e r f a c e s

This could have been accomplished by having TCircle and TSquare descend from say,
TFigure which implemented a virtual method Paint. Both TCircle and TSquare would
then have overridden the Paint method. The above IPaint would be replaced by
TFigure. However, consider the following interface:

IRotate = interface
procedure Rotate(Degrees: Integer);

end;

which makes sense for the rectangle to support but not the circle. The classes would
look like

TSquare = class(TRectangularObject, IPaint, IRotate)
procedure Paint;
procedure Rotate(Degrees: Integer);

end;

TCircle = class(TCustomShape, IPaint)
procedure Paint;

end;

Later, you could create a class TFilledCircle that implements the IRotate interface to
allow rotation of a pattern used to fill the circle without having to add rotation to the
simple circle.

Note For these examples, the immediate base class or an ancestor class is assumed to have
implemented the methods of IInterface that manage reference counting. For more
information, see “Implementing IInterface” on page 4-20 and “Memory management
of interface objects” on page 4-23.

Using interfaces with procedures
Interfaces also allow you to write generic procedures that can handle objects without
requiring the objects to descend from a particular base class. Using the above IPaint
and IRotate interfaces you can write the following procedures,

procedure PaintObjects(Painters: array of IPaint);
var

I: Integer;
begin

for I := Low(Painters) to High(Painters) do
Painters[I].Paint;

end;

procedure RotateObjects(Degrees: Integer; Rotaters: array of IRotate);
var

I: Integer;
begin

for I := Low(Rotaters) to High(Rotaters) do
Rotaters[I].Rotate(Degrees);

end;

RotateObjects does not require that the objects know how to paint themselves and
PaintObjects does not require the objects know how to rotate. This allows the above
generic procedures to be used more often than if they were written to only work
against a TFigure class.

4-20 D e v e l o p e r ’ s G u i d e

U s i n g i n t e r f a c e s

For details about the syntax, language definitions and rules for interfaces, see the
Object Pascal Language Guide online Help section on Object interfaces.

Implementing IInterface

All interfaces derive either directly or indirectly from the IInterface interface. This
interface provides the essential functionality of an interface, that is, dynamic
querying and lifetime management. This functionality is established in the three
IInterface methods:

• QueryInterface provides a method for dynamically querying a given object and
obtaining interface references for the interfaces the object supports.

• _AddRef is a reference counting method that increments the count each time the
call to QueryInterface succeeds. While the reference count is nonzero the object
must remain in memory.

• _Release is used with _AddRef to enable an object to track its own lifetime and to
determine when it is safe to delete itself. Once the reference count reaches zero, the
object is freed from memory.

Every class that implements interfaces must implement the three IInterface methods,
as well as all of the methods declared by any other ancestor interfaces, and all of the
methods declared by the interface itself. You can, however, inherit the
implementations of methods of interfaces declared in your class.

By implementing these methods yourself, you can provide an alternative means of
life-time management, disabling reference-counting. This is a powerful technique
that lets you decouple interfaces from reference-counting.

TInterfacedObject

CLX defines a simple class, TInterfacedObject, that serves as a convenient base because
it implements the methods of IInterface. TInterfacedObject class is declared in the
System unit as follows:

type
TInterfacedObject = class(TObject, IInterface)
protected
FRefCount: Integer;
function QueryInterface(const IID: TGUID; out Obj): HResult; stdcall;
function _AddRef: Integer; stdcall;
function _Release: Integer; stdcall;

public
procedure AfterConstruction; override;
procedure BeforeDestruction; override;
class function NewInstance: TObject; override;
property RefCount: Integer read FRefCount;

end;

C o m m o n p r o g r a m m i n g t a s k s 4-21

U s i n g i n t e r f a c e s

Deriving directly from TInterfacedObject is straightforward. In the following example
declaration, TDerived is a direct descendant of TInterfacedObject and implements a
hypothetical IPaint interface.

type
TDerived = class(TInterfacedObject, IPaint)

...
end;

Because it implements the methods of IInterface, TInterfacedObject automatically
handles reference counting and memory management of interfaced objects. For more
information, see “Memory management of interface objects” on page 4-23, which
also discusses writing your own classes that implement interfaces but that do not
follow the reference-counting mechanism inherent in TInterfacedObject.

Using the as operator

Classes that implement interfaces can use the as operator for dynamic binding on the
interface. In the following example:

procedure PaintObjects(P: TInterfacedObject)
var

X: IPaint;

begin
X := P as IPaint;

{ statements }
end;

the variable P of type TInterfacedObject, can be assigned to the variable X, which is an
IPaint interface reference. Dynamic binding makes this assignment possible. For this
assignment, the compiler generates code to call the QueryInterface method of P’s
IInterface interface. This is because the compiler cannot tell from P’s declared type
whether P’s instance actually supports IPaint. At runtime, P either resolves to an
IPaint reference or an exception is raised. In either case, assigning P to X will not
generate a compile-time error as it would if P was a class type that did not implement
IInterface.

When you use the as operator for dynamic binding on an interface, you should be
aware of the following requirements:

• Explicitly declaring IInterface: Although all interfaces derive from IInterface, it is
not sufficient, if you want to use the as operator, for a class to simply implement
the methods of IInterface. This is true even if it also implements the interfaces it
explicitly declares. The class must explicitly declare IInterface in its interface list.

• Using an IID: Interfaces can use an identifier that is based on a GUID (globally
unique identifier). GUIDs that are used to identify interfaces are referred to as
interface identifiers (IIDs). If you are using the as operator with an interface, it
must have an associated IID. To create a new GUID in your source code you can
use the Ctrl+Shift+G editor shortcut key.

4-22 D e v e l o p e r ’ s G u i d e

U s i n g i n t e r f a c e s

Reusing code and delegation

One approach to reusing code with interfaces is to have an object contain, or be
contained by another. CLX uses properties that are object types as an approach to
containment and code reuse. To support this design for interfaces, Kylix has a
keyword—implements—that makes if easy to write code to delegate all or part of the
implementation of an interface to a subobject.

Using implements for delegation
Many classes in CLX have properties that are subobjects. You can also use interfaces
as property types. When a property is of an interface type (or a class type that
implements the methods of an interface), you can use the keyword implements to
specify that the methods of that interface are delegated to the object or interface
reference which is the property instance. The delegate only needs to provide
implementation for the methods. It does not have to declare the interface support.
The class containing the property must include the interface in its ancestor list.

By default using the keyword implements delegates all interface methods. However,
you can use methods resolution clauses or declare methods in your class that
implement some of the interface methods to override this default behavior.

The following example uses the implements keyword in the design of a color adapter
object that converts an 8-bit RGB color value to a Color reference:

unit cadapt;

type
IRGB8bit = interface

['{1d76360a-f4f5-11d1-87d4-00c04fb17199}']
function Red: Byte;
function Green: Byte;
function Blue: Byte;

end;

IColorRef = interface
['{1d76360b-f4f5-11d1-87d4-00c04fb17199}']
function Color: Integer;

end;

{ TRGB8ColorRefAdapter map an IRGB8bit to an IColorRef }
TRGB8ColorRefAdapter = class(TInterfacedObject, IRGB8bit, IColorRef)
private

FRGB8bit: IRGB8bit;
FPalRelative: Boolean;

public
constructor Create(rgb: IRGB8bit);
property RGB8Intf: IRGB8bit read FRGB8bit implements IRGB8bit;
property PalRelative: Boolean read FPalRelative write FPalRelative;
function Color: Integer;

end;

implementation

constructor TRGB8ColorRefAdapter.Create(rgb: IRGB8bit);
begin

C o m m o n p r o g r a m m i n g t a s k s 4-23

U s i n g i n t e r f a c e s

FRGB8bit := rgb;
end;

function TRGB8ColorRefAdapter.Color: Integer;
begin

if FPalRelative then
Result := PaletteRGB(RGB8Intf.Red, RGB8Intf.Green, RGB8Intf.Blue)

else
Result := RGB(RGB8Intf.Red, RGB8Intf.Green, RGB8Intf.Blue);

end;
end.

For more information about the syntax, implementation details, and language rules
of the implements keyword, see the Object Pascal Language Guide online Help section
on object interfaces.

Memory management of interface objects

One of the concepts behind the design of interfaces is ensuring the lifetime
management of the objects that implement them. The _AddRef and _Release methods
of IInterface provide a way of implementing this functionality. Their defined behavior
states that they will track the lifetime of an object by incrementing the reference count
on the object when an interface reference is passed to a client, and will destroy the
object when that reference count is zero.

Using reference counting
Kylix provides much of the IInterface memory management through its
implementation of interface querying and reference counting. Therefore, if you have
an object that lives and dies by its interfaces, you can easily use reference counting by
deriving from these classes. TInterfacedObject is the class that provides this behavior.
If you decide to use reference counting, you must be careful to only hold the object as
an interface reference and to be consistent in your reference counting. For example:

procedure beep(x: ITest);

function test_func()
var

y: ITest;
begin

y := TTest.Create; // because y is of type ITest, the reference count is one
beep(y); // the act of calling the beep function increments the reference count
// and then decrements it when it returns
y.something; // object is still here with a reference count of one

end;

This is the cleanest and safest approach to memory management; and if you use
TInterfacedObject it is handled automatically. If you do not follow this rule, your
object can unexpectedly disappear, as demonstrated in the following code:

function test_func()
var

x: TTest;
begin

4-24 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h s t r i n g s

x := TTest.Create; // no count on the object yet
beep(x as ITest); // count is incremented by the act of calling beep
// and decremented when it returns
x.something; // surprise, the object is gone

end;

Note In the examples above, the beep procedure, as it is declared, increments the reference
count (call AddRef) on the parameter, whereas the following declarations do not:

procedure beep(const x: ITest);

or

procedure beep(var x: ITest);

These declarations generate smaller, faster code.

One case where you cannot use reference counting, because it cannot be consistently
applied, is if your object is a component or a control owned by another component.
In that case, you can still use interfaces, but you should not use reference counting
because the lifetime of the object is not dictated by its interfaces.

Not using reference counting
If your object is a CLX component or a control that is owned by another component,
then your object is part of a different memory management system that is based in
TComponent. You should not mix the object lifetime management approaches of CLX
components and interface reference counting. If you want to create an object that
supports interfaces, you can implement the IInterface _AddRef and _Release methods
as empty functions to bypass the interface reference counting mechanism:

function TMyObject._AddRef: Integer;
begin

Result := -1;
end;

function TMyObject._Release: Integer;
begin

Result := -1;
end;

You would still implement QueryInterface as usual to provide dynamic querying on
your object. Because you do implement QueryInterface, you can still use the as
operator for interfaces on components, as long as you create an interface identifier
(IID).

Note that TComponent already implements these methods in this way so you do not
need to do this if your object is based on TComponent or any of its descendants.

Working with strings
Kylix has a number of different character and string types that have been introduced
throughout the development of the Object Pascal language. This section is an
overview of these types, their purpose, and usage. For language details, see the
Object Pascal Language online Help on String types.

C o m m o n p r o g r a m m i n g t a s k s 4-25

W o r k i n g w i t h s t r i n g s

Character types

Kylix has three character types: Char, AnsiChar, and WideChar.

The Char character type came from standard Pascal, was used in Turbo Pascal, and
then in Object Pascal. Later Object Pascal added AnsiChar and WideChar as specific
character types that support standards for character representation. AnsiChar
supports 8-bit characters, and WideChar supports a 16-bit Unicode standard. The
name WideChar is used because Unicode characters are also known as wide
characters. Wide characters are two bytes instead of one, so that the character set can
represent many more different characters. When AnsiChar and WideChar were
implemented, Char became the default character type representing the currently
recommended implementation.

Note The Linux wchar_t widechar is 32 bits per character. The 16-bit Unicode standard
that Object Pascal widechars support is a subset of the 32-bit UCS standard
supported by Linux and the GNU libraries. Pascal widechar data must be widened to
32 bits per character before it can be passed to an OS function as wchar_t.

The following table summarizes these character types:

For more information about using these character types, see the Object Pascal
Language Guide online Help on Character types. For more information about Unicode
characters, see the Object Pascal Language Guide online Help on About extended
character sets.

String types

Kylix has three categories of string types:

• Character pointers
• String types
• String classes

This section summarizes string types, and discusses using them with character
pointers. For information about using string classes, see the online Help on TStrings.

Kylix has three string implementations: short strings, long strings, and wide strings.
Several different string types represent these implementations. In addition, the
reserved word string defaults to the currently recommended string implementation.

Table 4.2 Object Pascal character types

Type Bytes Contents Purpose

Char 1 A single character Default character type

AnsiChar 1 A single character 8-bit characters

WideChar 2 A single Unicode character 16-bit Unicode standard

4-26 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h s t r i n g s

Short strings
String was the first string type used in Turbo Pascal. String was originally
implemented as a short string. Short strings are an allocation of between 1 and 256
bytes, of which the first byte contains the length of the string and the remaining bytes
contain the characters in the string:

S: string[0..n]// the original string type

When long strings were implemented, string was changed to a long string
implementation by default and ShortString was introduced as a backward
compatibility type. ShortString is a predefined type for a maximum length string:

S: string[255]// the ShortString type

The size of the memory allocated for a ShortString is static, meaning that it is
determined at compile time. However, the location of the memory for the ShortString
can be dynamically allocated, for example if you use a PShortString, which is a
pointer to a ShortString. The number of bytes of storage occupied by a short string
type variable is the maximum length of the short string type plus one. For the
ShortString predefined type the size is 256 bytes.

Both short strings, declared using the syntax string[0..n], and the ShortString
predefined type exist primarily for backward compatibility with earlier versions of
Kylix and Borland Pascal.

A compiler directive, $H, controls whether the reserved word string represents a
short string or a long string. In the default state, {$H+}, string represents a long
string. You can change it to a ShortString by using the {$H-} directive. The {$H-} state
is mostly useful for using code from versions of Object Pascal that used short strings
by default. However, short strings can be useful in data structures where you need a
fixed-size component. You can locally override the meaning of string-type
definitions to ensure generation of short strings. You can also change declarations of
short string types to string[255] or ShortString, which are unambiguous and
independent of the $H setting.

For details about short strings and the ShortString type, see the Object Pascal Language
Guide online Help on Short strings.

Long strings
Long strings are dynamically allocated strings with a maximum length of 2
Gigabytes. Like short strings, long strings use 8-bit characters and have a length
indicator. Unlike short strings, long strings have no zeroth element that contains the
dynamic string length. To find the length of a long string you must use the Length
standard function, and to set the length of a long string you must use the SetLength
standard procedure. Long strings are also reference-counted and, like PChars, long
strings are null-terminated. For details about the implementation of longs strings, see
the Object Pascal Language Guide online Help on Long strings.

Long strings are denoted by the reserved word string and by the predefined
identifier AnsiString. For new applications, it is recommended that you use the long
string type. All components in the Visual Component Library are compiled in this
state, typically using string. If you write components, they should also use long
strings, as should any code that receives data from string-type properties. If you

C o m m o n p r o g r a m m i n g t a s k s 4-27

W o r k i n g w i t h s t r i n g s

want to write specific code that always uses a long string, then you should use
AnsiString. If you want to write flexible code that allows you to easily change the
type as new string implementations become standard, then you should use string.

WideString
The WideChar type allows wide character strings to be represented as arrays of
WideChars. Wide strings are strings composed of 16-bit Unicode characters. As with
long strings, WideStrings are dynamically allocated with a maximum length of 2
Gigabytes and they are reference counted. The WideString type is denoted by the
predefined identifier WideString.

For more information about WideStrings, see the Object Pascal Language Guide online
Help on WideString.

PChar types
A PChar is a pointer to a null-terminated string of characters of the type Char. Each of
the three character types also has a built-in pointer type:

• A PChar is a pointer to a null-terminated string of 8-bit characters.
• A PAnsiChar is a pointer to a null-terminated string of 8-bit characters.
• A PWideChar is a pointer to a null-terminated string of 16-bit characters.

PChars are, with short strings, one of the original Object Pascal string types.

OpenString
An OpenString is obsolete, but you may see it in older code. It is for 16-bit
compatibility and is allowed only in parameters. OpenString was used, before long
strings were implemented, to allow a short string of an unspecified length string to
be passed as a parameter. For example, this declaration:

procedure a(v : openstring);

will allow any length string to be passed as a parameter, where normally the string
length of the formal and actual parameters must match exactly. You should not have
to use OpenString in any new applications you write.

Refer also to the {$P+/-} switch in “Compiler directives for strings” on page 4-34.

Runtime library string handling routines

The runtime library provides many specialized string handling routines specific to a
string type. These are routines for wide strings, longs strings, and null-terminated
strings (meaning PChars). Routines that deal with PChar types use the null-
termination to determine the length of the string. For more details about null-
terminated strings, see Working with null-terminated strings in the Object Pascal
Language Guide online Help.

The runtime library also includes a category of string formatting routines. There are
no categories of routines listed for ShortString types. However, some built-in

4-28 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h s t r i n g s

compiler routines deal with the ShortString type. These include, for example, the Low
and High standard functions.

Because wide strings and long strings are the commonly used types, the remaining
sections discuss these routines.

Wide character routines
When working with strings you should make sure that the code in your application
can handle the strings it will encounter in the various target locales. Sometimes you
will need to use wide characters and wide strings. In fact, one approach to working
with ideographic character sets is to convert all characters to a wide character
encoding scheme such as Unicode. CLX components represent all string values as
wide strings.

Using a wide character encoding scheme has the advantage that you can make many
of the usual assumptions about strings that do not work for MBCS systems. There is a
direct relationship between the number of bytes in the string and the number of
characters in the string. You do not need to worry about cutting characters in half or
mistaking the second half of a character for the start of a different character.

Commonly used long string routines
The long string handling routines cover several functional areas. Within these areas,
some are used for the same purpose, the differences being whether or not they use a
particular criteria in their calculations. The tables included later list these routines by
these functional areas:

• Comparison
• Case conversion
• Modification
• Sub-string
• String handling

Where appropriate, the tables also provide columns indicating whether or not a
routine satisfies the following criteria.

• Uses case sensitivity: If the locale settings are used, it determines the definition of
case. If the routine does not use the locale settings, analyses are based upon the
ordinal values of the characters. If the routine is case-insensitive, there is a logical
merging of upper- and lowercase characters that is determined by a predefined
pattern.

• Uses the locale settings: Locale settings allow you to customize your application
for specific locales. In particular, for Asian language environments. Most locale
settings consider lowercase characters to be less than the corresponding uppercase
characters. This is in contrast to ASCII order, in which lowercase characters are
greater than uppercase characters.

• Supports the multi-byte character set (MBCS): MBCSs are used when writing code
for far eastern locales. Multi-byte characters are represented as a mix of one- to six-
byte character codes, so the length in bytes does not necessarily correspond to the
length of the string. The routines that support MBCS are written to parse
characters. The ByteType and StrByteType determine whether a particular byte is

C o m m o n p r o g r a m m i n g t a s k s 4-29

W o r k i n g w i t h s t r i n g s

the lead byte of a two or more byte character. Be careful when using multi-byte
characters not to truncate a string by cutting a multibyte character in half. Do not
pass characters as a parameter to a function or procedure, since the size of a
character cannot be predetermined. Pass, instead, a pointer to a to a character or
string. For more information about MBCS, see “Enabling application code” on
page 12-2 of Chapter 12, “Creating international applications.”

Note Because of limitations in recent versions of glibc, avoid passing large strings
(greater than 50K) to multibyte-enabled routines. This limitation should be
removed in future versions of glibc.

The routines used for string file names: AnsiCompareFileName,
AnsiLowerCaseFileName, and AnsiUpperCaseFileName all use the locale settings. You
should always use file names that are portable because the locale (character set) used
for file names can differ from the default user interface. Most portable file names are
those which are simple ASCII and contain no special characters. If application
generated, file names should be made all lowercase. If user input, file names should
be made exactly as the user typed them with regard to case.

Table 4.3 String comparison routines

Routine Case-sensitive Uses locale settings Supports MBCS

AnsiCompareStr yes yes yes

AnsiCompareText no yes yes

AnsiCompareFileName yes yes yes

CompareStr yes no no

CompareText no no no

Table 4.4 Case conversion routines

Routine Uses locale settings Supports MBCS

AnsiLowerCase yes yes

AnsiLowerCaseFileName yes yes

AnsiUpperCaseFileName yes yes

AnsiUpperCase yes yes

LowerCase no no

UpperCase no no

Table 4.5 String modification routines

Routine Case-sensitive Supports MBCS

AdjustLineBreaks NA yes

AnsiQuotedStr NA yes

StringReplace optional by flag yes

Trim NA yes

4-30 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h s t r i n g s

TrimLeft NA yes

TrimRight NA yes

WrapText NA yes

Table 4.6 Substring routines

Routine Case-sensitive Supports MBCS

AnsiExtractQuotedStr NA yes

AnsiPos yes yes

IsDelimiter yes yes

IsPathDelimiter yes yes

LastDelimiter yes yes

QuotedStr no no

Table 4.7 String handling routines

Routine Case-sensitive Supports MBCS

AnsiContainsText no yes

AnsiEndsText no no

AnsiIndexText no yes

AnsiMatchText no yes

AnsiResemblesText no no

AnsiStartsText no yes

IfThen NA yes

LeftStr yes no

RightStr yes no

SoundEx NA no

SoundExInt NA no

DecodeSoundExInt NA no

SoundExWord NA no

DecodeSoundExWord NA no

SoundExSimilar NA no

SoundExCompare NA no

Table 4.5 String modification routines (continued)

Routine Case-sensitive Supports MBCS

C o m m o n p r o g r a m m i n g t a s k s 4-31

W o r k i n g w i t h s t r i n g s

Declaring and initializing strings

When you declare a long string:

S: string;

you do not need to initialize it. Long strings are automatically initialized to empty. To
test a string for empty you can either use the EmptyStr variable:

S = EmptyStr;

or test against an empty string:

S = ‘’;

An empty string has no valid data. Therefore, trying to index an empty string is like
trying to access nil and will result in an access violation:

var
S: string;

begin
S[i]; // this will cause an access violation
// statements

end;

Similarly, if you cast an empty string to a PChar, the result is a nil pointer. So, if you
are passing such a PChar to a routine that needs to read or write to it, be sure that the
routine can handle nil:

var
S: string; // empty string

begin
proc(PChar(S)); // be sure that proc can handle nil
// statements

end;

If it cannot, then you can either initialize the string:

S := ‘No longer nil’;
proc(PChar(S));// proc does not need to handle nil now

or set the length, using the SetLength procedure:

SetLength(S, 100);//sets the dynamic length of S to 100
proc(PChar(S));// proc does not need to handle nil now

When you use SetLength, existing characters in the string are preserved, but the
contents of any newly allocated space is undefined. Following a call to SetLength, S is
guaranteed to reference a unique string, that is a string with a reference count of one.
To obtain the length of a string, use the Length function.

Remember when declaring a string that:

S: string[n];

implicitly declares a short string, not a long string of n length. To declare a long string
of specifically n length, declare a variable of type string and use the SetLength
procedure.

S: string;
SetLength(S, n);

4-32 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h s t r i n g s

Mixing and converting string types

Short, long, and wide strings can be mixed in assignments and expressions, and the
compiler automatically generates code to perform the necessary string type
conversions. However, when assigning a string value to a short string variable, be
aware that the string value is truncated if it is longer than the declared maximum
length of the short string variable.

Long strings are already dynamically allocated. If you use one of the built-in pointer
types, such as PAnsiString, PString, or PWideString, remember that you are
introducing another level of indirection. Be sure this is what you intend.

Additional functions (CopyQStringListToTstrings, Copy TStringsToQStringList,
QStringListToTStringList) are provided for converting underlying Qt string types and
Kylix string types. These functions are located in Qtypes.pas.

String to PChar conversions

Long string to PChar conversions are not automatic. Some of the differences between
strings and PChars can make conversions problematic:

• Long strings are reference-counted, while PChars are not.

• Assigning to a string copies the data, while a PChar is a pointer to memory.

• Long strings are null-terminated and also contain the length of the string, while
PChars are simply null-terminated.

Situations in which these differences can cause subtle errors are discussed in this
section.

String dependencies
Sometimes you will need convert a long string to a null-terminated string, for
example, if you are using a function that takes a PChar. If you must cast a string to a
PChar, be aware that you are responsible for the lifetime of the resulting PChar.
Because long strings are reference counted, typecasting a string to a PChar increases
the dependency on the string by one, without actually incrementing the reference
count. When the reference count hits zero, the string will be destroyed, even though
there is an extra dependency on it. The cast PChar will also disappear, while the
routine you passed it to may still be using it. For example:

procedure my_func(x: string);
begin

// do something with x
some_proc(PChar(x)); // cast the string to a PChar
// you now need to guarantee that the string remains
// as long as the some_proc procedure needs to use it

end;

C o m m o n p r o g r a m m i n g t a s k s 4-33

W o r k i n g w i t h s t r i n g s

Returning a PChar local variable
A common error when working with PChars is to store in a data structure, or return
as a value, a local variable. When your routine ends, the PChar will disappear
because it is simply a pointer to memory, and is not a reference counted copy of the
string. For example:

function title(n: Integer): PChar;
var

s: string;
begin

s := Format(‘title - %d’, [n]);
Result := PChar(s); // DON’T DO THIS

end;

This example returns a pointer to string data that is freed when the title function
returns.

Passing a local variable as a PChar
Consider that you have a local string variable that you need to initialize by calling a
function that takes a PChar. One approach is to create a local array of char and pass it
to the function, then assign that variable to the string:

// assume FillBuffer is a predefined function
function FillBuffer(Buf:PChar;Count:Integer):Integer
begin

. . .
end;

// assume MAXSIZE is a predefined constant
var

i: Integer;
buf: array[0..MAX_SIZE] of char;
S: string;

begin
i := FillBuffer(0, @buf, SizeOf(buf));// treats @buf as a PChar
S := buf;
//statements

end;

This approach is useful if the size of the buffer is relatively small, since it is allocated
on the stack. It is also safe, since the conversion between an array of char and a string
is automatic. When FillBuffer returns, the Length of the string correctly indicates the
number of bytes written to buf.

To eliminate the overhead of copying the buffer, you can cast the string to a PChar (if
you are certain that the routine does not need the PChar to remain in memory).
However, synchronizing the length of the string does not happen automatically, as it
does when you assign an array of char to a string. You should reset the string Length
so that it reflects the actual width of the string. If you are using a function that returns
the number of bytes copied, you can do this safely with one line of code:

var
S: string;

begin

4-34 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h s t r i n g s

SetLength(S, MAX_SIZE);// when casting to a PChar, be sure the string is not empty
SetLength(S, GetModuleFilename(0, PChar(S), Length(S)));
// statements

end;

Compiler directives for strings

The following compiler directives affect character and string types.

Strings and characters: related topics

The following Object Pascal Language Guide topics discuss strings and character sets.
Also see Chapter 12, “Creating international applications.”

• “About extended character sets” (Discusses international character sets.)
• “Working with null-terminated strings” (Contains information about character

arrays.)

Table 4.8 Compiler directives for strings

Directive Description

{$H+/-} A compiler directive, $H, controls whether the reserved word string represents a
short string or a long string. In the default state, {$H+}, string represents a long
string. You can change it to a ShortString by using the {$H-} directive.

{$P+/-} The $P directive is meaningful only for code compiled in the {$H-} state, and is
provided for backwards compatibility. $P controls the meaning of variable
parameters declared using the string keyword in the {$H-} state.
In the {$P-} state, variable parameters declared using the string keyword are normal
variable parameters, but in the {$P+} state, they are open string parameters.
Regardless of the setting of the $P directive, the OpenString identifier can always be
used to declare open string parameters.

{$V+/-} The $V directive controls type checking on short strings passed as variable
parameters. In the {$V+} state, strict type checking is performed, requiring the formal
and actual parameters to be of identical string types.
In the {$V-} (relaxed) state, any short string type variable is allowed as an actual
parameter, even if the declared maximum length is not the same as that of the formal
parameter. Be aware that this could lead to memory corruption. For example:

var S: string[3];

procedure Test(var T: string);
begin
T := ‘1234’;

end;

begin
Test(S);

end.

{$X+/-} The {$X+} compiler directive enables Kylix's support for null-terminated strings by
activating the special rules that apply to the built-in PChar type and zero-based
character arrays. (These rules allow zero-based arrays and character pointers to be
used with Write, Writeln, Val, Assign, and Rename from the System unit.)

C o m m o n p r o g r a m m i n g t a s k s 4-35

W o r k i n g w i t h f i l e s

• “Character strings”
• “Character pointers”
• “String operators.”

Working with files
This section describes working with files and distinguishes between manipulating
files on disk, and input/output operations such as reading and writing to files. The
first section discusses the runtime library and routines you would use for common
programming tasks that involve manipulating files on disk. The next section is an
overview of file types used with file I/O. The last section focuses on the
recommended approach to working with file I/O, which is to use file streams.

Although the Object Pascal language is not case sensitive, the Linux operating system
is. Be attentive to case when working with files on Linux.

Note Previous versions of the Object Pascal language performed operations on files
themselves, rather than on the file name parameters commonly used now. With these
file types, you had to locate a file and assign it to a file variable before you could, for
example, rename the file.

Manipulating files

Several common file operations are built into Object Pascal's runtime library. The
procedures and functions for working with files operate at a high level. For most
routines, you specify the name of the file and the routine makes the necessary calls to
the operating system for you. In some cases, you use file handles instead. A file
handle is a number assigned by Kylix to identify something.

Object Pascal provides routines for most file manipulation. When it does not,
alternative routines are discussed.

Caution Although the Object Pascal language is not case sensitive, the Linux operating system
is. Be attentive to case when working with files on Linux.

Deleting a file
Deleting a file erases the file from the disk and removes the entry from the disk's
directory. There is no corresponding operation to restore a deleted file, so
applications should generally allow users to confirm deletions of files. To delete a
file, pass the name of the file to the DeleteFile function:

DeleteFile(FileName);

DeleteFile returns True if it deleted the file and False if it did not (for example, if the
file did not exist or if it was read-only). DeleteFile erases the file named by FileName
from the disk.

4-36 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h f i l e s

Finding a file
There are three routines used for finding a file: FindFirst, FindNext, and FindClose.
FindFirst searches for the first instance of a file name with a given set of attributes in a
specified directory. FindNext returns the next entry matching the name and attributes
specified in a previous call to FindFirst. FindClose releases memory allocated by
FindFirst. You should always use FindClose to terminates a FindFirst/FindNext
sequence. If you want to know if a file exists, a FileExists function returns True if the
file exists, False otherwise.

The three file find routines take a TSearchRec as one of the parameters. TSearchRec
defines the file information searched for by FindFirst or FindNext. The declaration for
TSearchRec is:

type
TFileName = string;
TSearchRec = record

Time: Integer;//Time contains the time stamp of the file.
Size: Integer;//Size contains the size of the file in bytes.
Attr: Integer;//Attr represents the file attributes of the file.
Name: TFileName;//Name contains the file name and extension.
ExcludeAttr: Integer;
FindHandle: THandle;
FindData: TWin32FindData;//FindData contains additional information such as
//file creation time, last access time, long and short filenames.

end;

If a file is found, the fields of the TSearchRec type parameter are modified to describe
the found file. You can test Attr against the following attribute constants or values to
determine if a file has a specific attribute:

To test for an attribute, combine the value of the Attr field with the attribute constant
with the and operator. If the file has that attribute, the result will be greater than 0.
For example, if the found file is a hidden file, the following expression will evaluate
to True: (SearchRec.Attr and faHidden > 0). Attributes can be combined by OR’ing their
constants or values. For example, to search for read-only and hidden files in addition
to normal files, pass (faReadOnly or faHidden) the Attr parameter.

Example: This example uses a label, a button named Search, and a button named Again on a
form. When the user clicks the Search button, the first file in the specified path is
found, and the name and the number of bytes in the file appear in the label's caption.

Table 4.9 Attribute constants and values

Constant Value Description

faReadOnly $00000001 Read-only files

faHidden $00000002 Hidden files

faSysFile $00000004 System files

faVolumeID $00000008 Volume ID files

faDirectory $00000010 Directory files

faArchive $00000020 Archive files

faAnyFile $0000003F Any file

C o m m o n p r o g r a m m i n g t a s k s 4-37

W o r k i n g w i t h f i l e s

Each time the user clicks the Again button, the next matching file name and size is
displayed in the label:

var
SearchRec: TSearchRec;

procedure TForm1.SearchClick(Sender: TObject);
begin

FindFirst('/usr/Kylix/bin/*.*', faAnyFile, SearchRec);
Label1.Caption := SearchRec.Name + ' is ' + IntToStr(SearchRec.Size) + ' bytes in size';

end;

procedure TForm1.AgainClick(Sender: TObject);
begin

if (FindNext(SearchRec) = 0)
Label1.Caption := SearchRec.Name + ' is ' + IntToStr(SearchRec.Size) + ' bytes in size';

else
FindClose(SearchRec);

end;

Changing file attributes
Every file has various attributes stored by the operating system as bitmapped flags.
File attributes include such items as whether a file is read-only or a hidden file.
Changing a file's attributes requires three steps: reading, changing, and setting.

You may be limited as to what you may modify depending on your file access rights.

Reading file attributes: Operating systems store file attributes in various ways,
generally as bitmapped flags. To read a file's attributes, pass the file name to the
FileGetAttr function, which returns the file attributes of a file. The return value is a
group of bitmapped file attributes, of type Word. The attributes can be examined by
AND-ing the attributes with the constants defined in TSearchRec. A return value of -1
indicates that an error occurred.

Changing individual file attributes: Because Kylix represents file attributes in a bit
flag, you can use normal logical operators to manipulate the individual attributes.
Each attribute has a mnemonic name defined in the SysUtils unit. For example, to set
a file's read-only attribute, you would do the following:

Attributes := Attributes or faReadOnly;

You can also set or clear several attributes at once. For example, the clear both the
system-file and hidden attributes:

Attributes := Attributes and not (faSysFile or faHidden);

Setting file attributes: Kylix enables you to set the attributes for any file at any time.
To set a file's attributes, pass the name of the file and the attributes you want to the
FileSetAttr function. FileSetAttr sets the file attributes of a specified file.

You can use the reading and setting operations independently, if you only want to
determine a file's attributes, or if you want to set an attribute regardless of previous
settings. To change attributes based on their previous settings, however, you need to
read the existing attributes, modify them, and write the modified attributes.

4-38 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h f i l e s

Renaming a file
To change a file name, simply use the RenameFile function:

function RenameFile(const OldFileName, NewFileName: string): Boolean;

which changes a file name, identified by OldFileName, to the name specified by
NewFileName. If the operation succeeds, RenameFile returns True. If it cannot rename
the file, for example, if a file called NewFileName already exists, it returns False. For
example:

if not RenameFile('OLDNAME.TXT','NEWNAME.TXT') then
ErrorMsg('Error renaming file!');

You cannot rename (move) a file across drives using RenameFile. You would need to
first copy the file and then delete the old one.

File date-time routines
The FileAge, FileGetDate, and FileSetDate routines operate on operating system date-
time values. FileAge returns the date-and-time stamp of a file, or -1 if the file does not
exist. FileSetDate sets the date-and-time stamp for a specified file, and returns zero on
success or an error code on failure. FileGetDate returns a date-and-time stamp for the
specified file or -1 if the handle is invalid.

As with most of the file manipulating routines, FileAge uses a string file name.
FileGetDate and FileSetDate, however, take a Handle type as a parameter. To get access
to a Handle, instantiate TFileStream, FileOpen, or call an OS routine such as _open() to
create or open a file. Then use the Handle property. See “File types with file I/O” on
page 4-38 for more information.

File types with file I/O

You can use three file types when working with file I/O: Pascal file types, file
handles, and file stream objects. The following table summarizes these types.

Table 4.10 File types for file I/O

File type Description

Pascal file
types

In the System unit. These types are used with file variables, usually of the format
"F: Text: or "F: File". The files have three types: typed, text, and untyped. A
number of Kylix file-handling routines, such as AssignPrn and writeln, use them.
If you need to work with them, see the Object Pascal Language Guide.

File handles In the Sysutils unit. A number of routines use a handle to identify the file. You
get the handle when you open or create the file (using FileOpen or FileCreate).
Once you have the handle, there are routines to work with the contents of the file
given its handle (write a line, read text, and so on).

File streams File streams are object instances of the TFileStream class used to access
information in disk files. File streams are a portable and high-level approach to
file I/O. TFileStream has a Handle property that lets you access the file handle.
The next section discusses TFileStream.

C o m m o n p r o g r a m m i n g t a s k s 4-39

W o r k i n g w i t h f i l e s

Using file streams

TFileStream is a class that enables applications to read from and write to a file on disk.
It is used for high-level object representations of file streams. TFileStream offers
multiple functionality: persistence, interaction with other streams, and file I/O.

• TFileStream is a descendant of the stream classes. As such, one advantage of using
file streams is that they inherit the ability to persistently store component
properties. The stream classes work with the TFiler classes, TReader, and TWriter to
stream objects out to disk. Therefore, when you have a file stream, you can use
that same code for CLX streaming mechanism. For more information about using
the streaming system, see the CLX Reference online Help on the TStream, TFiler,
TReader, TWriter, and TComponent classes.

• TFileStream can interact easily with other stream classes. For example, if you want
to dump a dynamic memory block to disk, you can do so using a TFileStream and a
TMemoryStream.

• TFileStream provides the basic methods and properties for file I/O. The remaining
sections focus on this aspect of file streams

Creating and opening files
To create or open a file and get access to a handle for the file, you simply instantiate a
TFileStream. This opens or creates a named file and provides methods to read from or
write to it. If the file cannot be opened, TFileStream raises an exception.

constructor Create(const filename: string; Mode: Word);

The Mode parameter specifies how the file should be opened when creating the file
stream. The Mode parameter consists of an open mode and a share mode or’ed
together. The open mode must be one of the following values:

The share mode can be one of the following values with the restrictions listed below:

Table 4.11 Open modes

Value Meaning

fmCreate TFileStream a file with the given name. If a file with the given name
exists, open the file in write mode.

fmOpenRead Open the file for reading only.

fmOpenWrite Open the file for writing only. Writing to the file completely replaces the
current contents.

fmOpenReadWrite Open the file to modify the current contents rather than replace them.

Table 4.12 Share modes

Value Meaning

fmShareCompat Other applications cannot open the file for any reason.

fmShareExclusive Other applications cannot open the file for any reason.

fmShareDenyWrite Other applications can open the file for reading but not for writing.

4-40 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h f i l e s

Note that which share mode you can use depends on which open mode you used.
The following table shows shared modes that are available for each open mode.

The file open and share mode constants are defined in the SysUtils unit.

Using the file handle
When you instantiate TFileStream you get access to the file handle. The file handle is
contained in the Handle property. Handle is read-only and indicates the mode in
which the file was opened. If you want to change the attributes of the file Handle, you
must create a new file stream object.

Some file manipulation routines take a window’s file handle as a parameter. Once
you have a file stream, you can use the Handle property in any situation in which you
would use a window’s file handle. Be aware that, unlike handle streams, file streams
close file handles when the object is destroyed.

Reading and writing to files
TFileStream has several different methods for reading from and writing to files. These
are distinguished by whether they perform the following:

• Return the number of bytes read or written.

• Require the number of bytes is known.

• Raise an exception on error.

Read is a function that reads up to Count bytes from the file associated with the file
stream, starting at the current Position, into Buffer. Read then advances the current
position in the file by the number of bytes actually transferred. The prototype for
Read is

function Read(var Buffer; Count: Longint): Longint; override;

Read is useful when the number of bytes in the file is not known. Read returns the
number of bytes actually transferred, which may be less than Count if the end of file
marker is encountered.

fmShareDenyRead Other applications can open the file for writing but not for reading.

fmShareDenyNone No attempt is made to prevent other applications from reading from or
writing to the file.

Table 4.12 Share modes (continued)

Value Meaning

Table 4.13 Shared modes available for each open mode

Open Mode fmShareCompat fmShareExclusive fmShareDenyWrite fmShareDenyRead fmShareDenyNone

fmOpenRead Can’t use Can’t use Available Can’t use Available

fmOpenWrite Available Available Can’t use Available Available

fmOpenReadWrite Available Available Available Available Available

C o m m o n p r o g r a m m i n g t a s k s 4-41

W o r k i n g w i t h f i l e s

Write is a function that writes Count bytes from the Buffer to the file associated with
the file stream, starting at the current Position. The prototype for Write is:

function Write(const Buffer; Count: Longint): Longint; override;

After writing to the file, Write advances the current position by the number bytes
written, and returns the number of bytes actually written, which may be less than
Count if the end of the buffer is encountered.

The counterpart procedures are ReadBuffer and WriteBuffer which, unlike Read and
Write, do not return the number of bytes read or written. These procedures are useful
in cases where the number of bytes is known and required, for example when
reading in structures. ReadBuffer and WriteBuffer raise an exception on error
(EReadError and EWriteError) while the Read and Write methods do not. The
prototypes for ReadBuffer and WriteBuffer are:

procedure ReadBuffer(var Buffer; Count: Longint);

procedure WriteBuffer(const Buffer; Count: Longint);

These methods call the Read and Write methods, to perform the actual reading and
writing.

Reading and writing strings
If you are passing a string to a read or write function, you need to use the correct
syntax. The Buffer parameters for the read and write routines are var and const types,
respectively. These are untyped parameters, so the routine takes the address of a
variable.

The most commonly used type when working with strings is a long string. However,
passing a long string as the Buffer parameter does not produce the correct result.
Long strings contain a size, a reference count, and a pointer to the characters in the
string. Consequently, dereferencing a long string does not result in only the pointer
element. What you need to do is first cast the string to a Pointer or PChar, and then
dereference it. For example:

procedure caststring;
var

fs: TFileStream;
const

s: string = 'Hello';
begin

fs := TFileStream.Create('temp.txt', fmCreate or fmOpenWrite);
fs.Write(s, Length(s));// this will give you garbage
fs.Write(PChar(s)^, Length(s));// this is the correct way

end;

Seeking a file
Most typical file I/O mechanisms have a process of seeking a file in order to read
from or write to a particular location within it. For this purpose, TFileStream has a
Seek method. The prototype for Seek is:

function Seek(Offset: Longint; Origin: Word): Longint; override;

4-42 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h f i l e s

The Origin parameter indicates how to interpret the Offset parameter. Origin should
be one of the following values:

Seek resets the current Position of the stream, moving it by the indicated offset. Seek
returns the new value of the Position property, the new current position in the
resource.

File position and size
TFileStream has properties that hold the current position and size of the file. These are
used by the Seek, read, and write methods.

The Position property of TFileStream is used to indicate the current offset, in bytes,
into the stream (from the beginning of the streamed data). The declaration for
Position is:

property Position: Longint;

The Size property indicates the size in bytes of the stream. It is used as an end of file
marker to truncate the file. The declaration for Size is:

property Size: Longint;

Size is used internally by routines that read and write to and from the stream.

Setting the Size property changes the size of the file. If the Size of the file cannot be
changed, an exception is raised. For example, trying to change the Size of a file
opened in fmOpenRead mode raises an exception.

Copying
CopyFrom copies a specified number of bytes from one (file) stream to another.

function CopyFrom(Source: TStream; Count: Longint): Longint;

Using CopyFrom eliminates the need to create, read into, write from, and free a buffer
when copying data.

CopyFrom copies Count bytes from Source into the stream. CopyFrom then moves the
current position by Count bytes, and returns the number of bytes copied. If Count is 0,
CopyFrom sets Source position to 0 before reading and then copies the entire contents
of Source into the stream. If Count is greater than or less than 0, CopyFrom reads from
the current position in Source.

Value Meaning

soFromBeginning Offset is from the beginning of the resource. Seek moves to the position
Offset. Offset must be >= 0.

soFromCurrent Offset is from the current position in the resource. Seek moves to Position +
Offset.

soFromEnd Offset is from the end of the resource. Offset must be <= 0 to indicate a
number of bytes before the end of the file.

C o m m o n p r o g r a m m i n g t a s k s 4-43

O b j e c t P a s c a l d a t a t y p e s

Object Pascal data types
Object Pascal has many predefined data types. You can use these predefined types to
create new types that meet the specific needs of your application. For an overview of
types, see the Object Pascal Language Guide.

4-44 D e v e l o p e r ’ s G u i d e

B u i l d i n g a p p l i c a t i o n s a n d s h a r e d o b j e c t s 5-1

C h a p t e r

5
Chapter5Building applications and shared

objects
This chapter provides an overview of how to use Kylix to create applications and
shared objects.

Creating applications
The main use of Kylix is designing and building the following types of applications:

• GUI applications
• Console applications

GUI applications

When you compile a project, an executable file is created. The executable usually
provides the basic functionality of your program, and simple programs often consist
of only an executable file. You can extend the application by calling shared object
files, packages, and other support files from the executable.

Kylix offers two application UI models:

• Single document interface (SDI)
• Multiple document interface (MDI)

In addition to the implementation model of your applications, the design-time
behavior of your project and the runtime behavior of your application can be
manipulated by setting project options in the IDE.

5-2 D e v e l o p e r ’ s G u i d e

C r e a t i n g a p p l i c a t i o n s

User interface models
Any form can be implemented as a multiple document interface (MDI) or single
document interface (SDI) form. In an MDI application, more than one document or
child window can be opened within a single parent window. This is common in
applications such as spreadsheets or word processors. An SDI application, in
contrast, normally contains a single document view. To make your form an SDI
application, set the FormStyle property of your Form object to fsNormal.

For more information on developing the UI for an application, see Chapter 6,
“Developing the application user interface.”

SDI Applications
To create a new SDI application,

1 Select File|New to bring up the New Items dialog.
2 Click on the Projects page and select SDI Application.
3 Click OK.

By default, the FormStyle property of your Form object is set to fsNormal, so Kylix
assumes that all new applications are SDI applications.

MDI applications
To create a new MDI application,

1 Select File|New to bring up the New Items dialog.
2 Click on the Projects page and select MDI Application.
3 Click OK.

MDI applications require more planning and are somewhat more complex to design
than SDI applications. MDI applications spawn child windows that reside within the
client window; the main form contains child forms. Set the FormStyle property of the
TForm object to specify whether a form is a child (fsMDIForm) or main form
(fsMDIChild). It is a good idea to define a base class for your child forms and derive
each child form from this class, to avoid having to reset the child form’s properties.

Setting IDE, project, and compilation options
Use Project|Project Options to specify various options for your project. For more
information, see the online Help.

To change the default options that apply to all future projects, set the options in the
Project Options dialog box and check the Default box at the bottom right of the
window. All new projects will use the current options.

Console applications

Console applications can operate directly in a console window without requiring the
window management layer. They are 32-bit programs that run without a graphical
interface. These applications typically don’t require much user input and perform a
limited set of functions.

B u i l d i n g a p p l i c a t i o n s a n d s h a r e d o b j e c t s 5-3

C r e a t i n g p a c k a g e s a n d s h a r e d o b j e c t f i l e s

To create a new console application,

1 Choose File|New and select Console Application from the New Items dialog box.

Kylix then creates a project file for this type of source file and displays the code
editor.

Note When you create a new console application, the IDE does not create a new form.
Only the code editor is displayed.

Creating packages and shared object files
Shared object files are modules of compiled code that work with an executable to
provide functionality to an application.

Packages are special shared object files used by Kylix applications, the IDE, or both.
There are two kinds of packages: runtime packages and design-time packages.
Runtime packages provide functionality to a program while that program is running.
Design-time packages extend the functionality of the IDE.

For more information on packages, see Chapter 11, “Working with packages and
components.”

Working with shared object libraries

Shared object libraries on Linux are similar to Windows DLLs. You can link with
third-party shared objects using external function declarations, just as you would
with DLL functions under Windows.

The Linux program loader ignores module name bindings when resolving external
function references. If an application uses two .so libraries that both export a function
named Foo, the loader binds all Foo references to the first Foo function it finds. (The
search order is described in the section on “Shared Object Dependencies” in the ELF
standard.) When naming conflicts are unavoidable, you can prevent unintended
behavior by loading objects dynamically with dlopen().

When you build a library project, the compiler generates a shared object (.so file)
instead of a regular executable. By default, the name of the generated file starts with
“lib” (for a standard library) or “bpl” (for a package). For example, if your project file
is called something.pas, the compiler generates a shared object called
libsomething.so or bplsomething.so.

5-4 D e v e l o p e r ’ s G u i d e

W r i t i n g d a t a b a s e a p p l i c a t i o n s

The following compiler directives can be placed in library project files:

When to use packages and shared objects

For most applications written in Kylix, packages provide greater flexibility and are
easier to create than shared objects. However, there are several situations where
shared objects are better suited to your projects than packages:

• If your code module is called from non-Kylix applications.
• If extending the functionality of a Web server.
• If creating a code module for third-party developers.

Writing database applications
One of Kylix’s strengths is its support for creating advanced database applications.
Kylix includes built-in tools that allow you to connect to InterBase, MySQL, or other
servers while providing transparent data sharing between applications.

Database applications are built from user interface elements, components that
represent database information (datasets), and components that connect to the
database information itself. Kylix supports two kinds of datasets:

• dbExpress
• Client

Different kinds of datasets connect to the underlying database information in
different ways. dbExpress provides fast access to database information, supports
cross-platform development, but does not include many data manipulation
functions. Client datasets can buffer data in memory but you can’t connect a client

Table 5.1 Compiler directives for libraries

Compiler Directive Description

{$SOPREFIX 'string'} Overrides the default ‘lib’ or ‘bpl’ prefix in the output file name. For
example, you could specify {$SOPREFIX 'dcl'} for a design-time
package, or use {$SOPREFIX ' '} to eliminate the prefix entirely.

{$SOSUFFIX 'string'} Adds a specified suffix to the output file name before the .so extension.
For example, use {$SOSUFFIX '-2.1.3'} in something.pas to generate
libsomething-2.1.3.so.

{$SOVERSION 'string'} Adds a second extension to the output file name after the .so extension.
For example, use {$SOVERSION '2.1.3'} in something.pas to generate
libsomething.so.2.1.3.

{$SONAME 'string'} Specifies the internally coded library name in the shared object's
dynamic string table. This directive does not change the name of the
output file itself, but does cause the compiler to create a symbolic link
in the output directory that points to the actual file. For example, if you
place {$SONAME 'libsomething.so.1'} in something.pas, the compiler
creates a shared-object file called libsomething.so--which represents
itself internally as libsomething.so.1--and a symbolic link, also called
libsomething.so.1, that points to libsomething.so.

B u i l d i n g a p p l i c a t i o n s a n d s h a r e d o b j e c t s 5-5

B u i l d i n g d i s t r i b u t e d a p p l i c a t i o n s

dataset directly to a database server, because client datasets do not include any built-
in database access mechanism. Instead, you need to connect the client dataset to
another dataset that can handle data access. For details, refer to “Database
architecture” on page 14-4.

Part II, “Developing database applications” in this manual provides details on how
to use Kylix to design database applications.

Building distributed applications
Distributed applications are applications that are deployed to various machines and
platforms and work together, typically over a network, to perform a set of related
functions. For instance, an application for purchasing items and tracking those
purchases for a nationwide company would require individual client applications for
all the outlets, a main server that would process the requests of those clients, and an
interface to a database that stores all the information regarding those transactions. By
building a distributed client application (for instance, a web-based application),
maintaining and updating the individual clients is vastly simplified.

Kylix provides options for implementing distributed applications:

• TCP/IP applications
• Database applications

Distributing applications using TCP/IP

TCP/IP is a communication protocol that allows you to write applications that
communicate over networks. You can implement virtually any design in your
applications. TCP/IP provides a transport layer, but does not impose any particular
architecture for creating your distributed application.

The growth of the Internet has created an environment where most computers
already have some form of TCP/IP access, which simplifies distributing and setting
up the application.

Applications that use TCP/IP can be message-based distributed applications (such as
Web server applications that service HTTP request messages) or distributed object
applications (such as distributed database applications that communicate using
sockets).

The most basic method of adding TCP/IP functionality to your applications is to use
client or server sockets. Kylix also provides support for applications that extend Web
servers by creating CGI scripts. In addition, Kylix provides support for TCP/IP-
based database applications.

Using sockets in applications
Two classes, TTCPClient and TTCPServer, allow you to create TCP/IP socket
connections to communicate with other remote applications. For more information
on sockets, see Chapter 23, “Working with sockets.”

5-6 D e v e l o p e r ’ s G u i d e

U s i n g d a t a m o d u l e s a n d r e m o t e d a t a m o d u l e s

Creating Web server applications
To create a new Web server application, select File|New and select Web Server
Application in the New Items dialog box. Then select the Web server application
type:

• Apache
• CGI stand-alone

Common Gateway Interface (CGI) is a standard for running programs on a server
from a web page. CGI programs, or scripts, are executable programs that run by
themselves. CGI applications use more system resources on the server, so complex
applications are better created as Apache applications. The Apache Web server is a
flexible, HTTP/1.1 compliant Web server that implements the latest protocols. It is
configurable and is multi-platform.

For more information on building Web server applications, see Chapter 22, “Creating
Internet server applications.”

Apache Web server applications
Selecting this type of application sets up your project as an Apache Web server.
Information is processed and returned to the client by the Web server.

TApacheApplication provides the underlying functionality for Apache server
applications. TApacheApplication starts running when the Apache server receives an
HTTP request. It creates objects to represent the request message (TApacheRequest)
and any response (TApacheResponse) that should be sent in return, passes these to the
dispatcher so that the response can be filled in, and sends the response (if not already
sent).

CGI stand-alone Web server applications
CGI Web server applications are console applications that receive requests from
clients on standard input, processes those requests, and sends back the results to the
server on standard output to be sent to the client.

Using data modules and remote data modules
A data module is like a special form that contains nonvisual components. All the
components in a data module could be placed on ordinary forms alongside visual
controls. But if you plan on reusing groups of database and system objects, or if you
want to isolate the parts of your application that handle database connectivity and
business rules, then data modules provide a convenient organizational tool.

There are two types of data module, standard data modules, and Web modules:

• Standard data modules allow you to organize and document your application
more easily. They are particularly useful for single- and two-tiered database
applications, but can be used to organize the nonvisual components in any
application. For more information, see “Creating data modules” on page 5-7.

B u i l d i n g a p p l i c a t i o n s a n d s h a r e d o b j e c t s 5-7

U s i n g d a t a m o d u l e s a n d r e m o t e d a t a m o d u l e s

• Web modules form the basis of Web server applications. In addition to holding the
components that create the content of HTTP response messages, they handle the
dispatching of HTTP messages from client applications. See Chapter 22, “Creating
Internet server applications” for more information about using Web modules.

Creating data modules

To create a data module, choose File|New and double-click on Data Module. Kylix
opens an empty data module, displays the unit file for the new module in the Code
editor, and adds the module to the current project. When you reopen an existing data
module, Kylix displays its components in the data module window.

At design time, you can add nonvisual components to a data module by selecting
them on the Component palette and clicking in the data module window. When a
component is selected in the data module window, you can edit its properties in the
Object Inspector just as you would if the component were on a form. The properties
you set for components in a data module apply consistently to all forms in your
application that use that module.

The name of the data module is displayed in the title bar of the data module window.
The default name is DataModulen, where n is a number representing the lowest
unused unit number in a project. For example, if you start a new project, add a
module to it before doing any other application building, the name of the data
module defaults to DataModule2. The corresponding unit file for DataModule2 is
Unit2 (Unit1 is the form). You can rename the data module by selecting the data
module window and editing the Name property in the Object Inspector.

Creating business rules in a data module
In a data module’s unit file, you can write methods, including event handlers for the
components in the module, as well as global routines that encapsulate business rules.
For example, you might write a procedure to perform month-, quarter-, or year-end
bookkeeping; you could call such a procedure from an event handler for a
component in the module or from any unit that uses the module.

Accessing a data module from a form

To associate visual controls on a form with a data module, you must first add the
data module to the form’s uses clause. You can do this in several ways:

• In the Code editor, open the form’s unit file and add the name of the data module
to the uses clause in the interface section.

• Choose File|Use Unit, then enter the name of the module or pick it from the list
box in the Use Unit dialog.

• Double-click on a table or query component in the data module to open the Fields
editor. From the Fields editor, drag any fields onto your form. Kylix prompts you
to confirm that you want to add the module to the form’s uses clause, then creates
controls (such as edit boxes) for the fields.

5-8 D e v e l o p e r ’ s G u i d e

P r o g r a m m i n g t e m p l a t e s

Programming templates
Programming templates are commonly used “skeleton“ structures that you can add
to your source code and then fill in. For example, if you want to use a for loop in your
code, you could insert the following template:

for := to do
begin

end;

To insert a code template in the Code editor, press Ctrl-j and select the template you
want to use. You can also add your own templates to this collection. To add a
template:

1 Select Tools|Editor Options.
2 Click the Code Insight tab.
3 In the templates section click Add.
4 Choose a shortcut name and enter a brief description of the new template.
5 Add the template code to the Code text box.
6 Click OK.

Sharing code: Using the Object Repository
The Object Repository (Tools|Repository) makes it easy share forms, dialog boxes,
frames, and data modules. It also provides templates for new projects and wizards
that guide the user through the creation of forms and projects. The repository is
maintained in the delphi60dro file (by default in the .borland directory), a text file
that contains references to the items that appear in the Repository and New Items
dialogs.

Sharing items within a project

You can share items within a project without adding them to the Object Repository.
When you open the New Items dialog box (File|New), you'll see a page tab with the
name of the current project. This page lists all the forms, dialog boxes, and data
modules in the project. You can derive a new item from an existing item and
customize it as needed.

Adding items to the Object Repository

You can add your own projects, forms, frames, and data modules to those already
available in the Object Repository. To add an item to the Object Repository,

1 If the item is a project or is in a project, open the project.

2 For a project, choose Project|Add To Repository. For a form or data module, right-
click the item and choose Add To Repository.

B u i l d i n g a p p l i c a t i o n s a n d s h a r e d o b j e c t s 5-9

S h a r i n g c o d e : U s i n g t h e O b j e c t R e p o s i t o r y

3 Type a description, title, and author.

4 Decide which page you want the item to appear on in the New Items dialog box,
then type the name of the page or select it from the Page combo box. If you type
the name of a page that doesn’t exist, Kylix creates a new page.

5 Choose Browse to select an icon to represent the object in the Object Repository.

6 Choose OK.

Sharing objects in a team environment

You can share objects with your workgroup or development team by making a
repository available over a network. To use a shared repository, all team members
must select the same Shared Repository directory in the Environment Options dialog:

1 Choose Tools|Environment Options.

2 On the Preferences page, locate the Shared Repository panel. In the Directory edit
box, enter the directory where you want to locate the shared repository. Be sure to
specify a directory that’s accessible to all team members.

The first time an item is added to the repository, Kylix creates a delphi60dro file in
the Shared Repository directory if one doesn’t exist already.

Note It is important that the access permissions on the Object Repository directory
(objrepos) are set up correctly on the because if the user does not have write
permissions to the directory, they cannot add items to it. Therefore, if you want
multiple users to access a common Object Repository, you should create a group and
give its members read-write access to the objrepos directory. For example, if you
name the group "dev", you would set the permissions on the command line by
entering

cd <install directory>
chmod -R 775 objrepos
chgrp -R dev objrepos

See the group(5) man page for more information.

Using an Object Repository item in a project

To access items in the Object Repository, choose File|New. The New Items dialog
appears, showing all the items available. Depending on the type of item you want to
use, you have up to three options for adding the item to your project:

• Copy
• Inherit
• Use

Copying an item
Choose Copy to make an exact copy of the selected item and add the copy to your
project. Future changes made to the item in the Object Repository will not be

5-10 D e v e l o p e r ’ s G u i d e

S h a r i n g c o d e : U s i n g t h e O b j e c t R e p o s i t o r y

reflected in your copy, and alterations made to your copy will not affect the original
Object Repository item.

Copy is the only option available for project templates.

Inheriting an item
Choose Inherit to derive a new class from the selected item in the Object Repository
and add the new class to your project. When you recompile your project, any changes
that have been made to the item in the Object Repository will be reflected in your
derived class, in addition to changes you make to the item in your project. Changes
made to your derived class do not affect the shared item in the Object Repository.

Inherit is available for forms, dialog boxes, and data modules, but not for project
templates. It is the only option available for reusing items within the same project.

Using an item
Choose Use when you want the selected item itself to become part of your project.
Changes made to the item in your project will appear in all other projects that have
added the item with the Inherit or Use option. Select this option with caution.

The Use option is available for forms, dialog boxes, and data modules.

Using project templates

Templates are predesigned projects that you can use as starting points for your own
work. To create a new project from a template,

1 Choose File|New to display the New Items dialog box.
2 Choose the Projects tab.
3 Select the project template you want and choose OK.
4 In the Select Directory dialog, specify a directory for the new project’s files.

Kylix copies the template files to the specified directory, where you can modify them.
The original project template is unaffected by your changes.

Modifying shared items

If you modify an item in the Object Repository, your changes will affect all future
projects that use the item as well as existing projects that have added the item with
the Use or Inherit option. To avoid propagating changes to other projects, you have
several alternatives:

• Copy the item and modify it in your current project only.
• Copy the item to the current project, modify it, then add it to the Repository under

a different name.
• Create a component, shared object, component template, or frame from the item. If

you create a component or shared object, you can share it with other developers.

B u i l d i n g a p p l i c a t i o n s a n d s h a r e d o b j e c t s 5-11

R e u s i n g c o m p o n e n t s a n d g r o u p s o f c o m p o n e n t s

Specifying a default project, new form, and main form

By default, when you choose File|New Application or File|New Form, Kylix
displays a blank form. You can change this behavior by reconfiguring the Repository:

1 Choose Tools|Repository
2 If you want to specify a default project, select the Projects page and choose an item

under Objects. Then select the New Project check box.
3 If you want to specify a default form, select a Repository page (such as Forms),

them choose a form under Objects. To specify the default new form (File|New
Form), select the New Form check box. To specify the default main form for new
projects, select the Main Form check box.

4 Click OK.

Reusing components and groups of components
Kylix offers several ways to save and reuse work you’ve done with CLX components:

• Component templates provide a simple, quick way of configuring and saving
groups of components. See “Creating and using component templates” on
page 6-35.

• You can save forms, data modules, and projects in the Repository. This gives you a
central database of reusable elements and lets you use form inheritance to
propagate changes. See “Sharing code: Using the Object Repository” on page 5-14.

• You can save frames on the Component palette or in the repository. Frames use
form inheritance and can be embedded into forms or other frames. See “Working
with frames” on page 6-36.

• Creating a custom component is the most complicated way of reusing code, but it
offers the greatest flexibility. See Chapter 25, “Overview of component creation.”

Creating and using component templates
You can create templates that are made up of one or more components. After
arranging components on a form, setting their properties, and writing code for them,
save them as a component template. Later, by selecting the template from the
Component palette, you can place the preconfigured components on a form in a
single step; all associated properties and event-handling code are added to your
project at the same time.

Once you place a template on a form, you can reposition the components
independently, reset their properties, and create or modify event handlers for them
just as if you had placed each component in a separate operation.

To create a component template,

1 Place and arrange components on a form. In the Object Inspector, set their
properties and events as desired.

5-12 D e v e l o p e r ’ s G u i d e

E n a b l i n g H e l p i n C L X a p p l i c a t i o n s

2 Select the components. The easiest way to select several components is to drag the
mouse over all of them. Gray handles appear at the corners of each selected
component.

3 Choose Component|Create Component Template.

4 Specify a name for the component template in the Component Name edit box. The
default proposal is the component type of the first component selected in step 2
followed by the word “Template”. For example, if you select a label and then an
edit box, the proposed name will be “TLabelTemplate”. You can change this name,
but be careful not to duplicate existing component names.

5 In the Palette Page edit box, specify the Component palette page where you want
the template to reside. If you specify a page that does not exist, a new page is
created when you save the template.

6 Under Palette Icon, select a bitmap to represent the template on the palette. The
default proposal will be the bitmap used by the component type of the first
component selected in step 2. To browse for other bitmaps, click Change. The
bitmap you choose must be no larger than 24 pixels by 24 pixels.

7 Click OK.

To remove templates from the Component palette, choose Component|Configure
Palette.

Enabling Help in CLX applications
While CLX does not provide direct support for displaying Help, it provides a
backbone through which Help requests, triggered by the F1 key, can be passed on to
one of multiple external Help viewers (that is, Man, Info, or HyperHelp). To support
this, an application developer must create a class that implements the
ICustomHelpViewer interface (and, optionally, one of several interfaces descended
from it), and then register an instance of that class with the global Help Manager.

The Help Manager maintains a list of registered viewers and passes requests to them
in a two-phase process: it first asks each viewer if it can provide support for a
particular Help keyword or context, and then it passes the Help request on to the
viewer which says it can provide such support. (If more than one viewer supports the
keyword, as would be the case in an application which had registered viewers for
both Man and Info, the Help Manager can display a selection box through which the
user of the application can determine which Help viewer to invoke. Otherwise, it
displays the first responding Help system encountered).

Help system interfaces

The CLX Help system allows communication between your application and Help
viewers through a series of interfaces. These interfaces are all defined in
HelpIntfs.pas, which also contains the implementation of the Help Manager.

B u i l d i n g a p p l i c a t i o n s a n d s h a r e d o b j e c t s 5-13

E n a b l i n g H e l p i n C L X a p p l i c a t i o n s

ICustomHelpViewer provides support for displaying Help based upon a provided
keyword and for displaying a table of contents listing all Help available in a
particular viewer.

IExtendedHelpViewer provides support for displaying Help based upon a numeric
Help context and for displaying topics; in most Help systems, topics function as
high-level keywords (for example, “IntToStr” might be a keyword in the Kylix Help
system, but “String manipulation routines” could be the name of a topic).

ISpecialWinHelpViewer provides support for responding to specialized WinHelp
messages that an application running under Windows may receive and which are
not easily generalizable. In general, only applications operating in the Windows
environment need to implement this interface, and even then it is only required for
applications that make extensive use of non-standard WinHelp messages.

IHelpManager provides a mechanism for the Help viewer to communicate back to the
application’s Help Manager and request additional information. An IHelpManager is
obtained at the time the Help viewer registers itself.

IHelpSystem provides a mechanism through which TApplication passes Help requests
on to the Help system. TApplication obtains an instance of an object which
implements both IHelpSystem and IHelpManager at application load time and exports
that instance as a property; this allows other code within the application to file Help
requests directly when appropriate.

IHelpSelector provides a mechanism through which the Help system can invoke the
user interface to ask which Help viewer should be used in cases where more than one
viewer is capable of handling a Help request, and to display a Table of Contents. This
display capability is not built into the Help Manager directly to allow the Help
Manager code to be identical regardless of which widget set or class library is in use.

Implementing ICustomHelpViewer

The ICustomHelpViewer interface contains three types of methods: methods used to
communicate system-level information (for example, information not related to a
particular Help request) with the Help Manager; methods related to showing Help
based upon a keyword provided by the Help Manager; and methods for displaying a
table of contents.

Communicating with the Help Manager

ICustomHelpViewer provides three functions that can be used to communicate system
information with the Help Manager:

• GetViewerName
• NotifyID
• ShutDown

5-14 D e v e l o p e r ’ s G u i d e

E n a b l i n g H e l p i n C L X a p p l i c a t i o n s

The HelpManager calls through these functions in the following circumstances:

• ICustomHelpViewer.GetViewerName : String is called when the Help Manager wants
to know the name of the viewer (for example, if the application is asked to display
a list of all registered viewers). This information is returned via a string, and is
required to be logically static (that is, it cannot change during the operation of the
application). Multibyte character sets are not supported.

• ICustomHelpViewer.NotifyID(const ViewerID: Integer) is called immediately
following registration to provide the viewer with a unique cookie that identifies it.
This information must be stored off for later use; if the viewer shuts down on its
own (as opposed to in response to a notification from the Help Manager), it must
provide the Help Manager with the identifying cookie so that the Help Manager
can release all references to the viewer. (Failing to provide the cookie, or providing
the wrong one, causes the Help Manager to potentially release references to the
wrong viewer.)

• ICustomHelpViewer.ShutDown is called by the Help Manager to notify the Help
viewer that the Manager is shutting down and that any resources the Help viewer
has allocated should be freed. It is recommended that all resource freeing be
delegated to this method.

Asking the Help Manager for information

Help viewers communicate with the Help Manager through the IHelpManager
interface, an instance of which is returned to them when they register with the Help
Manager. IHelpManager allows the Help viewer to communicate four things: a
request for the window handle of the currently active control; a request for the name
of the Help file which the Help Manager believes should contain help for the
currently active control; a request for the path to that Help file; and a notification that
the Help viewer is shutting itself down in response to something other than a request
from the Help Manager that it do so.

IHelpManager.GetHandle : LongInt is called by the Help viewer if it needs to know the
handle of the currently active control; the result is a window handle.

IHelpManager.GetHelpFile: String is called by the Help viewer if it wishes to know the
name of the Help file which the currently active control believes contains its help.

IHelpManager.GetHelpPath: String is called by the Help viewer if it wishes to know the
path of the Help files. This information is not provided by default because many
external Help systems are able to determine the path via environment variables, etc.,
and so do not need explicit path references.

IHelpManager.Release is called to notify the Help Manager when a Help viewer is
disconnecting. It should never be called in response to a request through
ICustomHelpViewer.ShutDown; it is only used to notify the Help Manager of
unexpected disconnects.

B u i l d i n g a p p l i c a t i o n s a n d s h a r e d o b j e c t s 5-15

E n a b l i n g H e l p i n C L X a p p l i c a t i o n s

Displaying keyword-based Help

Help requests typically come through to the Help viewer as either keyword-based
Help, in which case the viewer is asked to provide help based upon a particular
string, or as context-based Help, in which case the viewer is asked to provide help
based upon a particular numeric identifier. (Numeric help contexts are the default
form of Help requests in applications running under Windows, which use the
WinHelp system; while CLX supports them, they are not recommended for use in
CLX applications because most Linux Help systems do not understand them.)
ICustomHelpViewer implementations are required to provide support for keyword-
based Help requests, while IExtendedHelpViewer implementations are required to
support context-based Help requests.

ICustomHelpViewer provides three methods for handling keyword-based Help:

• CanShowKeyword
• GetHelpStrings
• ShowHelp

ICustomHelpViewer.CanShowKeyword(const HelpString: String): Integer

is the first of the three methods called by the Help Manager, which will call each
registered Help viewer with the same string to ask if the viewer provides help for
that string; the viewer is expected to respond with an integer indicating how many
different Help pages it can display in response to that Help request. The viewer can
use any method it wants to determine this — inside the Kylix IDE, the HyperHelp
viewer maintains its own index and searches it; the Man page viewer, on the other
hand, invokes the program man and asks it. If the viewer does not support help on
this keyword, it should return zero. Negative numbers are currently interpreted as
meaning zero, but this behavior is not guaranteed in future releases.

ICustomHelpViewer.GetHelpStrings(const HelpString: String): TStringList

is called by the Help Manager if more than one viewer can provide help on a topic.
The viewer is expected to return a TStringList. The strings in the returned list should
map to the pages available for that keyword, but the characteristics of that mapping
can be determined by the viewer. In the case of the HyperHelp viewer, the string list
always contains exactly one entry (HyperHelp provides its own indexing, and
duplicating that elsewhere would be pointless duplication); in the case of the Man
page viewer, the string list consists of multiple strings, one for each section of the
manual which contains a page for that keyword.

ICustomHelpViewer.ShowHelp(const HelpString: String)

is called by the Help Manager if it needs the Help viewer to display help for a
particular keyword. This is the last method call in the operation; it is guaranteed to
never be called unless CanShowKeyword is invoked first.

Displaying tables of contents

ICustomHelpViewer provides two methods relating to displaying tables of contents:

• CanShowTableOfContents
• ShowTableOfContents

5-16 D e v e l o p e r ’ s G u i d e

E n a b l i n g H e l p i n C L X a p p l i c a t i o n s

The theory behind their operation is similar to the operation of the keyword Help
request functions: the Help Manager first queries all Help viewers by calling
ICustomHelpViewer.CanShowTableOfContents : Boolean and then invokes a particular
Help viewer by calling ICustomHelpViewer.ShowTableOfContents.

Note that it is perfectly reasonable for a particular viewer to refuse to support
requests to support a table of contents. The Man page viewer does this, for example,
because the concept of a table of contents does not map well to the way Man pages
work; the HyperHelp viewer supports a table of contents, on the other hand, by
passing the request to display a table of contents directly to HyperHelp. It is not
reasonable, however, for an implementation of ICustomHelpViewer to respond to
queries through CanShowTableOfContents with the answer true, and then ignore
requests through ShowTableOfContents.

Implementing IExtendedHelpViewer

ICustomHelpViewer only provides direct support for keyword-based Help. Some
Help systems (especially WinHelp) work by associating numbers (known as context
IDs) with keywords in a fashion which is internal to the Help system and therefore
not visible to the application. Such systems require that the application support
context-based Help in which the application invokes the Help system with that
context, rather than with a string, and the Help system translates the number itself.

Applications written in CLX can talk to systems requiring context-based Help by
extending the object which implements ICustomHelpViewer to also implement
IExtendedHelpViewer. IExtendedHelpViewer also provides support for talking to Help
systems that allow you to jump directly to high-level topics instead of using keyword
searches.

IExtendedHelpViewer exposes four functions. Two of them — UnderstandsContext and
DisplayHelpByContext — are used to support context-based Help; the other two —
UnderstandsTopic and DisplayTopic — are used to support topics.

When an application user presses F1, the Help Manager calls

IExtendedHelpViewer.UnderstandsContext(const ContextID: Integer;
const HelpFileName: String): Boolean

and the currently activated control supports context-based, rather than keyword-
based Help. As with ICustomHelpViewer.CanShowKeyword, the Help Manager queries
all registered Help viewers iteratively. Unlike the case with
ICustomHelpViewer.CanShowKeyword, however, if more than one viewer supports a
specified context, the first registered viewer with support for a given context is
invoked.

The Help Manager calls

IExtendedHelpViewer.DisplayHelpByContext(const ContextID: Integer;
const HelpFileName: String)

after it has polled the registered Help viewers.

B u i l d i n g a p p l i c a t i o n s a n d s h a r e d o b j e c t s 5-17

E n a b l i n g H e l p i n C L X a p p l i c a t i o n s

The topic support functions work the same way:

IExtendedHelpViewer.UnderstandsTopic(const Topic: String): Boolean

is used to poll the Help viewers asking if they support a topic;

IExtendedHelpViewer.DisplayTopic(const Topic: String)

is used to invoke the first registered viewer which reports that it is able to provide
help for that topic.

Implementing IHelpSelector

IHelpSelector is a companion to ICustomHelpViewer. When more than one registered
viewer claims to provide support for a given keyword, context, or topic, or provides
a table of contents, the Help Manager must choose between them. In the case of
contexts or topics, the Help Manager always selects the first Help viewer that claims
to provide support. In the case of keywords or the table of context, the Help Manager
will, by default, select the first Help viewer. This behavior can be overridden by an
application.

To override the decision of the Help Manager in such cases, an application must
register a class that provides an implementation of the IHelpSelector interface.
IHelpSelector exports two functions: SelectKeyword, and TableOfContents. Both take as
arguments a TStrings containing, one by one, either the possible keyword matches or
the names of the viewers claiming to provide a table of contents. The implementor is
required to return the index (in the TStrings) that represents the selected string.

Note The Help Manager may get confused if the strings are re-arranged; it is
recommended that implementors of IHelpSelector refrain from doing this. The Help
system only supports one HelpSelector; when new selectors are registered, any
previously existing selectors are disconnected.

Registering Help system objects

For the Help Manager to communicate with them, objects that implement
ICustomHelpViewer, IExtendedHelpViewer, ISpecialWinHelpViewer, and IHelpSelector
must register with the Help Manager.

To register Help system objects with the Help Manager, you need to

• Register the Help viewer
• Register the Help Selector

Registering Help viewers
The unit that contains the object implementation must use HelpIntfs. An instance of
the object must be declared in the var section of the implementing unit.

The initialization section of the implementing unit must assign the instance variable
and pass it to the function RegisterViewer. RegisterViewer is a flat function exported by

5-18 D e v e l o p e r ’ s G u i d e

U s i n g H e l p i n a C L X A p p l i c a t i o n

HelpIntfs.pas which takes as an argument an ICustomHelpViewer and returns an
IHelpManager. The IHelpManager should be stored for future use.

Registering Help selectors
The unit that contains the object implementation must use HelpIntfs and QForms. An
instance of the object must be declared in the var section of the implementing unit.

The initialization section of the implementing unit must register the Help selector
through the HelpSystem property of the global Application object:

Application.HelpSystem.AssignHelpSelector(myHelpSelectorInstance)

This procedure does not return a value.

Using Help in a CLX Application
The following sections explain how to use Help within a CLX application.

How TApplication processes Help

TApplication provides two methods that are accessible from application code:

• ContextHelp, which invokes the Help system with a request for context-based Help

• KeywordHelp, which invokes the Help system with a request for keyword-based
Help

Both functions take as an argument the context or keyword being passed and
forward the request on through a data member of TApplication, which represents the
Help system. That data member is directly accessible through the read-only property
HelpSystem.

How controls process Help

All controls that derive from TControl expose four properties which are used by the
Help system: HelpType, HelpFile, HelpContext, and HelpKeyword. HelpFile is supposed
to contain the name of the file in which the control’s help is located; if the help is
located in an external Help system that does not care about file names (say, for
example, the Man page system), then the property should be left blank.

The HelpType property contains an instance of an enumerated type which determines
if the control’s designer expects help to be provided via keyword-based Help or
context-based Help; the other two properties are linked to it. If the HelpType is set to
htKeyword, then the Help system expects the control to use keyword-based Help, and
the Help system only looks at the contents of the HelpKeyword property. Conversely,
if the HelpType is set to htContext, the Help system expects the control to use context-
based Help and only looks at the contents of the HelpContext property.

B u i l d i n g a p p l i c a t i o n s a n d s h a r e d o b j e c t s 5-19

U s i n g H e l p i n a C L X A p p l i c a t i o n

In addition to the properties, controls expose a single method, InvokeHelp, which can
be called to pass a request to the Help system. It takes no parameters and calls the
methods in the global Application object, which correspond to the type of help the
control supports.

Help messages are automatically invoked when F1 is pressed because the KeyDown
method of TWidgetControl calls InvokeHelp.

Calling the Help system directly

For additional Help system functionality not exposed by this mechanism,
TApplication provides a read-only property that allows direct access to the Help
system. This property is an instance of an implementation of the interface
IHelpSystem. IHelpSystem and IHelpManager are implemented by the same object, but
one interface is used to allow the application to talk to the Help Manager, and one is
used to allow the Help viewers to talk to the Help Manager.

Using IHelpSystem

IHelpSystem allows the application to do three things:

• Provides path information to the Help Manager

• Provides a new Help selector

• Asks the Help Manager to display help

Providing path information is important because the Help Manager is platform-
independent and Help system-independent and so is not able to ascertain the
location of Help files. If an application expects help to be provided by an external
Help system that is not able to ascertain file locations itself, it must provide this
information through IHelpSystem.ProvideHelpPath, which allows the information to
become available through IHelpManager.GetHelpPath. (This information propagates
outward only if the Help viewer asks for it.)

Assigning a Help selector allows the Help Manager to delegate decision-making in
cases where multiple external Help systems can provide help for the same keyword.
For more information, see the section “Implementing IHelpSelector” on page 5-17.

IHelpSystem exports four functions used to request the Help Manager to display help:

• ShowHelp
• ShowContextHelp
• ShowTopicHelp
• Hook

Hook is intended entirely for WinHelp compatibility and should not be used in a CLX
application; it allows processing of WM_HELP messages that cannot be mapped
directly onto requests for keyword-based, context-based, or topic-based Help. The
other methods each take two arguments: the keyword, context ID, or topic for which
help is being requested, and the Help file in which it is expected that help can be
found.

5-20 D e v e l o p e r ’ s G u i d e

C u s t o m i z i n g t h e I D E H e l p s y s t e m

In general, unless you are asking for topic-based help, it is equally effective and more
clear to pass help requests to the Help Manager through the InvokeHelp method of
your control.

Customizing the IDE Help system
The Kylix IDE supports multiple Help viewers in exactly the same fashion that a CLX
application does: it delegates Help requests to the Help Manager, which forwards
them to registered Help viewers. The IDE comes with two Help viewers installed: the
HyperHelp viewer, which allows Help requests to be forwarded to HyperHelp, an
external WinHelp emulator under which the Kylix Help files are viewed, and the
Man page viewer, which allows you to access the Man system installed on most Unix
machines. Because it is necessary for Kylix Help to work, the HyperHelp viewer may
not be removed; the Man page viewer ships in a separate package whose source is
available in the examples directory.

To install a new Help viewer in the IDE, you do exactly what you would do in a CLX
application, with one difference. You write an object that implements
ICustomHelpViewer (and, if desired, IExtendedHelpViewer) to forward Help requests to
the external viewer of your choice, and you register the ICustomHelpViewer with the
IDE.

To register a custom Help viewer with the IDE,

1 Make sure that the unit implementing the Help viewer contains HelpIntfs.pas.

2 Build the unit into a design-time package registered with the IDE, and build the
package with runtime packages turned on. (This is necessary to ensure that the
Help Manager instance used by the unit is the same as the Help Manager instance
used by the IDE.)

3 Make sure that the Help viewer exists as a global instance within the unit.

4 In the Register() function of the unit, make sure that the instance is passed to the
function RegisterHelpViewer.

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 6-1

C h a p t e r

6
Chapter6Developing the application user

interface
With Kylix, you design a user interface (UI) by selecting components from the
Component palette and dropping them onto forms. You get it to do what you want
by setting the components’ properties and coding their event handlers.

Controlling application behavior
TApplication, TScreen, and TForm are the classes that form the backbone of all Kylix
applications by controlling the behavior of your project. The TApplication class forms
the foundation of an application by providing properties and methods that
encapsulate the behavior of a standard Linux program. TScreen is used at runtime to
keep track of forms and data modules that have been loaded as well as maintaining
system-specific information, such as screen resolution and available display fonts.
Instances of TForm are the building blocks of your application’s user interface. The
windows and dialog boxes in your application are based on TForm.

Using the main form

TForm is the key class for creating GUI applications. When you open Kylix displaying
a default project or create a new project, a form is displayed for you to begin your UI
design.

The first form you create and save in a project becomes, by default, the project’s main
form, which is the first form created at runtime. As you add forms to your projects,
you might decide to designate a different form as your application’s main form. Also,
specifying a form as the main form is an easy way to test it at runtime, because unless
you change the form creation order, the main form is the first form displayed in the
running application.

6-2 D e v e l o p e r ’ s G u i d e

C o n t r o l l i n g a p p l i c a t i o n b e h a v i o r

To change the project main form,

1 Choose Project|Options and select the Forms page.

2 In the Main Form combo box, select the form you want to use as the project’s main
form and choose OK.

Now if you run the application, the form you selected as the main form is displayed
first.

Adding forms

To add a form to your project, select File|New Form. You can see all your project’s
forms and their associated units listed in the Project Manager (View|Project
Manager) and you can display a list of the forms alone by choosing View|Forms.

Linking forms
Adding a form to a project adds a reference to it in the project file, but not to any
other units in the project. Before you can write code that references the new form,
you need to add a reference to it in the referencing forms’ unit files. This is called form
linking.

A common reason to link forms is to provide access to the components in that form.
For example, you’ll often use form linking to enable a form that contains data-aware
components to connect to the data-access components in a data module.

To link a form to another form,

1 Select the form that needs to refer to another.
2 Choose File|Use Unit.
3 Select the name of the form unit for the form to be referenced.
4 Choose OK.

Linking a form to another just means that the uses clauses of one form unit contains a
reference to the other’s form unit, meaning that the linked form and its components
are now in scope for the linking form.

Avoiding circular unit references
When two forms must reference each other, it’s possible to cause a “Circular
reference” error when you compile your program. To avoid such an error, do one of
the following:

• Place both uses clauses, with the unit identifiers, in the implementation parts of
the respective unit files. (This is what the File|Use Unit command does.)

• Place one uses clause in an interface part and the other in an implementation
part. (You rarely need to place another form’s unit identifier in this unit’s interface
part.)

Do not place both uses clauses in the interface parts of their respective unit files. This
will generate the “Circular reference” error at compile time.

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 6-3

C o n t r o l l i n g a p p l i c a t i o n b e h a v i o r

Hiding the main form

You can prevent the main form from displaying when your application first starts. To
do so, you must use the global Application variable (described in the next topic).

To hide the main form at startup,

1 Choose Project|View Source to display the main project file.

2 Add the following lines after the call to Application.CreateForm and before the call
to Application.Run.

Application.ShowMainForm := False;
Form1.Visible := False; { the name of your main form may differ }

Note You can set the form’s Visible property to False using the Object Inspector at design
time rather than setting it at runtime as shown above.

Working at the application level

The global variable Application, of type TApplication, is in every CLX-based
application. Application encapsulates your application as well as providing many
functions that occur in the background of the program. For instance, Application
would handle how you would call a help file from the menu of your program.
Understanding how TApplication works is more important to a component writer
than to developers of stand-alone applications, but you should set the options that
Application handles in the Project|Options Application page when you create a
project.

In addition, Application receives many events that apply to the application as a whole.
For example, the OnActivate event lets you perform actions when the application first
starts up, the OnIdle event lets you perform background processes when the
application is not busy, the OnEvent event lets you intercept events, and so on.
Although you can’t use the IDE to examine the properties and events of the global
Application variable, another component, TApplicationEvents, intercepts the events
and lets you supply event-handlers using the IDE.

Setting up the look and feel of your application

You can use the TApplication.Style property to specify the general look and feel of an
application's graphical elements. TApplication.Style holds an instance of
TApplicationStyle, which is declared, along with its ancestor TStyle, in QStyle.pas.
TStyle.DefaultStyle can be set to dsMotif or dsWindows. For example, the following
code sets the general look of your application to a Motif style:

Application.Style.DefaultStyle := dsMotif;

Most of TStyle's other properties are custom event handlers that control the drawing
of buttons, track bars, splitters, check boxes, and so on. (You can also control the
individual tabs of a tab control, individual button controls, and individual menu
items.) The CLXStyle sample application shows how to implement custom drawing.

6-4 D e v e l o p e r ’ s G u i d e

U s i n g f o r m s

Handling the screen

A global variable of type TScreen called Screen is created when you create a project.
Screen encapsulates the state of the screen on which your application is running.
Common tasks performed by Screen include specifying

• the look of the cursor
• the size of the window in which your application is running
• a list of fonts available to the screen device

By default, applications create a screen component based on information about the
current screen device and assign it to Screen.

Managing layout

At its simplest, you control the layout of your user interface by where you place
controls in your forms. The placement choices you make are reflected in the control’s
Top, Left, Width, and Height properties. You can change these values at runtime to
change the position and size of the controls in your forms.

Controls have a number of other properties, however, that allow them to
automatically adjust to their contents or containers. This allows you to lay out your
forms so that the pieces fit together into a unified whole.

Two properties affect how a control is positioned and sized in relation to its parent.
The Align property lets you force a control to fit perfectly within its parent along a
specific edge or filling up the entire client area after any other controls have been
aligned. When the parent is resized, the controls aligned to it are automatically
resized and remain positioned so that they fit against a particular edge.

Controls that have contents that can change in size have an AutoSize property that
causes the control to adjust its size to its font or contained objects.

Using forms
When you create a form in Kylix from the IDE, Kylix automatically creates the form
in memory by including code in the main entry point of your application. Usually,
this is the desired behavior and you don’t have to do anything to change it. That is,
the main window persists through the duration of your program, so you would
likely not change the default Kylix behavior when creating the form for your main
window.

However, you may not want all your application’s forms in memory for the duration
of the program execution. That is, if you do not want all your application’s dialogs in
memory at once, you can create the dialogs dynamically when you want them to
appear.

Forms can be modal or modeless. Modal forms are forms with which the user must
interact before switching to another form (for example, a dialog box requiring user

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 6-5

U s i n g f o r m s

input). Modeless forms are windows that are displayed until they are either obscured
by another window or until they are closed or minimized by the user.

Controlling when forms reside in memory

By default, Kylix automatically creates the application’s main form in memory by
including the following code in the application’s project source unit:

Application.CreateForm(TForm1, Form1);

This function creates a global variable with the same name as the form. So, every
form in an application has an associated global variable. This variable is a pointer to
an instance of the form’s class and is used to reference the form while the application
is running. Any unit that includes the form’s unit in its uses clause can access the
form via this variable.

All forms created in this way in the project unit appear when the program is invoked
and exist in memory for the duration of the application.

Displaying an auto-created form
If you choose to create a form at startup and do not want it displayed until sometime
later during program execution, the form’s event handler uses the ShowModal
method to display the form that is already loaded in memory:

procedure TMainForm.Button1Click(Sender: TObject);
begin

ResultsForm.ShowModal;
end;

In this case, since the form is already in memory, there is no need to create another
instance or destroy that instance.

Creating forms dynamically
You may not always want all your application’s forms in memory at once. To reduce
the amount of memory required at load time, you may want to create some forms
only when you need to use them. For example, a dialog box needs to be in memory
only during the time a user interacts with it.

To create a form at a different stage during execution using the IDE, you:

1 Select the File|New Form from the main menu to display the new form.

2 Remove the form from the Auto-create forms list of the Project|Options|Forms
page.

This removes the form’s invocation at startup. As an alternative, you can manually
remove the following line from the project source:

Application.CreateForm(TResultsForm, ResultsForm);

3 Invoke the form when desired by using the form’s Show method, if the form is
modeless, or ShowModal method, if the form is modal.

6-6 D e v e l o p e r ’ s G u i d e

U s i n g f o r m s

An event handler for the main form must create an instance of the result form and
destroy it. One way to invoke the result form is to use the global variable as follows.
Note that ResultsForm is a modal form so the handler uses the ShowModal method.

procedure TMainForm.Button1Click(Sender: TObject);
begin

ResultsForm:=TResultForm.Create(self)
ResultsForm.ShowModal;
ResultsForm.Free;

end;

The event handler in the example deletes the form after it is closed, so the form
would need to be recreated if you needed to use ResultsForm elsewhere in the
application. If the form were displayed using Show you could not delete the form
within the event handler because Show returns while the form is still open.

Note If you create a form using its constructor, be sure to check that the form is not in the
Auto-create forms list on the Project Options|Forms page. Specifically, if you create
the new form without deleting the form of the same name from the list, Kylix creates
the form at startup and this event-handler creates a new instance of the form,
overwriting the reference to the auto-created instance. The auto-created instance still
exists, but the application can no longer access it. After the event-handler terminates,
the global variable no longer points to a valid form. Any attempt to use the global
variable will likely crash the application.

Creating modeless forms such as windows
You must guarantee that reference variables for modeless forms exist for as long as
the form is in use. This means that these variables should have global scope. In most
cases, you use the global reference variable that was created when you made the
form (the variable name that matches the name property of the form). If your
application requires additional instances of the form, declare separate global
variables for each instance.

Using a local variable to create a form instance
A safer way to create a unique instance of a modal form is to use a local variable in the
event handler as a reference to a new instance. If a local variable is used, it does not
matter whether ResultsForm is auto-created or not. The code in the event handler
makes no reference to the global form variable. For example:

procedure TMainForm.Button1Click(Sender: TObject);
var

RF:TResultForm;
begin

RF:=TResultForm.Create(self)
RF.ShowModal;
RF.Free;

end;

Notice how the global instance of the form is never used in this version of the event
handler.

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 6-7

U s i n g f o r m s

Typically, applications use the global instances of forms. However, if you need a new
instance of a modal form, and you use that form in a limited, discrete section of the
application, such as a single function, a local instance is usually the safest and most
efficient way of working with the form.

Of course, you cannot use local variables in event handlers for modeless forms
because they must have global scope to ensure that the forms exist for as long as the
form is in use. Show returns as soon as the form opens, so if you used a local variable,
the local variable would go out of scope immediately.

Passing additional arguments to forms

Typically, you create forms for your application from within the IDE. When created
this way, the forms have a constructor that takes one argument, Owner, which is the
owner of the form being created. (The owner is the calling application object or form
object.) Owner can be nil.

To pass additional arguments to a form, create a separate constructor and instantiate
the form using this new constructor. The example form class below shows an
additional constructor, with the extra argument whichButton. This new constructor is
added to the form class manually.

TResultsForm = class(TForm)
ResultsLabel: TLabel;
OKButton: TButton;
procedure OKButtonClick(Sender: TObject);

private
public

constructor CreateWithButton(whichButton: Integer; Owner: TComponent);
end;

Here’s the manually coded constructor that passes the additional argument,
whichButton. This constructor uses the whichButton parameter to set the Caption
property of a Label control on the form.

constructor CreateWithButton(whichButton: Integer; Owner: TComponent);
begin

case whichButton of
1: ResultsLabel.Caption := 'You picked the first button.';
2: ResultsLabel.Caption := 'You picked the second button.';
3: ResultsLabel.Caption := 'You picked the third button.';

end;
end;

When creating an instance of a form with multiple constructors, you can select the
constructor that best suits your purpose. For example, the following OnClick handler
for a button on a form calls creates an instance of TResultsForm that uses the extra
parameter:

procedure TMainForm.SecondButtonClick(Sender: TObject);
var

rf: TResultsForm;
begin

rf := TResultsForm.CreateWithButton(2, self);

6-8 D e v e l o p e r ’ s G u i d e

U s i n g f o r m s

rf.ShowModal;
rf.Free;

end;

Retrieving data from forms

Most real-world applications consist of several forms. Often, information needs to be
passed between these forms. Information can be passed to a form by means of
parameters to the receiving form’s constructor, or by assigning values to the form’s
properties. The way you get information from a form depends on whether the form is
modal or modeless.

Retrieving data from modeless forms
You can easily extract information from modeless forms by calling public member
functions of the form or by querying properties of the form. For example, assume an
application contains a modeless form called ColorForm that contains a listbox called
ColorListBox with a list of colors (“Red”, “Green”, “Blue”, and so on). The selected
color name string in ColorListBox is automatically stored in a property called
CurrentColor each time a user selects a new color. The class declaration for the form is
as follows:

TColorForm = class(TForm)
ColorListBox:TListBox;
procedure ColorListBoxClick(Sender: TObject);

private
FColor:String;

public
property CurColor:String read FColor write FColor;

end;

The OnClick event handler for the listbox, ColorListBoxClick, sets the value of the
CurrentColor property each time a new item in the listbox is selected. The event
handler gets the string from the listbox containing the color name and assigns it to
CurrentColor. The CurrentColor property uses the setter function, SetColor, to store the
actual value for the property in the private data member FColor:

procedure TColorForm.ColorListBoxClick(Sender: TObject);
var

Index: Integer;
begin

Index := ColorListBox.ItemIndex;
if Index >= 0 then

CurrentColor := ColorListBox.Items[Index]
else

CurrentColor := '';
end;

Now suppose that another form within the application, called ResultsForm, needs to
find out which color is currently selected on ColorForm whenever a button (called
UpdateButton) on ResultsForm is clicked. The OnClick event handler for UpdateButton
might look like this:

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 6-9

U s i n g f o r m s

procedure TResultForm.UpdateButtonClick(Sender: TObject);
var

MainColor: String;
begin

if Assigned(ColorForm) then
begin

MainColor := ColorForm.CurrentColor;
{do something with the string MainColor}

end;
end;

The event handler first verifies that ColorForm exists using the Assigned function. It
then gets the value of ColorForm’s CurrentColor property.

Alternatively, if ColorForm had a public function named GetColor, another form could
get the current color without using the CurrentColor property (for example, MainColor
:= ColorForm.GetColor;). In fact, there’s nothing to prevent another form from getting
the ColorForm’s currently selected color by checking the listbox selection directly:

with ColorForm.ColorListBox do
MainColor := Items[ItemIndex];

However, using a property makes the interface to ColorForm very straightforward
and simple. All a form needs to know about ColorForm is to check the value of
CurrentColor.

Retrieving data from modal forms
Just like modeless forms, modal forms often contain information needed by other
forms. The most common example is form A launches modal form B. When form B is
closed, form A needs to know what the user did with form B to decide how to
proceed with the processing of form A. If form B is still in memory, it can be queried
through properties or member functions just as in the modeless forms example
above. But how do you handle situations where form B is deleted from memory
upon closing? Since a form does not have an explicit return value, you must preserve
important information from the form before it is destroyed.

To illustrate, consider a modified version of the ColorForm form that is designed to be
a modal form. The class declaration is as follows:

TColorForm = class(TForm)
ColorListBox:TListBox;
SelectButton: TButton;
CancelButton: TButton;
procedure CancelButtonClick(Sender: TObject);
procedure SelectButtonClick(Sender: TObject);

private
FColor: Pointer;

public
constructor CreateWithColor(Value: Pointer; Owner: TComponent);

end;

The form has a listbox called ColorListBox with a list of names of colors. When
pressed, the button called SelectButton makes note of the currently selected color

6-10 D e v e l o p e r ’ s G u i d e

U s i n g f o r m s

name in ColorListBox then closes the form. CancelButton is a button that simply closes
the form.

Note that a user-defined constructor was added to the class that takes a Pointer
argument. Presumably, this Pointer points to a string that the form launching
ColorForm knows about. The implementation of this constructor is as follows:

constructor TColorForm(Value: Pointer; Owner: TComponent);
begin

FColor := Value;
String(FColor^) := '';

end;

The constructor saves the pointer to a private data member FColor and initializes the
string to an empty string.

Note To use the above user-defined constructor, the form must be explicitly created. It
cannot be auto-created when the application is started. For details, see “Controlling
when forms reside in memory” on page 6-4.

In the application, the user selects a color from the listbox and presses SelectButton to
save the choice and close the form. The OnClick event handler for SelectButton might
look like this:

procedure TColorForm.SelectButtonClick(Sender: TObject);
begin

with ColorListBox do
if ItemIndex >= 0 then
String(FColor^) := ColorListBox.Items[ItemIndex];

end;
Close;

end;

Notice that the event handler stores the selected color name in the string referenced
by the pointer that was passed to the constructor.

To use ColorForm effectively, the calling form must pass the constructor a pointer to
an existing string. For example, assume ColorForm was instantiated by a form called
ResultsForm in response to a button called UpdateButton on ResultsForm being clicked.
The event handler would look as follows:

procedure TResultsForm.UpdateButtonClick(Sender: TObject);
var

MainColor: String;
begin

GetColor(Addr(MainColor));
if MainColor <> '' then

{do something with the MainColor string}
else

{do something else because no color was picked}
end;

procedure GetColor(PColor: Pointer);
begin

ColorForm := TColorForm.CreateWithColor(PColor, Self);
ColorForm.ShowModal;
ColorForm.Free;

end;

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 6-11

W o r k i n g w i t h f r a m e s

UpdateButtonClick creates a String called MainColor. The address of MainColor is
passed to the GetColor function which creates ColorForm, passing the pointer to
MainColor as an argument to the constructor. As soon as ColorForm is closed it is
deleted, but the color name that was selected is still preserved in MainColor,
assuming that a color was selected. Otherwise, MainColor contains an empty string
which is a clear indication that the user exited ColorForm without selecting a color.

This example uses one string variable to hold information from the modal form. Of
course, more complex objects can be used depending on the need. Keep in mind that
you should always provide a way to let the calling form know if the modal form was
closed without making any changes or selections (such as having MainColor default
to an empty string).

Working with frames
A frame (TFrame), like a form, is a container for other components. It uses the same
ownership mechanism as forms for automatic instantiation and destruction of the
components on it, and the same parent-child relationships for synchronization of
component properties.

In some ways, however, a frame is more like a customized component than a form.
Frames can be saved on the Component palette for easy reuse, and they can be nested
within forms, other frames, or other container objects. After a frame is created and
saved, it continues to function as a unit and to inherit changes from the components
(including other frames) it contains. When a frame is embedded in another frame or
form, it continues to inherit changes made to the frame from which it derives.

Frames are useful to organize groups of controls that are used in multiple places in
your application. For example, if you have a bitmap that is used on multiple forms,
you can put it in a frame and only one copy of that bitmap is included in the
resources of your application. You could also describe a set of edit fields that are
intended to edit a table with a frame and use that whenever you want to enter data
into the table.

Creating frames

To create an empty frame, choose File|New Frame, or choose File|New and double-
click on Frame. You can then drop components (including other frames) onto your
new frame.

It is usually best—though not necessary—to save frames as part of a project. If you
want to create a project that contains only frames and no forms, choose File|New
Application, close the new form and unit without saving them, then choose File|
New Frame and save the project.

Note When you save frames, avoid using the default names Unit1, Project1, and so forth,
since these are likely to cause conflicts when you try to use the frames later.

At design time, you can display any frame included in the current project by
choosing View|Forms and selecting a frame. As with forms and data modules, you

6-12 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h f r a m e s

can toggle between the Form Designer and the frame’s form file by right-clicking and
choosing View as Form or View as Text.

Adding frames to the Component palette
Frames are added to the Component palette as component templates. To add a frame
to the Component palette, open the frame in the Form Designer (you cannot use a
frame embedded in another component for this purpose), right-click on the frame,
and choose Add to Palette. When the Component Template Information dialog
opens, select a name, palette page, and icon for the new template.

Using and modifying frames

To use a frame in an application, you must place it, directly or indirectly, on a form.
You can add frames directly to forms, to other frames, or to other container objects
such as panels and scroll boxes.

The Form Designer provides two ways to add a frame to an application:

• Select a frame from the Component palette and drop it onto a form, another frame,
or another container object. If necessary, the Form Designer asks for permission to
include the frame’s unit file in your project.

• Select Frames from the Standard page of the Component palette and click on a
form or another frame. A dialog appears with a list of frames that are already
included in your project; select one and click OK.

When you drop a frame onto a form or other container, Kylix declares a new class
that descends from the frame you selected. (Similarly, when you add a new form to a
project, Kylix declares a new class that descends from TForm.) This means that
changes made later to the original (ancestor) frame propagate to the embedded
frame, but changes to the embedded frame do not propagate backward to the
ancestor.

Suppose, for example, that you wanted to assemble a group of data-access
components and data-aware controls for repeated use, perhaps in more than one
application. One way to accomplish this would be to collect the components into a
component template; but if you started to use the template and later changed your
mind about the arrangement of the controls, you would have to go back and
manually alter each project where the template was placed.

If, on the other hand, you put your database components into a frame, later changes
would need to be made in only one place; changes to an original frame automatically
propagate to its embedded descendants when your projects are recompiled. At the
same time, you are free to modify any embedded frame without affecting the original
frame or other embedded descendants of it. The only limitation on modifying
embedded frames is that you cannot add components to them.

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 6-13

U s i n g a c t i o n l i s t s

Figure 6.1 A frame with data-aware controls and a data source component

In addition to simplifying maintenance, frames can help you to use resources more
efficiently. For example, to use a bitmap or other graphic in an application, you might
load the graphic into the Picture property of a TImage control. If, however, you use
the same graphic repeatedly in one application, each Image object you place on a
form will result in another copy of the graphic being added to the form’s resource
file. (This is true even if you set TImage.Picture once and save the Image control as a
component template.) A better solution is to drop the Image object onto a frame, load
your graphic into it, then use the frame where you want the graphic to appear. This
results in smaller form files and has the added advantage of letting you change the
graphic everywhere it occurs simply by modifying the Image on the original frame.

Sharing frames

You can share a frame with other developers in two ways:

• Add the frame to the Object Repository.
• Distribute the frame’s unit (.pas) and form (.xfm) files.

To add a frame to the Repository, open any project that includes the frame, right-
click in the Form Designer, and choose Add to Repository. For more information, see
“Using the Object Repository” on page 2-35.

If you send a frame’s unit and form files to other developers, they can open them and
add them to the Component palette. If the frame has other frames embedded in it, the
frame must be opened as part of a project in order to add it to the palette.

Using action lists
Action lists maintain a list of actions that your application can take in response to
something a user does. By using action objects, you centralize the functions
performed by your application from the user interface. This lets you share common
code for performing actions (for example, when a toolbar button and menu item do
the same thing), as well as providing a single, centralized way to enable and disable
actions depending on the state of your application.

6-14 D e v e l o p e r ’ s G u i d e

U s i n g a c t i o n l i s t s

What is an action?

An action corresponds to one or more elements of the user interface, such as menu
commands or toolbar buttons. Actions serve two functions: (1) they represent
properties common to the user interface elements, such as whether a control is
enabled or checked, and (2) they respond when a control fires, for example, when the
application user clicks a button or chooses a menu item.

Actions are associated with other components:

• Clients: One or more clients use the action. The client most often represents a
menu item or a button (for example, TToolButton, TSpeedButton, TMenuItem,
TButton, TCheckBox, TRadioButton, and so on). When the client receives a user
command (such as a mouse click), it initiates an associated action. Typically, a
client’s OnClick event is associated with its action’s Execute event.

• Target: The action acts on the target. The target is usually a control, such as a
memo or a data control. Component writers can create actions specific to the needs
of the controls they design and use, and then package those units to create more
modular applications. Not all actions use a target. For example, the standard help
actions ignore the target and simply launch the help system.

A target can also be a component. For example, data controls change the target to
an associated dataset.

The client influences the action—the action responds when a client fires the action.
The action also influences the client—action properties dynamically update the client
properties. For example, if at runtime an action is disabled (by setting its Enabled
property to False), every client of that action is disabled, appearing grayed.

You add, delete, and rearrange actions using the Action List editor (displayed by
double-clicking an action list object). These actions are later connected to client
controls.

Setting up action lists

Setting up action lists is fairly easy once you understand the basic steps involved:

• Create the action list.
• Add actions to the action list.
• Set properties on the actions.
• Attach clients to the action.

Here are the steps in more detail:

1 Drop a TActionList object onto your form or data module. (ActionList is on the
Standard page of the component palette.)

2 Double-click the TActionList object to display the Action List editor.

a Use one of the predefined actions listed in the editor: right-click and choose
New Standard Action.

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 6-15

U s i n g a c t i o n l i s t s

b The predefined actions are organized into categories (such as Dataset, Edit,
Help, and Window) in the Standard Actions dialog box. Select all the standard
actions you want to add to the action list and click OK.

or

c Create a new action of your own: right-click and choose New Action.

3 Set the properties of each action in the Object Inspector. (The properties you set
affect every client of the action.)

The Name property identifies the action, and the other properties and events
(Caption, Checked, Enabled, HelpContext, Hint, ImageIndex, ShortCut, Visible, and
Execute) correspond to the properties and events of its client controls. The client’s
corresponding properties are typically, but not necessarily, the same name as the
corresponding client property. For example, an action’s Enabled property
corresponds to a TToolButton’s Enabled property. However, an action’s Checked
property corresponds to a TToolButton’s Down property.

4 If you use the predefined actions, the action includes a standard response that
occurs automatically. If creating your own action, you need to write an event
handler that defines how the action responds when fired. See “What happens
when an action fires” on page 6-15 for details.

5 Attach the actions in the action list to the clients that require them:

• Click on the control (such as the button or menu item) on the form or data
module. In the Object Inspector, the Action property lists the available actions.

• Select the one you want.

The standard actions, such as TEditDelete or TDataSetPost, all perform the action you
would expect. You can look at the online reference Help for details on how all of the
standard actions work if you need to. If writing your own actions, you’ll need to
understand more about what happens when the action is fired.

What happens when an action fires

When an event fires, a series of events intended primarily for generic actions occurs.
Then if the event doesn’t handle the action, another sequence of events occurs.

Responding with events
When a client component or control is clicked or otherwise acted on, a series of
events occurs to which you can respond. For example, the following code illustrates
the event handler for an action that toggles the visibility of a toolbar when the action
is executed:

procedure TForm1.Action1Execute(Sender: TObject);
begin

{ Toggle Toolbar1’s visibility }
ToolBar1.Visible := not ToolBar1.Visible;

end;

6-16 D e v e l o p e r ’ s G u i d e

U s i n g a c t i o n l i s t s

Note For general information about events and event handlers, see “Working with events
and event handlers” on page 2-24.

You can supply an event handler that responds at one of three different levels: the
action, the action list, or the application. This is only a concern if you are using a new
generic action rather than a predefined standard action. You do not have to worry
about this if using the standard actions because standard actions have built-in
behavior that executes when these events occur.

The order in which the event handlers will respond to events is as follows:

• Action list
• Application
• Action

When the user clicks on a client control, Kylix calls the action's Execute method
which defers first to the action list, then the Application object, then the action itself if
neither action list nor Application handles it. To explain this in more detail, Kylix
follows this dispatching sequence when looking for a way to respond to the user
action:

1 If you supply an OnExecute event handler for the action list and it handles the
action, the application proceeds.

The action list’s event handler has a parameter called Handled, that returns False by
default. If the handler is assigned and it handles the event, it returns True, and the
processing sequence ends here. For example:

procedure TForm1.ActionList1ExecuteAction(Action: TBasicAction; var Handled: Boolean);
begin

Handled := True;
end;

If you don’t set Handled to True in the action list event handler, then processing
continues.

2 If you did not write an OnExecute event handler for the action list or if the event
handler doesn’t handle the action, the application’s OnActionExecute event handler
fires. If it handles the action, the application proceeds.

The global Application object receives an OnActionExecute event if any action list in
the application fails to handle an event. Like the action list’s OnExecute event
handler, the OnActionExecute handler has a parameter Handled that returns False
by default. If an event handler is assigned and handles the event, it returns True,
and the processing sequence ends here. For example:

procedure TForm1.ApplicationExecuteAction(Action: TBasicAction; var Handled: Boolean);
begin

{ Prevent execution of all actions in Application }
Handled := True;

end;

3 If the application’s OnExecute event handler doesn’t handle the action, the action’s
OnExecute event handler fires.

You can use built-in actions or create your own action classes that know how to
operate on specific target classes (such as edit controls). When no event handler is

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 6-17

U s i n g a c t i o n l i s t s

found at any level, the application next tries to find a target on which to execute the
action. When the application locates a target that the action knows how to address, it
invokes the action. See “How actions find their targets” on page 6-17 for details on
how the application locates a target that can respond to a predefined action class.

How actions find their targets
“What happens when an action fires” on page 6-15 describes the execution cycle that
occurs when a user invokes an action. If no event handler is assigned to respond to
the action, either at the action list, application, or action level, then the application
tries to identify a target object to which the action can apply itself.

The application looks for the target using the following sequence:

1 Active control: The application looks first for an active control as a potential target.

2 Active form: If the application does not find an active control or if the active
control can’t act as a target, it looks at the screen’s ActiveForm.

3 Controls on the form: If the active form is not an appropriate target, the
application looks at the other controls on the active form for a target.

If no target is located, nothing happens when the event is fired.

Some controls can expand the search to defer the target to an associated component;
for example, data-aware controls defer to the associated dataset component. Also,
some predefined actions do not use a target; for example, the File Open dialog.

Updating actions

When the application is idle, the OnUpdate event occurs for every action that is linked
to a control or menu item that is showing. This provides an opportunity for
applications to execute centralized code for enabling and disabling, checking and
unchecking, and so on. For example, the following code illustrates the OnUpdate
event handler for an action that is “checked” when the toolbar is visible:

procedure TForm1.Action1Update(Sender: TObject);
begin

{ Indicate whether ToolBar1 is currently visible }
(Sender as TAction).Checked := ToolBar1.Visible;

end;

Warning Do not add time-intensive code to the OnUpdate event handler. This executes
whenever the application is idle. If the event handler takes too much time, it will
adversely affect performance of the entire application.

6-18 D e v e l o p e r ’ s G u i d e

U s i n g a c t i o n l i s t s

Predefined action classes

The Action List editor lets you use predefined action classes that automatically
perform actions. The predefined actions fall into the following categories:

All of the action objects are described under the action object names in the online
reference Help. Refer to the Help for details on how they work.

Writing action components

You can also create your own predefined action classes. When you write your own
action classes, you can build in the ability to execute on certain target classes of
object. Then, you can use your custom actions in the same way you use pre-defined
action classes. That is, when the action can recognize and apply itself to a target class,
you can simply assign the action to a client control, and it acts on the target with no
need to write an event handler.

Component writers can use the classes in the QStdActns and DBActns units as
examples for deriving their own action classes to implement behaviors specific to
certain controls or components. The base classes for these specialized actions
(TEditAction, TWindowAction, and so on) generally override HandlesTarget,
UpdateTarget, and other methods to limit the target for the action to a specific class of

Table 6.1 Action categories

Category Description

Standard edit actions Used with an edit control target. TEditAction is the base class for
descendants that each override the ExecuteTarget method to implement
copy, cut, and paste tasks by using the clipboard.

Standard window
actions

Used with forms as targets in an MDI application. TWindowAction is the
base class for descendants that each override the ExecuteTarget method to
implement arranging, cascading, closing, tiling, and minimizing MDI
child forms.

Standard Help actions Used with any target. THelpAction is the base class for descendants that
each override the ExecuteTarget method to pass the command onto a
Help system.

DataSet actions Used with a dataset component target. TDataSetAction is the base class
for descendants that each override the ExecuteTarget and UpdateTarget
methods to implement navigation and editing of the target.
TDataSetAction introduces a DataSource property that ensures actions are
performed on that dataset. If DataSource is nil, the currently focused
data-aware control is used.

Dialog actions Used with dialog components. TDialogAction implements the common
behavior for actions that display a dialog when executed. Each
descendant class represents a specific dialog.

File actions Used with operations on files such as File Open or File Exit.

Search actions Used with search options. TSearchAction implements the common
behavior for actions that display a modeless dialog where the user can
enter a search string for searching an edit control.

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 6-19

C r e a t i n g a n d m a n a g i n g m e n u s

objects. The descendant classes typically override ExecuteTarget to perform a
specialized task. These methods are described here:

Registering actions

When you write your own actions, you can register actions to enable them to appear
in the Action List editor. You register and unregister actions by using the global
routines in the Actnlist unit:

procedure RegisterActions(const CategoryName: string; const AClasses: array of
TBasicActionClass; Resource: TComponentClass);

procedure UnRegisterActions(const AClasses: array of TBasicActionClass);

When you call RegisterActions, the actions you register appear in the Action List
editor for use by your applications. You can supply a category name to organize your
actions, as well as a Resource parameter that lets you supply default property values.

For example, the following code registers the standard actions with the IDE:

{ Standard action registration }

RegisterActions('', [TAction], nil);

RegisterActions('Edit', [TEditCut, TEditCopy, TEditPaste], TStandardActions);

RegisterActions('Window', [TWindowClose, TWindowCascade, TWindowTileHorizontal,
TWindowTileVertical, TWindowMinimizeAll, TWindowArrange], TStandardActions);

When you call UnRegisterActions, the actions no longer appear in the Action List
editor.

Creating and managing menus
Menus provide an easy way for your users to execute logically grouped commands.
The Menu Designer enables you to easily add a menu—either predesigned or custom
tailored—to your form. You add a menu component to the form, open the Menu
Designer, and type menu items directly into the Menu Designer window. You can
add or delete menu items, or drag and drop them to rearrange them during design
time.

Method Description

HandlesTarget Called automatically when the user invokes an object (such as a toolbutton
or menu item) that is linked to the action. The HandlesTarget method lets the
action object indicate whether it is appropriate to execute at this time with
the object specified by the Target parameter as a "target". See “How actions
find their targets” on page 6-17 for details.

UpdateTarget Called automatically when the application is idle so that actions can update
themselves according to current conditions. Use in place of OnUpdateAction.
See “Updating actions” on page 6-17 for details.

ExecuteTarget Called automatically when the action fires in response to a user action in
place of OnExecute (for example, when the user selects a menu item or
presses a tool button that is linked to this action). See “What happens when
an action fires” on page 6-15 for details.

6-20 D e v e l o p e r ’ s G u i d e

C r e a t i n g a n d m a n a g i n g m e n u s

You don't even need to run your program to see the results—your design is
immediately visible in the form, appearing just as it will during runtime. Your code
can also change menus at runtime, to provide more information or options to the
user.

This chapter explains how to use the Menu Designer to design menu bars and pop-
up (local) menus. It discusses the following ways to work with menus at design time
and runtime:

• Opening the Menu Designer
• Building menus
• Editing menu items in the Object Inspector
• Using the Menu Designer context menu
• Using menu templates
• Saving a menu as a template
• Adding images to menu items

Figure 6.2 Menu terminology

For information about hooking up menu items to the code that executes when they
are selected, see “Associating menu events with event handlers” on page 2-26.

Designing menus

You design menus using the Menu Designer. Before you can start using the Menu
Designer, first add either a TMainMenu or TPopupMenu component to your form.
Both menu components are located on the Standard page of the Component palette.

Figure 6.3 MainMenu and PopupMenu components

A MainMenu component creates a menu that’s attached to the form’s title bar. A
PopupMenu component creates a menu that appears when the user right-clicks in
the form. Pop-up menus do not have a menu bar.

To open the Menu Designer, select a menu component on the form, and then either

• Double-click the menu component.

or

• From the Properties page of the Object Inspector, select the Items property, and
then either double-click [Menu] in the Value column, or click the ellipsis (...)
button.

Accelerator key

Separator bar

Menu items on the menu bar

Menu items in a menu list

Keyboard shortcut

MainMenu component

PopupMenu component

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 6-21

C r e a t i n g a n d m a n a g i n g m e n u s

The Menu Designer is displayed with the first (blank) menu item highlighted in the
Designer, and the Caption property selected in the Object Inspector.

Figure 6.4 Menu Designer for a pop-up menu

Figure 6.5 Menu Designer for a main menu

Placeholder for first
menu item

Title bar (shows Name property
for Menu component)

Menu bar

Placeholder for
menu item

Menu Designer displays WYSIWYG
menu items as you build the menu.

A TMenuItem object is created and the
Name property set to the menu item
Caption you specify (minus any illegal
characters and plus a numeric suffix).

6-22 D e v e l o p e r ’ s G u i d e

C r e a t i n g a n d m a n a g i n g m e n u s

Building menus

You add a menu component to your form, or forms, for every menu you want to
include in your application. You can build each menu structure entirely from scratch,
or you can start from one of the predesigned menu templates.

This section discusses the basics of creating a menu at design time. For more
information about menu templates, see “Using menu templates” on page 6-24.

Naming menus
As with all components, when you add a menu component to the form, Kylix gives it
a default name; for example, MainMenu1. You can give the menu a more meaningful
name that follows Object Pascal naming conventions.

Kylix adds the menu name to the form’s type declaration, and the menu name then
appears in the Component list.

Naming the menu items
In contrast to the menu component itself, you need to explicitly name menu items as
you add them to the form. You can do this in one of two ways:

• Directly type the value for the Name property.

• Type the value for the Caption property first, and let Kylix derive the Name
property from the caption.

For example, if you give a menu item a Caption property value of File, Kylix
assigns the menu item a Name property of File1. If you fill in the Name property
before filling in the Caption property, Kylix leaves the Caption property blank until
you type a value.

Note If you enter characters in the Caption property that are not valid for Object Pascal
identifiers, Kylix modifies the Name property accordingly. For example, if you
want the caption to start with a number, Kylix precedes the number with a
character to derive the Name property.

The following table demonstrates some examples of this, assuming all menu items
shown appear in the same menu bar.

Table 6.2 Sample captions and their derived names

Component caption Derived name Explanation

&File File1 Removes ampersand

&File (2nd occurrence) File2 Numerically orders duplicate items

1234 N12341 Adds a preceding letter and numerical order

1234 (2nd occurrence) N12342 Adds a number to disambiguate the derived name

$@@@# N1 Removes all non-standard characters, adding
preceding letter and numerical order

- (hyphen) N2 Numerical ordering of second occurrence of
caption with no standard characters

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 6-23

C r e a t i n g a n d m a n a g i n g m e n u s

As with the menu component, Kylix adds any menu item names to the form’s type
declaration, and those names then appear in the component list.

Adding, inserting, and deleting menu items
The following procedures describe how to perform the basic tasks involved in
building your menu structure. Each procedure assumes you have the Menu Designer
window open.

To add menu items at design time,

1 Select the position where you want to create the menu item.

If you’ve just opened the Menu Designer, the first position on the menu bar is
already selected.

2 Begin typing to enter the caption. Or enter the Name property first by specifically
placing your cursor in the Object Inspector and entering a value. In this case, you
then need to reselect the Caption property and enter a value.

3 Press Enter.

The next placeholder for a menu item is selected.

If you entered the Caption property first, use the arrow keys to return to the menu
item you just entered. You’ll see that Kylix has filled in the Name property based
on the value you entered for the caption. (See “Naming the menu items” on
page 6-18.)

4 Continue entering values for the Name and Caption properties for each new item
you want to create, or press Esc to return to the menu bar.

Use the arrow keys to move from the menu bar into the menu, and to then move
between items in the list; press Enter to complete an action. To return to the menu
bar, press Esc.

To insert a new, blank menu item,

1 Place the cursor on a menu item.
2 Press Ins.

Menu items are inserted to the left of the selected item on the menu bar, and above
the selected item in the menu list.

To delete a menu item or command,

1 Place the cursor on the menu item you want to delete.
2 Press Del.

Note You cannot delete the default placeholder that appears below the item last entered in
a menu list, or next to the last item on the menu bar. This placeholder does not
appear in your menu at runtime.

6-24 D e v e l o p e r ’ s G u i d e

C r e a t i n g a n d m a n a g i n g m e n u s

Adding separator bars
- Separator bars insert a line between menu items. You can use separator bars to

indicate groupings within the menu list, or simply to provide a visual break in a
list.

To make the menu item a separator bar, type a hyphen (-) for the caption.

Specifying accelerator keys and keyboard shortcuts
Accelerator keys enable the user to access a menu command from the keyboard by
pressing Alt+ the appropriate letter, indicated in your code by the preceding
ampersand. The letter after the ampersand appears underlined in the menu.

Kylix automatically checks for duplicate accelerators and adjusts them at runtime.
This ensures that menus built dynamically at runtime contain no duplicate
accelerators and that all menu items have an accelerator.

To specify an accelerator,

• Add an ampersand in front of the appropriate letter.

For example, to add a Save menu command with the S as an accelerator key, type
&Save.

Keyboard shortcuts enable the user to perform the action without using the menu
directly, by typing in the shortcut key combination.

To specify a keyboard shortcut,

• Use the Object Inspector to enter a value for the ShortCut property, or select a key
combination from the drop-down list.

This list is only a subset of the valid combinations you can type in.

When you add a shortcut, it appears next to the menu item caption.

Caution Keyboard shortcuts, unlike accelerator keys, are not checked automatically for
duplicates. You must ensure uniqueness yourself.

Creating submenus
Many application menus contain drop-down lists that appear next to a menu item to
provide additional, related commands. Such lists are indicated by an arrow to the
right of the menu item. Kylix supports as many levels of such submenus as you want
to build into your menu.

Organizing your menu structure this way can save vertical screen space. However,
for optimal design purposes you probably want to use no more than two or three
menu levels in your interface design. (For pop-up menus, you might want to use only
one submenu, if any.)

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 6-25

C r e a t i n g a n d m a n a g i n g m e n u s

Figure 6.6 Nested menu structures

To create a submenu,

1 Select the menu item under which you want to create a submenu.

2 Press Ctrl→ to create the first placeholder, or right-click and choose Create
Submenu.

3 Type a name for the submenu item, or drag an existing menu item into this
placeholder.

4 Press Enter, or ↓, to create the next placeholder.

5 Repeat steps 3 and 4 for each item you want to create in the submenu.

6 Press Esc to return to the previous menu level.

Creating submenus by demoting existing menus
You can create a submenu by inserting a menu item from the menu bar (or a menu
template) between menu items in a list. When you move a menu into an existing
menu structure, all its associated items move with it, creating a fully intact submenu.
This pertains to submenus as well—moving a menu item into an existing submenu
just creates one more level of nesting.

Moving menu items
During design time, you can move menu items simply by dragging and dropping.
You can move menu items along the menu bar, or to a different place in the menu
list, or into a different menu entirely.

The only exception to this is hierarchical: you cannot demote a menu item from the
menu bar into its own menu; nor can you move a menu item into its own submenu.
However, you can move any item into a different menu, no matter what its original
position is.

While you are dragging, the cursor changes shape to indicate whether you can
release the menu item at the new location. When you move a menu item, any items
beneath it move as well.

To move a menu item along the menu bar,

1 Drag the menu item along the menu bar until the arrow tip of the drag cursor
points to the new location.

Menu item on
the menu bar

Menu item in
a menu list

Nested
menu item

6-26 D e v e l o p e r ’ s G u i d e

C r e a t i n g a n d m a n a g i n g m e n u s

2 Release the mouse button to drop the menu item at the new location.

To move a menu item into a menu list,

1 Drag the menu item along the menu bar until the arrow tip of the drag cursor
points to the new menu.

This causes the menu to open, enabling you to drag the item to its new location.

2 Drag the menu item into the list, releasing the mouse button to drop the menu
item at the new location.

Adding images to menu items
Images can help users navigate in menus by matching glyphs and images to menu
item action, similar to toolbar images. You can add single bitmaps to menu items, or
you can organize images for your application into an image list and add them to a
menu from the image list. If you’re using several bitmaps of the same size in your
application, it’s useful to put them into an image list.

To add a single image to a menu or menu item, set its Bitmap property to reference
the name of the bitmap to use on the menu or menu item.

To add images to menu items using an image list:

1 Drop a TMainMenu or TPopupMenu object on a form.

2 Drop a TImageList object on the form.

3 Open the ImageList editor by double clicking on the TImageList object.

4 Click Add to select the bitmap or bitmap group you want to use in the menu. Click
OK.

5 Set the TMainMenu or TPopupMenu object’s Images property to the ImageList you
just created.

6 Create your menu items and submenu items as described previously.

7 Select the menu item you want to have an image in the Object Inspector and set the
ImageIndex property to the corresponding number of the image in the ImageList
(the default value for ImageIndex is -1, which doesn’t display an image).

Note Use images that are 16 by 16 pixels for proper display in the menu. Although you can
use other sizes for the menu images, alignment and consistency problems may result
when using images greater than or smaller than 16 by 16 pixels.

Viewing the menu
You can view your menu in the form at design time without first running your
program code. (Pop-up menu components are visible in the form at design time, but
the pop-up menus themselves are not. Use the Menu Designer to view a pop-up
menu at design time.)

To view the menu,

1 If the form is visible, click the form, or from the View menu, choose the form
whose menu you want to view.

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 6-27

C r e a t i n g a n d m a n a g i n g m e n u s

2 If the form has more than one menu, select the menu you want to view from the
form’s Menu property drop-down list.

The menu appears in the form exactly as it will when you run the program.

Editing menu items in the Object Inspector

This section has discussed how to set several properties for menu items—for
example, the Name and Caption properties—by using the Menu Designer.

The section has also described how to set menu item properties, such as the ShortCut
property, directly in the Object Inspector, just as you would for any component
selected in the form.

When you edit a menu item by using the Menu Designer, its properties are still
displayed in the Object Inspector. You can switch focus to the Object Inspector and
continue editing the menu item properties there. Or you can select the menu item
from the Component list in the Object Inspector and edit its properties without ever
opening the Menu Designer.

To close the Menu Designer window and continue editing menu items,

1 Switch focus from the Menu Designer window to the Object Inspector by clicking
the properties page of the Object Inspector.

2 Close the Menu Designer as you normally would.

The focus remains in the Object Inspector, where you can continue editing
properties for the selected menu item. To edit another menu item, select it from the
Component list.

Using the Menu Designer context menu

The Menu Designer context menu provides quick access to the most common Menu
Designer commands, and to the menu template options. (For more information about
menu templates, refer to “Using menu templates” on page 6-24.)

To display the context menu, right-click the Menu Designer window, or press Alt+F10
when the cursor is in the Menu Designer window.

Commands on the context menu
The following table summarizes the commands on the Menu Designer context menu.

Table 6.3 Menu Designer context menu commands

Menu command Action

Insert Inserts a placeholder above or to the left of the cursor.

Delete Deletes the selected menu item (and all its sub-items, if any).

Create Submenu Creates a placeholder at a nested level and adds an arrow to the right of
the selected menu item.

6-28 D e v e l o p e r ’ s G u i d e

C r e a t i n g a n d m a n a g i n g m e n u s

Switching between menus at design time
If you’re designing several menus for your form, you can use the Menu Designer
context menu or the Object Inspector to easily select and move among them.

To use the context menu to switch between menus in a form,

1 Right-click in the Menu Designer and choose Select Menu.

The Select Menu dialog box appears.

Figure 6.7 Select Menu dialog box

This dialog box lists all the menus associated with the form whose menu is
currently open in the Menu Designer.

2 From the list in the Select Menu dialog box, choose the menu you want to view or
edit.

To use the Object Inspector to switch between menus in a form,

1 Give focus to the form whose menus you want to choose from.

2 From the Component list, select the menu you want to edit.

3 On the Properties page of the Object Inspector, select the Items property for this
menu, and then either click the ellipsis button, or double-click [Menu].

Select Menu Opens a list of menus in the current form. Double-clicking a menu name
opens the designer window for the menu.

Save As Template Opens the Save Template dialog box, where you can save a menu for
future reuse.

Insert From
Template

Opens the Insert Template dialog box, where you can select a template to
reuse.

Delete Templates Opens the Delete Templates dialog box, where you can choose to delete
any existing templates.

Insert From
Resource

Opens the Insert Menu from Resource file dialog box, where you can
choose an .mnu file to open in the current form.

Table 6.3 Menu Designer context menu commands (continued)

Menu command Action

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 6-29

C r e a t i n g a n d m a n a g i n g m e n u s

Using menu templates

Kylix provides several predesigned menus, or menu templates, that contain
frequently used commands. You can use these menus in your applications without
modifying them (except to write code), or you can use them as a starting point,
customizing them as you would a menu you originally designed yourself. Menu
templates do not contain any event handler code.

The menu templates shipped with Kylix are stored in delphi60dmt in the .borland
directory in a default installation.

You can also save as a template any menu that you design using the Menu Designer.
After saving a menu as a template, you can use it as you would any predesigned
menu. If you decide you no longer want a particular menu template, you can delete it
from the list.

To add a menu template to your application,

1 Right-click the Menu Designer and choose Insert From Template.

(If there are no templates, the Insert From Template option appears dimmed in the
context menu.)

The Insert Template dialog box opens, displaying a list of available menu
templates.

Figure 6.8 Sample Insert Template dialog box for menus

2 Select the menu template you want to insert, then press Enter or choose OK.

This inserts the menu into your form at the cursor’s location. For example, if your
cursor is on a menu item in a list, the menu template is inserted above the selected
item. If your cursor is on the menu bar, the menu template is inserted to the left of
the cursor.

To delete a menu template,

1 Right-click the Menu Designer and choose Delete Templates.

(If there are no templates, the Delete Templates option appears dimmed in the
context menu.)

The Delete Templates dialog box opens, displaying a list of available templates.

6-30 D e v e l o p e r ’ s G u i d e

C r e a t i n g a n d m a n a g i n g m e n u s

2 Select the menu template you want to delete, and press Del.

Kylix deletes the template from the templates list and from your hard disk.

Saving a menu as a template

Any menu you design can be saved as a template so you can use it again. You can use
menu templates to provide a consistent look to your applications, or use them as a
starting point which you then further customize.

The menu templates you save are stored in the .borland directory in the delphi60dmt
file.

To save a menu as a template,

1 Design the menu you want to be able to reuse.

This menu can contain as many items, commands, and submenus as you like;
everything in the active Menu Designer window will be saved as one reusable
menu.

2 Right-click in the Menu Designer and choose Save As Template.

The Save Template dialog box appears.

Figure 6.9 Save Template dialog box for menus

3 In the Template Description edit box, type a brief description for this menu, and
then choose OK.

The Save Template dialog box closes, saving your menu design and returning you
to the Menu Designer window.

Note The description you enter is displayed only in the Save Template, Insert Template,
and Delete Templates dialog boxes. It is not related to the Name or Caption property
for the menu.

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 6-31

D e s i g n i n g t o o l b a r s

Naming conventions for template menu items and event handlers
When you save a menu as a template, Kylix does not save its Name property, since
every menu must have a unique name within the scope of its owner (the form).
However, when you insert the menu as a template into a new form by using the
Menu Designer, Kylix then generates new names for it and all of its items.

For example, suppose you save a File menu as a template. In the original menu, you
name it MyFile. If you insert it as a template into a new menu, Kylix names it File1. If
you insert it into a menu with an existing menu item named File1, Kylix names it
File2.

Kylix also does not save any OnClick event handlers associated with a menu saved as
a template, since there is no way to test whether the code would be applicable in the
new form. When you generate a new event handler for the menu template item,
Kylix still generates the event handler name. You can associate items in the menu
template with existing OnClick event handlers in the form.

Manipulating menu items at runtime

Sometimes you want to add menu items to an existing menu structure while the
application is running, to provide more information or options to the user. You can
insert a menu item by using the menu item’s Add or Insert method, or you can
alternately hide and show the items in a menu by changing their Visible property.
The Visible property determines whether the menu item is displayed in the menu. To
dim a menu item without hiding it, use the Enabled property.

For examples that use the menu item’s Visible and Enabled properties, see “Disabling
menu items” on page 7-4.

Designing toolbars
A toolbar is a panel, usually across the top of a form (under the menu bar), that holds
buttons and other controls. You can put controls of any sort on a toolbar. In addition
to buttons, you may want to put use color grids, scroll bars, labels, and so on.

There are several ways to add a toolbar to a form:

• Place a panel (TPanel) on the form and add controls (typically speed buttons) to it.

• Use a toolbar component (TToolBar) instead of TPanel, and add controls to it.
TToolBar manages buttons and other controls, arranging them in rows and
automatically adjusting their sizes and positions. If you use tool button
(TToolButton) controls on the toolbar, TToolBar makes it easy to group the buttons
functionally and provides other display options.

How you implement your toolbar depends on your application. The advantage of
using the Panel component is that you have total control over the look and feel of the
toolbar.

6-32 D e v e l o p e r ’ s G u i d e

D e s i g n i n g t o o l b a r s

By using the toolbar component, you are ensuring that your application has a
consistent look and feel. If these operating system controls change in the future, your
application could change as well.

The following sections describe how to

• Add a toolbar and corresponding speed button controls using the panel
component

• Add a toolbar and corresponding tool button controls using the Toolbar
component

• Respond to clicks
• Add hidden toolbars
• Hide and show toolbars

Adding a toolbar using a panel component

To add a toolbar to a form using the panel component,

1 Add a panel component to the form (from the Standard page of the Component
palette).

2 Set the panel’s Align property to alTop. When aligned to the top of the form, the
panel maintains its height, but matches its width to the full width of the form’s
client area, even if the window changes size.

3 Add speed buttons or other controls to the panel.

Speed buttons are designed to work on toolbar panels. A speed button usually has no
caption, only a small graphic (called a glyph), which represents the button’s function.

Speed buttons have three possible modes of operation. They can

• Act like regular pushbuttons
• Toggle on and off when clicked
• Act like a set of radio buttons

To implement speed buttons on toolbars, do the following:

• Add a speed button to a toolbar panel
• Assign a speed button’s glyph
• Set the initial condition of a speed button
• Create a group of speed buttons
• Allow toggle buttons

Adding a speed button to a panel
To add a speed button to a toolbar panel, place the speed button component (from the
Additional page of the Component palette) on the panel.

The panel, rather than the form, “owns” the speed button, so moving or hiding the
panel also moves or hides the speed button.

The default height of the panel is 41, and the default height of speed buttons is 25. If
you set the Top property of each button to 8, they’ll be vertically centered. The default
grid setting snaps the speed button to that vertical position for you.

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 6-33

D e s i g n i n g t o o l b a r s

Assigning a speed button’s glyph
Each speed button needs a graphic image called a glyph to indicate to the user what
the button does. If you supply the speed button only one image, the button
manipulates that image to indicate whether the button is pressed, unpressed,
selected, or disabled. You can also supply separate, specific images for each state if
you prefer.

You normally assign glyphs to speed buttons at design time, although you can assign
different glyphs at runtime.

To assign a glyph to a speed button at design time,

1 Select the speed button.

2 In the Object Inspector, select the Glyph property.

3 Double-click the Value column beside Glyph to open the Picture Editor and select
the desired bitmap.

Setting the initial condition of a speed button
Speed buttons use their appearance to give the user clues as to their state and
purpose. Because they have no caption, it’s important that you use the right visual
cues to assist users.

Table 6.4 lists some actions you can set to change a speed button’s appearance:

If your application has a default drawing tool, ensure that its button on the toolbar is
pressed when the application starts. To do so, set its GroupIndex property to a value
other than zero and its Down property to True.

Creating a group of speed buttons
A series of speed buttons often represents a set of mutually exclusive choices. In that
case, you need to associate the buttons into a group, so that clicking any button in the
group causes the others in the group to pop up.

To associate any number of speed buttons into a group, assign the same number to
each speed button’s GroupIndex property.

The easiest way to do this is to select all the buttons you want in the group, and, with
the whole group selected, set GroupIndex to a unique value.

Table 6.4 Setting speed buttons’ appearance

To make a speed button: Set the toolbar’s:

Appear pressed GroupIndex property to a value other than zero and its
Down property to True.

Appear disabled Enabled property to False.

Have a left margin Indent property to a value greater than 0.

6-34 D e v e l o p e r ’ s G u i d e

D e s i g n i n g t o o l b a r s

Allowing toggle buttons
Sometimes you want to be able to click a button in a group that’s already pressed and
have it pop up, leaving no button in the group pressed. Such a button is called a
toggle. Use AllowAllUp to create a grouped button that acts as a toggle: click it once,
it’s down; click it again, it pops up.

To make a grouped speed button a toggle, set its AllowAllUp property to True.

Setting AllowAllUp to True for any speed button in a group automatically sets the
same property value for all buttons in the group. This enables the group to act as a
normal group, with only one button pressed at a time, but also allows every button to
be up at the same time.

Adding a toolbar using the toolbar component

The toolbar component (TToolBar) offers button management and display features
that panel components do not. To add a toolbar to a form using the toolbar
component,

1 Add a toolbar component to the form. The toolbar automatically aligns to the top
of the form.

2 Add tool buttons or other controls to the bar.

Tool buttons are designed to work on toolbar components. Like speed buttons, tool
buttons can

• Act like regular pushbuttons
• Toggle on and off when clicked
• Act like a set of radio buttons

To implement tool buttons on a toolbar, do the following:

• Add a tool button
• Assign images to tool buttons
• Set the tool buttons’ appearance
• Create a group of tool buttons
• Allow toggled tool buttons

Adding a tool button
To add a tool button to a toolbar, right-click on the toolbar and choose New Button.

The toolbar “owns” the tool button, so moving or hiding the toolbar also moves or
hides the button. In addition, all tool buttons on the toolbar automatically maintain
the same height and width. You can drop other controls from the Component palette
onto the toolbar, and they will automatically maintain a uniform height. Controls
will also wrap around and start a new row when they do not fit horizontally on the
toolbar.

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 6-35

D e s i g n i n g t o o l b a r s

Assigning images to tool buttons
Each tool button has an ImageIndex property that determines what image appears on
it at runtime. If you supply the tool button only one image, the button manipulates
that image to indicate whether the button is disabled. To assign images to tool
buttons at design time,

1 Select the toolbar on which the buttons appear.

2 In the Object Inspector, assign a TImageList object to the toolbar’s Images property.
An image list is a collection of same-sized icons or bitmaps.

3 Select a tool button.

4 In the Object Inspector, assign an integer to the tool button’s ImageIndex property
that corresponds to the image in the image list that you want to assign to the
button.

You can also specify separate images to appear on the tool buttons when they are
disabled and when they are under the mouse pointer. To do so, assign separate
image lists to the toolbar’s DisabledImages and HotImages properties.

Setting tool button appearance and initial conditions
Table 6.5 lists some actions you can set to change a tool button’s appearance:

To force a new row of controls after a specific tool button, Select the tool button that
you want to appear last in the row and set its Wrap property to True.

To turn off the auto-wrap feature of the toolbar, set the toolbar’s Wrapable property to
False.

Creating groups of tool buttons
To create a group of tool buttons, select the buttons you want to associate and set
their Style property to tbsCheck; then set their Grouped property to True. Selecting a
grouped tool button causes other buttons in the group to pop up, which is helpful to
represent a set of mutually exclusive choices.

Any unbroken sequence of adjacent tool buttons with Style set to tbsCheck and
Grouped set to True forms a single group. To break up a group of tool buttons,
separate the buttons with any of the following:

• A tool button whose Grouped property is False.

Table 6.5 Setting tool buttons’ appearance

To make a tool button: Set the toolbar’s:

Appear pressed (on the TToolButton) Style property to tbsCheck and
Down property to True.

Appear disabled Enabled property to False.

Have a left margin Indent property to a value greater than 0.

Appear to have “pop-up” borders,
thus making the toolbar appear
transparent

Flat property to True.

6-36 D e v e l o p e r ’ s G u i d e

D e s i g n i n g t o o l b a r s

• A tool button whose Style property is not set to tbsCheck. To create spaces or
dividers on the toolbar, add a tool button whose Style is tbsSeparator or tbsDivider.

• Another control besides a tool button.

Allowing toggled tool buttons
Use AllowAllUp to create a grouped tool button that acts as a toggle: click it once, it is
down; click it again, it pops up. To make a grouped tool button a toggle, set its
AllowAllUp property to True.

As with speed buttons, setting AllowAllUp to True for any tool button in a group
automatically sets the same property value for all buttons in the group.

Responding to clicks

When the user clicks a control, such as a button on a toolbar, the application
generates an OnClick event which you can respond to with an event handler. Since
OnClick is the default event for buttons, you can generate a skeleton handler for the
event by double-clicking the button at design time. For more information, see
“Working with events and event handlers” on page 2-24 and “Generating a handler
for a component’s default event” on page 2-25.

Assigning a menu to a tool button
If you are using a toolbar (TToolBar) with tool buttons (TToolButton), you can
associate menu with a specific button:

1 Select the tool button.

2 In the Object Inspector, assign a pop-up menu (TPopupMenu) to the tool button’s
DropDownMenu property.

If the menu’s AutoPopup property is set to True, it will appear automatically when the
button is pressed.

Adding hidden toolbars

Toolbars do not have to be visible all the time. In fact, it is often convenient to have a
number of toolbars available, but show them only when the user wants to use them.
Often you create a form that has several toolbars, but hide some or all of them.

To create a hidden toolbar,

1 Add a toolbar or panel component to the form.
2 Set the component’s Visible property to False.

Although the toolbar remains visible at design time so you can modify it, it remains
hidden at runtime until the application specifically makes it visible.

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 6-37

D e s i g n i n g t o o l b a r s

Hiding and showing toolbars

Often, you want an application to have multiple toolbars, but you do not want to
clutter the form with them all at once. Or you may want to let users decide whether
to display toolbars. As with all components, toolbars can be shown or hidden at
runtime as needed.

To hide or show a toolbar at runtime, set its Visible property to False or True,
respectively. Usually you do this in response to particular user events or changes in
the operating mode of the application. To do this, you typically have a close button
on each toolbar. When the user clicks that button, the application hides the
corresponding toolbar.

You can also provide a means of toggling the toolbar. In the following example, a
toolbar of pens is toggled from a button on the main toolbar. Since each click presses
or releases the button, an OnClick event handler can show or hide the Pen toolbar
depending on whether the button is up or down.

procedure TForm1.PenButtonClick(Sender: TObject);
begin

PenBar.Visible := PenButton.Down;
end;

6-38 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h c o n t r o l s 7-1

C h a p t e r

7
Chapter7Working with controls

Controls are visual components that the user of your application can interact with at
runtime such as scrollbars, buttons, text boxes, list boxes, and so on. Generally,
controls are objects that descend from TControl in the object hierarchy. This chapter
describes some of the commonly used controls.

Working with text in controls
The following sections explain how to use various features of edit and memo
controls. Some of these features work with edit controls as well.

• Setting text alignment
• Adding scrollbars at runtime
• Adding the clipboard object
• Selecting text
• Selecting all text
• Cutting, copying, and pasting text
• Deleting selected text
• Disabling menu items
• Providing a pop-up menu
• Handling the OnPopup event

Setting text alignment

In a memo component, text can be left- or right-aligned, or centered. To change text
alignment, set the edit component’s Alignment property. Alignment takes effect only
if the WordWrap property is True; if word wrapping is turned off, there is no margin
to align to. WordWrap turns wordwrapping on and off. When on, the WrapMode,
WrapBreak, and WrapAtValue properties allow fine-grain control on how the
wrapping is done.

7-2 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h t e x t i n c o n t r o l s

You can also use the HMargin property to adjust the left and right margins in a memo
control.

For example, the following code implements an OnClick event handler for the
Character|Left menu item, then attaches the same event handler to both the Right
and Center menu items on the Character menu.

procedure TForm1.AlignClick(Sender: TObject);
begin

Left1.Checked := False; { clear all three checks }
Right1.Checked := False;
Center1.Checked := False;
with Sender as TMenuItem do Checked := True; { check the item clicked }
with Editor do { then set Alignment to match }

if Left1.Checked then
Alignment := taLeftJustify

else if Right1.Checked then
Alignment := taRightJustify

else if Center1.Checked then
Alignment := taCenter;

end;

Adding scroll bars at runtime

Editing and memo components can contain horizontal or vertical scroll bars, or both,
as needed. When word-wrapping is enabled, the component needs only a vertical
scroll bar. If the user turns off word-wrapping, the component might also need a
horizontal scroll bar, since text is not limited by the right side of the editor.

To add scroll bars at runtime,

1 Determine whether the text might exceed the right margin. In most cases, this
means checking whether word wrapping is enabled. You might also check
whether any text lines actually exceed the width of the control.

2 Set the edit or memo component’s ScrollBars property to include or exclude scroll
bars.

procedure TForm1.WordWrap1Click(Sender: TObject);
begin

with Editor do
begin

WordWrap := not WordWrap; { toggle word-wrapping }
if WordWrap then
ScrollBars := ssVertical { wrapped requires only vertical }

else
ScrollBars := ssBoth; { unwrapped might need both }
WordWrap1.Checked := WordWrap; { check menu item to match property }

end;
end;

Note that the memo always shows scroll bars if they are enabled.

W o r k i n g w i t h c o n t r o l s 7-3

W o r k i n g w i t h t e x t i n c o n t r o l s

Adding a clipboard to an application

Most text-handling applications provide users with a way to move selected text
between documents, including documents in different applications. The TClipboard
object in Kylix provides a clipboard and includes methods for cutting, copying, and
pasting text (and other formats, including graphics). The TClipboard object is declared
in the QClipbrd unit.

To add a TClipboard object to an application,

1 Select the unit that will use the clipboard.

2 Search for the implementation reserved word.

3 Add QClipbrd to the uses clause below implementation.

• If there is already a uses clause in the implementation part, add QClipbrd to the
end of it.

• If there is not already a uses clause, add one that says

uses QClipbrd;

Selecting text

Before you can send any text to the clipboard, that text must be selected. Highlighting
of selected text is built into the edit components. When the user selects text, it
appears highlighted.

Table 7.1 lists properties commonly used to handle selected text.

For example, the following OnFind event handler searches a Memo component for
the text specified in the FindText property of a find dialog component. If found, the
first occurrence of the text in Memo1 is selected.

procedure TForm1.FindDialog1Find(Sender: TObject);
var

I, J, PosReturn, SkipChars: Integer;
begin

for I := 0 to Memo1.Lines.Count do
begin

PosReturn := Pos(FindDialog1.FindText,Memo1.Lines[I]);
if PosReturn <> 0 then {found!}
begin
Skipchars := 0;
for J := 0 to I - 1 do

Skipchars := Skipchars + Length(Memo1.Lines[J]);

Table 7.1 Properties of selected text

Property Description

SelText Contains a string representing the selected text in the component.

SelLength Contains the length of a selected string.

SelStart Contains the starting position of a string.

7-4 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h t e x t i n c o n t r o l s

SkipChars := SkipChars + (I*2);
SkipChars := SkipChars + PosReturn - 1;
Memo1.SetFocus;
Memo1.SelStart := SkipChars;
Memo1.SelLength := Length(FindDialog1.FindText);
Break;

end;
end;

end;

Selecting all text

The SelectAll method selects the entire contents of the memo component. This is
especially useful when the component’s contents exceed the visible area of the
component. In most other cases, users select text with either keystrokes or mouse
dragging.

To select the entire contents of a memo control, call the control’s SelectAll method.

For example,

procedure TMainForm.SelectAll(Sender: TObject);
begin

Memo1.SelectAll; { select all text in memo }
end;

Cutting, copying, and pasting text

Applications that use the Clipbrd unit can cut, copy, and paste text, graphics, and
objects through the clipboard. The edit components that encapsulate the standard
text-handling controls all have methods built into them for interacting with the
clipboard. (See “Using the clipboard with graphics” on page 8-20 for information on
using the clipboard with graphics.)

To cut, copy, or paste text with the clipboard, call the edit component’s
CutToClipboard, CopyToClipboard, and PasteFromClipboard methods, respectively.

For example, the following code attaches event handlers to the OnClick events of the
Edit|Cut, Edit|Copy, and Edit|Paste commands, respectively:

procedure TForm1.CutToClipboard(Sender: TObject);
begin

Editor.CutToClipboard;
end;
procedure TForm1.CopyToClipboard(Sender: TObject);
begin

Editor.CopyToClipboard;
end;
procedure TForm1.PasteFromClipboard(Sender: TObject);
begin

Editor.PasteFromClipboard;
end;

W o r k i n g w i t h c o n t r o l s 7-5

W o r k i n g w i t h t e x t i n c o n t r o l s

Deleting selected text

You can delete the selected text in an edit component without cutting it to the
clipboard. To do so, call the ClearSelection method. For example, if you have a Delete
item on the Edit menu, your code could look like this:

procedure TForm1.Delete(Sender: TObject);
begin

Memo1.ClearSelection;
end;

Disabling menu items

It is often useful to disable menu commands without removing them from the menu.
For example, in a text editor, if there is no text currently selected, the Cut, Copy, and
Delete commands are inapplicable. An appropriate time to enable or disable menu
items is when the user selects the menu. To disable a menu item, set its Enabled
property to False.

In the following example, an event handler is attached to the OnClick event for the
Edit item on a child form’s menu bar. It sets Enabled for the Cut, Copy, and Delete
menu items on the Edit menu based on whether Memo1 has selected text. The Paste
command is enabled or disabled based on whether any text exists on the clipboard.

procedure TForm1.Edit1Click(Sender: TObject);
var

HasSelection: Boolean; { declare a temporary variable }
begin

Paste1.Enabled := Clipboard.Provides('text'); {Enable/disable paste menu item}
...

end;

The Provides method of the clipboard returns a Boolean value based on whether the
clipboard contains objects, text, or images of a particular format. (In this case, the text
is generic. You can specify the type of text using a subtype such as text/plain for
plain text or text/html for html.) By calling Provides with the parameter text, you can
determine whether the clipboard contains any text, and you can enable or disable the
Paste item as appropriate.

Chapter 8, “Working with graphics” provides more information about using the
clipboard with graphics.

Providing a pop-up menu

Pop-up, or local, menus are a common ease-of-use feature for any application. They
enable users to minimize mouse movement by clicking the right mouse button in the
application workspace to access a list of frequently used commands.

In a text editor application, for example, you can add a pop-up menu that repeats the
Cut, Copy, and Paste editing commands. These pop-up menu items can use the same
event handlers as the corresponding items on the Edit menu. You don’t need to

7-6 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h t e x t i n c o n t r o l s

create accelerator or shortcut keys for pop-up menus because the corresponding
regular menu items generally already have shortcuts.

A form’s PopupMenu property specifies what pop-up menu to display when a user
right-clicks any item on the form. Individual controls also have PopupMenu
properties that can override the form’s property, allowing customized menus for
particular controls.

To add a pop-up menu to a form,

1 Place a pop-up menu component on the form.

2 Use the Menu Designer to define the items for the pop-up menu.

3 Set the PopupMenu property of the form or control that displays the menu to the
name of the pop-up menu component.

4 Attach handlers to the OnClick events of the pop-up menu items.

Handling the OnPopup event

You may want to adjust pop-up menu items before displaying the menu, just as you
may want to enable or disable items on a regular menu. With a regular menu, you
can handle the OnClick event for the item at the top of the menu, as described in
“Disabling menu items” on page 7-5.

With a pop-up menu, however, there is no top-level menu bar, so to prepare the pop-
up menu commands, you handle the event in the menu component itself. The pop-up
menu component provides an event just for this purpose, called OnPopup.

To adjust menu items on a pop-up menu before displaying them,

1 Select the pop-up menu component.
2 Attach an event handler to its OnPopup event.
3 Write code in the event handler to enable, disable, hide, or show menu items.

In the following code, the Edit1Click event handler described previously in
“Disabling menu items” on page 7-5 is attached to the pop-up menu component’s
OnPopup event. A line of code is added to Edit1Click for each item in the pop-up
menu.

procedure TForm1.Edit1Click(Sender: TObject);
var

HasSelection: Boolean;
begin

Paste1.Enabled := Clipboard.Provides(‘text’);
Paste2.Enabled := Paste1.Enabled;{Add this line}
HasSelection := Editor.SelLength <> 0;
Cut1.Enabled := HasSelection;
Cut2.Enabled := HasSelection;{Add this line}
Copy1.Enabled := HasSelection;
Copy2.Enabled := HasSelection;{Add this line}
Delete1.Enabled := HasSelection;

end;

W o r k i n g w i t h c o n t r o l s 7-7

A d d i n g g r a p h i c s t o c o n t r o l s

Adding graphics to controls
Several controls let you customize the way the control is rendered. These include list
boxes, combo boxes, menus, headers, tab controls, list views, status bars, tree views,
and toolbars. Instead of using standard methods of drawing the control or its items,
the control’s owner (generally, the form) draws them at runtime. The most common
use for owner-draw controls is to provide graphics instead of, or in addition to, text
for items. For information on using owner-draw to add images to menus, see
“Adding images to menu items” on page 6-26.

TComboBox and TListBox are owner-draw controls that contain lists of items. Usually,
those lists are lists of strings that are displayed as text, or lists of objects that contain
strings that are displayed as text. You can associate an object with each item in the list
to make it easy to use that object when drawing items.

In general, creating an owner-draw control in Kylix involves these steps:

1 Indicating that a control is owner-drawn
2 Adding graphical objects to a string list
3 Drawing owner-draw items

Indicating that a control is owner-drawn

To customize the drawing of a control, you must supply event handlers that render
the control’s image when it needs to be painted. Some controls receive these events
automatically. For example, list views, tree views, and tool bars all receive events at
various stages in the drawing process without your having to set any properties.
These events have names such as OnCustomDraw or OnAdvancedCustomDraw.

Other controls, however, require you to set a property before they receive owner-
draw events. List boxes, combo boxes, header controls, and status bars have a
property called Style. Style determines whether the control uses the default drawing
(called the “standard” style) or owner drawing. Grids use a property called
DefaultDrawing to enable or disable the default drawing. Tab controls have a
property called OwnerDraw that enables or disabled the default drawing.

List boxes and combo boxes have additional owner-draw styles, called fixed and
variable, as Table 7.2 describes. Other controls are always fixed, although the size of
the item that contains the text may vary, the size of each item is determined before
drawing the control.

Table 7.2 Fixed vs. variable owner-draw styles

Owner-draw style Meaning Examples

Fixed Each item is the same height, with that height
determined by the ItemHeight property.

lbOwnerDrawFixed,
csOwnerDrawFixed

Variable Each item might have a different height,
determined by the data at runtime.

lbOwnerDrawVariable,
csOwnerDrawVariable

7-8 D e v e l o p e r ’ s G u i d e

A d d i n g g r a p h i c s t o c o n t r o l s

Adding graphical objects to a string list
Every string list has the ability to hold a list of objects in addition to its list of strings.
You can also add graphical object of varying sizes to a string list.

For example, in a file manager application, you may want to add bitmaps indicating
the type of drive along with the letter of the drive. To do that, you need to add the
bitmap images to the application, then copy those images into the proper places in
the string list as described in the following sections.

Note that you can also organize graphical objects using an image list by creating a
TImageList. However, these images must all be the same size. See “Adding images to
menu items” on page 6-26 for an example of setting up an image list.

Adding images to an application
An image control is a nonvisual control that contains a graphical image, such as a
bitmap. You use image controls to display graphical images on a form. You can also
use them to hold hidden images that you’ll use in your application. For example, you
can store bitmaps for owner-draw controls in hidden image controls, like this:

1 Add image controls to the main form.
2 Set their Name properties.
3 Set the Visible property for each image control to False.
4 Set the Picture property of each image selecting the desired bitmap.

The image controls are invisible when you run the application. The image is stored
with the form so it doesn’t have to be loaded from a file at runtime.

Sizing owner-draw items
Before giving your application the chance to draw each item in a variable owner-
draw control, a measure-item event (TMeasureItemEvent) is generated. The measure-
item event tells the application where the item appears on the control.

Kylix determines the size the item (generally, it is just large enough to display the
item’s text in the current font). Your application can handle the event and change the
rectangle chosen. For example, if you plan to substitute a bitmap for the item’s text,
change the rectangle to the size of the bitmap. If you want a bitmap and text, adjust the
rectangle so it is large enough for both.

To change the size of an owner-draw item, attach an event handler to the measure-
item event in the owner-draw control. List boxes and combo boxes use
OnMeasureItem.

The sizing event has two important parameters: the index number of the item and the
height of that item. The height is variable: the application can make it either smaller
or larger. The positions of subsequent items depend on the size of preceding items.

For example, in a variable owner-draw list box, if the application sets the height of
the first item to five pixels, the second item starts at the sixth pixel down from the
top, and so on. In list boxes and combo boxes, the only aspect of the item the
application can alter is the height of the item. The width of the item is always the
width of the control.

W o r k i n g w i t h c o n t r o l s 7-9

A d d i n g g r a p h i c s t o c o n t r o l s

The following code, attached to the OnMeasureItem event of an owner-draw list box,
increases the height of each list item to accommodate its associated bitmap.

procedure TFMForm.DriveTabSetMeasureTab(Sender: TObject; Index: Integer;
var TabWidth: Integer); { note that TabWidth is a var parameter}

var
BitmapWidth: Integer;

begin
BitmapWidth := TBitmap(DriveTabSet.Tabs.Objects[Index]).Width;
{ increase tab width by the width of the associated bitmap plus two }
Inc(TabWidth, 2 + BitmapWidth);

end;

Note You must typecast the items from the Objects property in the string list. Objects is a
property of type TObject so that it can hold any kind of object. When you retrieve
objects from the array, you need to typecast them back to the actual type of the items.

Drawing owner-draw items

When an application needs to draw or redraw an owner-draw control, Windows
generates draw-item events for each visible item in the control. Depending on the
control, the item may also receive draw events for the item as a whole or sub items.

To draw each item in an owner-draw control, attach an event handler to the draw-
item event for that control.

The names of events for owner drawing typically start with one of the following:

• OnDraw, such as OnDrawItem or OnDrawCell

• OnCustomDraw, such as OnCustomDrawItem

The draw-item event contains parameters identifying the item to draw, the rectangle
in which to draw, and usually some information about the state of the item (such as
whether the item has focus). The application handles each event by rendering the
appropriate item in the given rectangle.

For example, the following code shows how to draw items in a list box that has
bitmaps associated with each string. It attaches this handler to the OnDrawItem event
for the list box:

procedure TFMForm.DriveTabSetDrawTab(Sender: TObject; TabCanvas: TCanvas;
R: TRect; Index: Integer; Selected: Boolean);

var
Bitmap: TBitmap;

begin
Bitmap := TBitmap(DriveTabSet.Tabs.Objects[Index]);
with TabCanvas do
begin
Draw(R.Left, R.Top + 4, Bitmap); { draw bitmap }
TextOut(R.Left + 2 + Bitmap.Width, { position text }

R.Top + 2, DriveTabSet.Tabs[Index]); { and draw it to the right of the
bitmap }

end;
end;

7-10 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h g r a p h i c s 8-1

C h a p t e r

8
Chapter8Working with graphics

Graphics elements can add polish to your applications. CLX offers a variety of ways
to introduce graphics into your application. To add graphical elements, you can
insert pre-drawn pictures at design time, create them using graphical controls at
design time, or draw them dynamically at runtime.

Overview of graphics programming
CLX graphics components encapsulate the Qt graphics widgets, making it very easy
to add graphics to your linux applications.

To draw graphics in a CLX application, you draw on an object’s canvas, rather than
directly on the object. The canvas is a property of the object, and is itself an object. A
main advantage of the canvas object is that it handles resources effectively and
manages the graphics context for you, so your programs can use the same methods
regardless of whether you are drawing on the screen, to a printer, or on bitmaps or
drawings. Canvases are available only at runtime, so you do all your work with
canvases by writing code.

Note TCanvas is a wrapper resource manager around a Qt painter. The Handle property of
the canvas is typed pointer to an instance of a Qt painter object. Having this instance
pointer exposed allows you to use low-level Qt graphics library functions that
require an instance pointer to a painter object.

How graphic images appear in your application depends on the type of object whose
canvas you draw on. If you are drawing directly onto the canvas of a control, the
picture is displayed immediately. However, if you draw on an offscreen image such
as a TBitmap canvas, the image is not displayed until a control copies from the bitmap
onto the control’s canvas. That is, when drawing bitmaps and assigning them to an
image control, the image appears only when the control has an opportunity to
process its OnPaint event.

8-2 D e v e l o p e r ’ s G u i d e

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

When working with graphics, you often encounter the terms drawing and painting:

• Drawing is the creation of a single, specific graphic element, such as a line or a
shape, with code. In your code, you tell an object to draw a specific graphic in a
specific place on its canvas by calling a drawing method of the canvas.

• Painting is the creation of the entire appearance of an object. Painting usually
involves drawing. That is, in response to OnPaint events, an object generally
draws some graphics. An edit box, for example, paints itself by drawing a
rectangle and then drawing some text inside. A shape control, on the other hand,
paints itself by drawing a single graphic.

The examples in the beginning of this chapter demonstrate how to draw various
graphics, but they do so in response to OnPaint events. Later sections show how to do
the same kind of drawing in response to other events.

Refreshing the screen

At certain times, the system determines that objects onscreen need to refresh their
appearance. This is the case when a form or control is temporarily obscured, for
example during window dragging, the form or control must repaint the obscured
area when it is re-exposed. When this occurs a paint event is generated, which CLX
routes to OnPaint events. CLX calls any OnPaint event handler that you have written
for that object when you use the Refresh method. The default name generated for the
OnPaint event handler in a form is FormPaint. You may want to use the Refresh
method at times to refresh a component or form. For example, you might call Refresh
in the form’s OnResize event handler to redisplay any graphics.

If you use the TImage control to display a graphical image on a form, the painting and
refreshing of the graphic contained in the TImage is handled automatically by CLX.
The Picture property specifies the actual bitmap, drawing, or other graphic object
that TImage displays. Drawing on a TImage creates a persistent image. Consequently,
you do not need to do anything to redraw the contained image. In contrast,
TPaintBox’s canvas maps directly onto the painter, so that anything drawn to the
PaintBox’s canvas is transitory. This is true of nearly all controls, including the form
itself. Therefore, if you draw or paint on a TPaintBox in its constructor, you will need
to add that code to your OnPaint event handler in order for the image to be repainted
each time the client area is invalidated.

Types of graphic objects

CLX provides the graphic objects shown in Table 8.1. These objects have methods to
draw on the canvas, which are described in “Using Canvas methods to draw graphic

W o r k i n g w i t h g r a p h i c s 8-3

C o m m o n p r o p e r t i e s a n d m e t h o d s o f C a n v a s

objects” on page 8-9 and to load and save to graphics files, as described in “Using the
clipboard with graphics” on page 8-20.

Common properties and methods of Canvas
Table 8.2 lists the commonly used properties of the Canvas object. For a complete list
of properties and methods, see the TCanvas component in online Help.

These properties are described in more detail in “Using the properties of the Canvas
object” on page 8-5.

Table 8.1 Graphic object types

Object Description

Picture Used to hold any graphic image. To add additional graphic file formats,
use the Picture Register method. Use this to handle arbitrary files such as
displaying images in an image control.

Bitmap A powerful graphics object used to create, manipulate (scale, scroll,
rotate, and paint), and store images as files on a disk. Creating copies of a
bitmap is fast since the handle is copied, not the image.

Clipboard Represents the container for any text or graphics that are cut, copied, or
pasted from or to an application. With the clipboard, you can get and
retrieve data according to the appropriate format; handle reference
counting, and opening and closing the clipboard; manage and
manipulate formats for objects in the clipboard.

Icon Represents the value loaded from an icon file.

Drawing Contains a file, that records the operations required to construct an
image, rather than contain the actual bitmap pixels of the image.
Drawings are scalable without the loss of image detail and often require
much less memory than bitmaps, particularly for high-resolution
devices, such as printers. However, drawings do not display as fast as
bitmaps. Use a drawing when versatility or precision is more important
than performance.

Table 8.2 Common properties of the Canvas object

Properties Descriptions

Font Specifies the font to use when writing text on the image. Set the
properties of the TFont object to specify the font face, color, size, and
style of the font.

Brush Determines the color and pattern the canvas uses for filling graphical
shapes and backgrounds. Set the properties of the TBrush object to
specify the color and pattern or bitmap to use when filling in spaces on
the canvas.

Pen Specifies the kind of pen the canvas uses for drawing lines and outlining
shapes. Set the properties of the TPen object to specify the color, style,
width, and mode of the pen.

PenPos Specifies the current drawing position of the pen.

8-4 D e v e l o p e r ’ s G u i d e

C o m m o n p r o p e r t i e s a n d m e t h o d s o f C a n v a s

Table 8.3 is a list of several methods you can use:

Table 8.3 Common methods of the Canvas object

Method Descriptions

Arc Draws an arc on the image along the perimeter of the ellipse bounded by
the specified rectangle.

Chord Draws a closed figure represented by the intersection of a line and an
ellipse.

CopyRect Copies part of an image from another canvas into the canvas.

Draw Renders the graphic object specified by the Graphic parameter on the
canvas at the location given by the coordinates (X, Y).

DrawFocusRect Draws a stippled rectangle that is used to indicate keyboard focus with a
pen whose Mode is automatically set to pmXor. This function only has an
effect if the DefaultStyle member of the Style property in the application
object is set to dsWindows.

DrawPoint Draws a single point on the canvas using the current pen.

DrawPoints Draws a series of points on the canvas using the current pen.

Ellipse Draws the ellipse defined by a bounding rectangle on the canvas.

FillRect Fills the specified rectangle on the canvas using the current brush.

GetClipRegion Returns a pointer to the clipping region that is currently set.

LineTo Draws a line on the canvas from PenPos to the point specified by X and
Y, and sets the pen position to (X, Y).

MoveTo Changes the current drawing position to the point (X,Y).

Pie Draws a pie-shaped the section of the ellipse bounded by the rectangle
(X1, Y1) and (X2, Y2) on the canvas.

PolyBezier Draws a cubic Bézier curve using the current pen.

PolyBezierTo Draws a set of Bézier curves and updates the value of PenPos.

Polygon Draws a series of lines on the canvas connecting the points passed in and
closing the shape by drawing a line from the last point to the first point.

Polyline Draws a series of lines on the canvas with the current pen, connecting
each of the points passed to it in Points.

Rectangle Draws a rectangle on the canvas with its upper left corner at the point
(X1, Y1) and its lower right corner at the point (X2, Y2). Use Rectangle to
draw a box using Pen and fill it using Brush.

RoundRect Draws a rectangle with rounded corners on the canvas.

StretchDraw Draws a graphic on the canvas so that the image fits in the specified
rectangle. The graphic image may need to change its magnitude or
aspect ratio to fit.

TextHeight,
TextWidth

Returns the height and width, respectively, of a string in the current font.
Height includes leading between lines.

TextOut Writes a string on the canvas, starting at the point (X,Y), and then
updates the PenPos to the end of the string.

TextRect Writes a string inside a region; any portions of the string that fall outside
the region do not appear.

TiledDraw Draws a tiled bitmap in a specified rectangle.

W o r k i n g w i t h g r a p h i c s 8-5

C o m m o n p r o p e r t i e s a n d m e t h o d s o f C a n v a s

These methods are described in more detail in “Using Canvas methods to draw
graphic objects” on page 8-9.

Using the properties of the Canvas object

With the Canvas object, you can set the properties of a pen for drawing lines, a brush
for filling shapes, a font for writing text, and an array of pixels to represent the image.

This section describes

• Using pens
• Using brushes

Using pens
The Pen property of a canvas controls the way lines appear, including lines drawn as
the outlines of shapes. Drawing a straight line is really just changing a group of pixels
that lie between two points.

The pen itself has four properties you can change: Color, Width, Style, and Mode.

• Color property: Changes the pen color

• Width property: Changes the pen width

• Style property: Changes the pen style

• Mode property: Changes the pen mode

The values of these properties determine how the pen changes the pixels in the line.
By default, every pen starts out black, with a width of 1 pixel, a solid style, and a
mode called copy that overwrites anything already on the canvas.

Changing the pen color

You can set the color of a pen as you would any other Color property at runtime. A
pen’s color determines the color of the lines the pen draws, including lines drawn as
the boundaries of shapes, as well as other lines and polylines. To change the pen
color, assign a value to the Color property of the pen.

To let the user choose a new color for the pen, put a color grid on the pen’s toolbar. A
color grid can set both foreground and background colors. For a non-grid pen style,
you must consider the background color, which is drawn in the gaps between line
segments. Background color comes from the Brush color property.

Since the user chooses a new color by clicking the grid, this code changes the pen’s
color in response to the OnClick event:

procedure TForm1.PenColorClick(Sender: TObject);
begin

Canvas.Pen.Color := PenColor.ForegroundColor;
end;

8-6 D e v e l o p e r ’ s G u i d e

C o m m o n p r o p e r t i e s a n d m e t h o d s o f C a n v a s

Changing the pen width

A pen’s width determines the thickness, in pixels, of the lines it draws.

Note If you are developing a cross-platform application for deployment under
Windows 95/98 and the thickness is greater than 1, Windows 95/98 always draws
solid lines, regardless of the value of the pen’s Style property.

To change the pen width, assign a numeric value to the pen’s Width property.

Suppose you have a scroll bar on the pen’s toolbar to set width values for the pen.
And suppose you want to update the label next to the scroll bar to provide feedback
to the user. Using the scroll bar’s position to determine the pen width, you update the
pen width every time the position changes.

This is how to handle the scroll bar’s OnChange event:

procedure TForm1.PenWidthChange(Sender: TObject);
begin

Canvas.Pen.Width := PenWidth.Position;{ set the pen width directly }
PenSize.Caption := IntToStr(PenWidth.Position);{ convert to string for caption }

end;

Changing the pen style

A pen’s Style property allows you to set solid lines, dashed lines, dotted lines, and so
on.

Note If you are developing a cross-platform application for deployment under
Windows 95/98, Windows 95/98 does not support dashed or dotted line styles for
pens wider than one pixel and makes all larger pens solid, no matter what style you
specify.

The task of setting the properties of pen is an ideal case for having different controls
share same event handler to handle events. To determine which control actually got
the event, you check the Sender parameter.

To create one click-event handler for six pen-style buttons on a pen’s toolbar, do the
following:

1 Select all six pen-style buttons and select the Object Inspector|Events|OnClick
event and in the Handler column, type SetPenStyle.

2 The IDE generates an empty click-event handler called SetPenStyle and attaches it
to the OnClick events of all six buttons.

3 Fill in the click-event handler by setting the pen’s style depending on the value of
Sender, which is the control that sent the click event:

procedure TForm1.SetPenStyle(Sender: TObject);
begin

with Canvas.Pen do
begin

if Sender = SolidPen then Style := psSolid
else if Sender = DashPen then Style := psDash
else if Sender = DotPen then Style := psDot
else if Sender = DashDotPen then Style := psDashDot

W o r k i n g w i t h g r a p h i c s 8-7

C o m m o n p r o p e r t i e s a n d m e t h o d s o f C a n v a s

else if Sender = DashDotDotPen then Style := psDashDotDot
else if Sender = ClearPen then Style := psClear;

end;
end;

Changing the pen mode

A pen’s Mode property lets you specify various ways to combine the pen’s color with
the color on the canvas. For example, the pen could always be black, be an inverse of
the canvas background color, inverse of the pen color, and so on. See TPen in online
Help for details.

Getting the pen position

The current drawing position—the position from which the pen begins drawing its
next line—is called the pen position. The canvas stores its pen position in its PenPos
property. Pen position affects the drawing of lines only; for shapes and text, you
specify all the coordinates you need.

To set the pen position, call the MoveTo method of the canvas. For example, the
following code moves the pen position to the upper left corner of the canvas:

Canvas.MoveTo(0, 0);

Note Drawing a line with the LineTo method also moves the current position to the
endpoint of the line.

Using brushes

The Brush property of a canvas controls the way you fill areas, including the interior
of shapes. Filling an area with a brush is a way of changing a large number of
adjacent pixels in a specified way.

The brush has three properties you can manipulate:

• Color property: Changes the fill color

• Style property: Changes the brush style

• Bitmap property: Uses a bitmap as a brush pattern

The values of these properties determine the way the canvas fills shapes or other
areas. By default, every brush starts out white, with a solid style and no pattern
bitmap.

Changing the brush color
A brush’s color determines what color the canvas uses to fill shapes. To change the
fill color, assign a value to the brush’s Color property. Brush is used for background
color in text and line drawing so you typically set the background color property.

You can set the brush color just as you do the pen color, in response to a click on a
color grid on the brush’s toolbar (see “Changing the pen color” on page 8-5):

8-8 D e v e l o p e r ’ s G u i d e

C o m m o n p r o p e r t i e s a n d m e t h o d s o f C a n v a s

procedure TForm1.BrushColorClick(Sender: TObject);
begin

Canvas.Brush.Color := BrushColor.ForegroundColor;
end;

Changing the brush style
A brush style determines what pattern the canvas uses to fill shapes. It lets you
specify various ways to combine the brush’s color with any colors already on the
canvas. The predefined styles include solid color, no color, and various line and
hatch patterns.

To change the style of a brush, set its Style property to one of the predefined values:
bsSolid, bsClear, bsHorizontal, bsVertical, bsFDiagonal, bsBDiagonal, bsCross, bsDiagCross,
bsDense1, bsDense2, bsDense3, bsDense4, bsDense5, bsDense6, or bsDense7.

This example sets brush styles by sharing a click-event handler for a set of fifteen
brush-style buttons. All fifteen buttons are selected, the Object Inspector|Events|
OnClick is set, and the OnClick handler is named SetBrushStyle. Here is the handler
code:

procedure TForm1.SetBrushStyle(Sender: TObject);
begin

with Canvas.Brush do
begin

if Sender = SolidBrush then Style := bsSolid
else if Sender = ClearBrush then Style := bsClear
else if Sender = HorizontalBrush then Style := bsHorizontal
else if Sender = VerticalBrush then Style := bsVertical
else if Sender = FDiagonalBrush then Style := bsFDiagonal
else if Sender = BDiagonalBrush then Style := bsBDiagonal
else if Sender = CrossBrush then Style := bsCross
else if Sender = DiagCrossBrush then Style := bsDiagCross;

end;
end;

Setting the Brush Bitmap property
A brush’s Bitmap property lets you specify a bitmap image for the brush to use as a
pattern for filling shapes and other areas.

The following example loads a bitmap from a file and assigns it to the Brush of the
Canvas of Form1:

var
Bitmap: TBitmap;

begin
Bitmap := TBitmap.Create;
try

Bitmap.LoadFromFile('MyBitmap.bmp');
Form1.Canvas.Brush.Bitmap := Bitmap;
Form1.Canvas.FillRect(Rect(0,0,100,100));

finally
Form1.Canvas.Brush.Bitmap := nil;

W o r k i n g w i t h g r a p h i c s 8-9

C o m m o n p r o p e r t i e s a n d m e t h o d s o f C a n v a s

Bitmap.Free;
end;

end;

Note The brush does not assume ownership of a bitmap object assigned to its Bitmap
property. You must ensure that the Bitmap object remains valid for the lifetime of the
Brush, and you must free the Bitmap object yourself afterwards.

Using Canvas methods to draw graphic objects

This section shows how to use some common methods to draw graphic objects. It
covers:

• Drawing lines and polylines

• Drawing shapes

• Drawing rounded rectangles

• Drawing polygons

Drawing lines and polylines
A canvas can draw straight lines and polylines. A straight line is just a line of pixels
connecting two points. A polyline is a series of straight lines, connected end-to-end.
The canvas draws all lines using its pen.

Drawing lines

To draw a straight line on a canvas, use the LineTo method of the canvas.

LineTo draws a line from the current pen position to the point you specify and makes
the endpoint of the line the current position. The canvas draws the line using its pen.

For example, the following method draws crossed diagonal lines across a form
whenever the form is painted:

procedure TForm1.FormPaint(Sender: TObject);
begin
with Canvas do
begin

MoveTo(0, 0);
LineTo(ClientWidth, ClientHeight);
MoveTo(0, ClientHeight);
LineTo(ClientWidth, 0);

end;
end;

Drawing polylines

In addition to individual lines, the canvas can also draw polylines, which are groups
of any number of connected line segments.

To draw a polyline on a canvas, call the Polyline method of the canvas.

8-10 D e v e l o p e r ’ s G u i d e

C o m m o n p r o p e r t i e s a n d m e t h o d s o f C a n v a s

The parameter passed to the Polyline method is an array of points. You can think of a
polyline as performing a MoveTo on the first point and LineTo on each successive
point. For drawing multiple lines, Polyline is faster than using the MoveTo method
and the LineTo method because it eliminates a lot of call overhead.

The following method, for example, draws a rhombus in a form:

procedure TForm1.FormPaint(Sender: TObject);
begin
with Canvas do

Polyline([Point(0, 0), Point(50, 0), Point(75, 50), Point(25, 50), Point(0, 0)]);
end;

This example takes advantage of Kylix's ability to create an open-array parameter on-
the-fly. You can pass any array of points, but an easy way to construct an array
quickly is to put its elements in brackets and pass the whole thing as a parameter. For
more information, see online Help.

Drawing shapes
Canvases have methods for drawing different kinds of shapes. The canvas draws the
outline of a shape with its pen, then fills the interior with its brush. The line that
forms the border for the shape is controlled by the current Pen object.

This section covers:

• Drawing rectangles and ellipses
• Drawing rounded rectangles
• Drawing polygons

Drawing rectangles and ellipses

To draw a rectangle or ellipse on a canvas, call the canvas’s Rectangle method or
Ellipse method, passing the coordinates of a bounding rectangle.

The Rectangle method draws the bounding rectangle; Ellipse draws an ellipse that
touches all sides of the rectangle.

The following method draws a rectangle filling a form’s upper left quadrant, then
draws an ellipse in the same area:

procedure TForm1.FormPaint(Sender: TObject);
begin
Canvas.Rectangle(0, 0, ClientWidth div 2, ClientHeight div 2);
Canvas.Ellipse(0, 0, ClientWidth div 2, ClientHeight div 2);

end;

Drawing rounded rectangles

To draw a rounded rectangle on a canvas, call the canvas’s RoundRect method.

The first four parameters passed to RoundRect are a bounding rectangle, just as for
the Rectangle method or the Ellipse method. RoundRect takes two more parameters
that indicate how to draw the rounded corners.

W o r k i n g w i t h g r a p h i c s 8-11

H a n d l i n g m u l t i p l e d r a w i n g o b j e c t s i n y o u r a p p l i c a t i o n

The following method, for example, draws a rounded rectangle in a form’s upper left
quadrant, rounding the corners as sections of a circle with a diameter of 10 pixels:

procedure TForm1.FormPaint(Sender: TObject);
begin
Canvas.RoundRect(0, 0, ClientWidth div 2, ClientHeight div 2, 10, 10);

end;

Drawing polygons

To draw a polygon with any number of sides on a canvas, call the Polygon method of
the canvas.

Polygon takes an array of points as its only parameter and connects the points with
the pen, then connects the last point to the first to close the polygon. After drawing
the lines, Polygon uses the brush to fill the area inside the polygon.

For example, the following code draws a right triangle in the lower left half of a form:

procedure TForm1.FormPaint(Sender: TObject);
begin
Canvas.Polygon([Point(0, 0), Point(0, ClientHeight),

Point(ClientWidth, ClientHeight)]);
end;

Handling multiple drawing objects in your application
Various drawing methods (rectangle, shape, line, and so on) are typically available
on the toolbar and button panel. Applications can respond to clicks on speed buttons
to set the desired drawing objects. This section describes how to:

• Keep track of which drawing tool to use
• Changing the tool with speed buttons
• Using drawing tools

Keeping track of which drawing tool to use

A graphics program needs to keep track of what kind of drawing tool (such as a line,
rectangle, ellipse, or rounded rectangle) a user might want to use at any given time.
You could assign numbers to each kind of tool, but then you would have to
remember what each number stands for. You can do that more easily by assigning
mnemonic constant names to each number, but your code won't be able to
distinguish which numbers are in the proper range and of the right type. Fortunately,
Object Pascal provides a means to handle both of these shortcomings. You can
declare an enumerated type.

An enumerated type is really just a shorthand way of assigning sequential values to
constants. Since it's also a type declaration, you can use Object Pascal's type-checking
to ensure that you assign only those specific values.

8-12 D e v e l o p e r ’ s G u i d e

H a n d l i n g m u l t i p l e d r a w i n g o b j e c t s i n y o u r a p p l i c a t i o n

To declare an enumerated type, use the reserved work type, followed by an identifier
for the type, then an equal sign, and the identifiers for the values in the type in
parentheses, separated by commas.

For example, the following code declares an enumerated type for each drawing tool
available in a graphics application:

type
TDrawingTool = (dtLine, dtRectangle, dtEllipse, dtRoundRect);

By convention, type identifiers begin with the letter T, and groups of similar
constants (such as those making up an enumerated type) begin with a 2-letter prefix
(such as dt for “drawing tool”).

The declaration of the TDrawingTool type is equivalent to declaring a group of
constants:

const
dtLine = 0;
dtRectangle = 1;
dtEllipse = 2;
dtRoundRect = 3;

The main difference is that by declaring the enumerated type, you give the constants
not just a value, but also a type, which enables you to use Object Pascal's type-
checking to prevent many errors. A variable of type TDrawingTool can be assigned
only one of the constants dtLine..dtRoundRect. Attempting to assign some other
number (even one in the range 0..3) generates a compile-time error.

In the following code, a field added to a form keeps track of the form’s drawing tool:

type
TDrawingTool = (dtLine, dtRectangle, dtEllipse, dtRoundRect);

TForm1 = class(TForm)
...{ method declarations }

public
Drawing: Boolean;

Origin, MovePt: TPoint;
DrawingTool: TDrawingTool;{ field to hold current tool }

end;

Changing the tool with speed buttons

Each drawing tool needs an associated OnClick event handler. Suppose your
application had a toolbar button for each of four drawing tools: line, rectangle,
ellipse, and rounded rectangle. You would attach the following event handlers to the
OnClick events of the four drawing-tool buttons, setting DrawingTool to the
appropriate value for each:

procedure TForm1.LineButtonClick(Sender: TObject);{ LineButton }
begin

DrawingTool := dtLine;
end;

procedure TForm1.RectangleButtonClick(Sender: TObject);{ RectangleButton }
begin

W o r k i n g w i t h g r a p h i c s 8-13

H a n d l i n g m u l t i p l e d r a w i n g o b j e c t s i n y o u r a p p l i c a t i o n

DrawingTool := dtRectangle;
end;

procedure TForm1.EllipseButtonClick(Sender: TObject);{ EllipseButton }
begin

DrawingTool := dtEllipse;
end;

procedure TForm1.RoundedRectButtonClick(Sender: TObject);{ RoundRectButton }
begin

DrawingTool := dtRoundRect;
end;

Using drawing tools

Now that you can tell what tool to use, you must indicate how to draw the different
shapes. The only methods that perform any drawing are the mouse-move and
mouse-up handlers, and the only drawing code draws lines, no matter what tool is
selected.

To use different drawing tools, your code needs to specify how to draw, based on the
selected tool. You add this instruction to each tool’s event handler.

This section describes

• Drawing shapes

• Sharing code among event handlers

Drawing shapes
Drawing shapes is just as easy as drawing lines: Each one takes a single statement;
you just need the coordinates.

Here’s a rewrite of the OnMouseUp event handler that draws shapes for all four tools:

procedure TForm1.FormMouseUp(Sender: TObject; Button TMouseButton; Shift: TShiftState;
X,Y: Integer);

begin
case DrawingTool of

dtLine:
begin

Canvas.MoveTo(Origin.X, Origin.Y);
Canvas.LineTo(X, Y)

end;
dtRectangle: Canvas.Rectangle(Origin.X, Origin.Y, X, Y);
dtEllipse: Canvas.Ellipse(Origin.X, Origin.Y, X, Y);
dtRoundRect: Canvas.RoundRect(Origin.X, Origin.Y, X, Y,

(Origin.X - X) div 2, (Origin.Y - Y) div 2);
end;

Drawing := False;
end;

Of course, you also need to update the OnMouseMove handler to draw shapes:

procedure TForm1.FormMouseMove(Sender: TObject; Shift: TShiftState; X, Y: Integer);
begin

8-14 D e v e l o p e r ’ s G u i d e

H a n d l i n g m u l t i p l e d r a w i n g o b j e c t s i n y o u r a p p l i c a t i o n

if Drawing then
begin

Canvas.Pen.Mode := pmNotXor;
case DrawingTool of

dtLine: begin
Canvas.MoveTo(Origin.X, Origin.Y);

Canvas.LineTo(MovePt.X, MovePt.Y);
Canvas.MoveTo(Origin.X, Origin.Y);
Canvas.LineTo(X, Y);
end;

dtRectangle: begin
Canvas.Rectangle(Origin.X, Origin.Y, MovePt.X, MovePt.Y);

Canvas.Rectangle(Origin.X, Origin.Y, X, Y);
end;

dtEllipse: begin
Canvas.Ellipse(Origin.X, Origin.Y, X, Y);
Canvas.Ellipse(Origin.X, Origin.Y, X, Y);

end;
dtRoundRect: begin

Canvas.RoundRect(Origin.X, Origin.Y, X, Y,
(Origin.X - X) div 2, (Origin.Y - Y) div 2);

Canvas.RoundRect(Origin.X, Origin.Y, X, Y,
(Origin.X - X) div 2, (Origin.Y - Y) div 2);

end;
end;

MovePt := Point(X, Y);
end;

Canvas.Pen.Mode := pmCopy;
end;

Typically, all the repetitious code that is in the above example would be in a separate
routine. The next section shows all the shape-drawing code in a single routine that all
mouse-event handlers can call.

Sharing code among event handlers
Any time you find that many your event handlers use the same code, you can make
your application more efficient by moving the repeated code into a routine that all
event handlers can share.

To add a method to a form,

1 Add the method declaration to the form object.

You can add the declaration in either the public or private parts at the end of the
form object’s declaration. If the code is just sharing the details of handling some
events, it’s probably safest to make the shared method private.

2 Write the method implementation in the implementation part of the form unit.

The header for the method implementation must match the declaration exactly, with
the same parameters in the same order.

W o r k i n g w i t h g r a p h i c s 8-15

H a n d l i n g m u l t i p l e d r a w i n g o b j e c t s i n y o u r a p p l i c a t i o n

The following code adds a method to the form called DrawShape and calls it from
each of the handlers. First, the declaration of DrawShape is added to the form object’s
declaration:

type
TForm1 = class(TForm)

...{ fields and methods declared here}
public

{ Public declarations }
procedure DrawShape(TopLeft, BottomRight: TPoint; AMode: TPenMode);

end;

Then, the implementation of DrawShape is written in the implementation part of the
unit:

implementation
{$R *.FRM}
...{ other method implementations omitted for brevity }
procedure TForm1.DrawShape(TopLeft, BottomRight: TPoint; AMode: TPenMode);
begin

with Canvas do
begin

Pen.Mode := AMode;
case DrawingTool of

dtLine:
begin
MoveTo(TopLeft.X, TopLeft.Y);
LineTo(BottomRight.X, BottomRight.Y);

end;
dtRectangle: Rectangle(TopLeft.X, TopLeft.Y, BottomRight.X, BottomRight.Y);
dtEllipse: Ellipse(TopLeft.X, TopLeft.Y, BottomRight.X, BottomRight.Y);
dtRoundRect: RoundRect(TopLeft.X, TopLeft.Y, BottomRight.X, BottomRight.Y,

(TopLeft.X - BottomRight.X) div 2, (TopLeft.Y - BottomRight.Y) div 2);
end;

end;
end;

The other event handlers are modified to call DrawShape.

procedure TForm1.FormMouseUp(Sender: TObject; Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);

begin
DrawShape(Origin, Point(X, Y), pmCopy);{ draw the final shape }

Drawing := False;
end;
procedure TForm1.FormMouseMove(Sender: TObject; Button: TMouseButton;

Shift: TShiftState; X, Y: Integer);
begin

if Drawing then
begin

DrawShape(Origin, MovePt, pmNotXor);{ erase the previous shape }
MovePt := Point(X, Y);{ record the current point }
DrawShape(Origin, MovePt, pmNotXor);{ draw the current shape }

end;
end;

8-16 D e v e l o p e r ’ s G u i d e

D r a w i n g o n a g r a p h i c

Drawing on a graphic
You don’t need any components to manipulate your application’s graphic objects.
You can construct, draw on, save, and destroy graphic objects without ever drawing
anything on screen. In fact, your applications rarely draw directly on a form. More
often, an application operates on graphics and then uses a CLX image control
component to display the graphic on a form.

Once you move the application’s drawing to the graphic in the image control, it is
easy to add printing, clipboard, and loading and saving operations for any graphic
objects. graphic objects can be bitmap files, drawings, icons or whatever other
graphics classes that have been installed such as jpeg graphics.

Note Because you are drawing on an offscreen image such as a TBitmap canvas, the image
is not displayed until a control copies from a bitmap onto the control’s canvas. That
is, when drawing bitmaps and assigning them to an image control, the image
appears only when the control has an opportunity to process its paint message. But if
you are drawing directly onto the canvas property of a control, the picture object is
displayed immediately.

Making scrollable graphics

The graphic need not be the same size as the form: it can be either smaller or larger.
By adding a scroll box control to the form and placing the graphic image inside it,
you can display graphics that are much larger than the form or even larger than the
screen. To add a scrollable graphic first you add a TScrollBox component and then
you add the image control.

Adding an image control

An image control is a container component that allows you to display your bitmap
objects. You use an image control to hold a bitmap that is not necessarily displayed
all the time, or which an application needs to use to generate other pictures.

Note “Adding graphics to controls” on page 7-7 shows how to use graphics in controls.

Placing the control
You can place an image control anywhere on a form. If you take advantage of the
image control’s ability to size itself to its picture, you need to set the top left corner
only. If the image control is a nonvisible holder for a bitmap, you can place it
anywhere, just as you would a nonvisual component.

If you drop the image control on a scroll box already aligned to the form’s client area,
this assures that the scroll box adds any scroll bars necessary to access offscreen
portions of the image’s picture. Then set the image control’s properties.

W o r k i n g w i t h g r a p h i c s 8-17

D r a w i n g o n a g r a p h i c

Setting the initial bitmap size
When you place an image control, it is simply a container. However, you can set the
image control’s Picture property at design time to contain a static graphic. The control
can also load its picture from a file at runtime, as described in “Using the clipboard
with graphics” on page 8-20.

To create a blank bitmap when the application starts,

1 Attach a handler to the OnCreate event for the form that contains the image.

2 Create a bitmap object, and assign it to the image control’s Picture.Graphic
property.

In this example, the image is in the application’s main form, Form1, so the code
attaches a handler to Form1’s OnCreate event:

procedure TForm1.FormCreate(Sender: TObject);
var

Bitmap: TBitmap;{ temporary variable to hold the bitmap }
begin

Bitmap := TBitmap.Create;{ construct the bitmap object }
Bitmap.Width := 200;{ assign the initial width... }
Bitmap.Height := 200;{ ...and the initial height }
Image.Picture.Graphic := Bitmap;{ assign the bitmap to the image control }
Bitmap.Free; {We are done with the bitmap, so free it }

end;

Assigning the bitmap to the picture’s Graphic property copies the bitmap to the
picture object. However, the picture object does not take ownership of the bitmap, so
after making the assignment, you must free it.

If you run the application now, you see that client area of the form has a white region,
representing the bitmap. If you size the window so that the client area cannot display
the entire image, you’ll see that the scroll box automatically shows scroll bars to
allow display of the rest of the image. But if you try to draw on the image, you don’t
get any graphics, because the application is still drawing on the form, which is now
behind the image and the scroll box.

Drawing on the bitmap
To draw on a bitmap, use the image control’s canvas and attach the mouse-event
handlers to the appropriate events in the image control. Typically, you would use
region operations (fills, rectangles, polylines, and so on). These are fast and efficient
methods of drawing.

An efficient way to draw images when you need to access individual pixels is to use
the bitmap ScanLine property. For general-purpose usage, you can set up the bitmap
pixel format to 24 bits and then treat the pointer returned from ScanLine as an array
of RGB. Otherwise, you will need to know the native format of the ScanLine property.
This example shows how to use ScanLine to get pixels one line at a time.

procedure TForm1.Button1Click(Sender: TObject);
// This example shows drawing directly to the Bitmap
var

x,y : integer;

8-18 D e v e l o p e r ’ s G u i d e

L o a d i n g a n d s a v i n g g r a p h i c s f i l e s

Bitmap : TBitmap;
P : PByteArray;

begin
Bitmap := TBitmap.create;
try

if OpenDialog1.Execute then
begin

Bitmap.LoadFromFile(OpenDialog1.FileName);
for y := 0 to Bitmap.height -1 do

begin
P := Bitmap.ScanLine[y];
for x := 0 to Bitmap.width -1 do

P[x] := y;
end;

end;
canvas.draw(0,0,Bitmap);
finally

Bitmap.free;
end;

end;

Loading and saving graphics files
Graphic images that exist only for the duration of one running of an application are
of very limited value. Often, you either want to use the same picture every time, or
you want to save a created picture for later use. The image component makes it easy
to load pictures from a file and save them again.

CLX components you use to load, save, and replace graphic images support many
graphic formats including bitmap files, png files, xpms, Windows icons, and so on.
They also support installable graphic classes.

The way to load and save graphics files is the similar to any other files and is
described in the following sections:

• Loading a picture from a file

• Saving a picture to a file

• Replacing the picture

Loading a picture from a file

Your application should provide the ability to load a picture from a file if your
application needs to modify the picture or if you want to store the picture outside the
application so a person or another application can modify the picture.

To load a graphics file into an image control, call the LoadFromFile method of the
image control’s Picture object.

The following code gets a file name from an open picture file dialog box, and then
loads that file into an image control named Image:

W o r k i n g w i t h g r a p h i c s 8-19

L o a d i n g a n d s a v i n g g r a p h i c s f i l e s

procedure TForm1.Open1Click(Sender: TObject);
begin

if OpenDialog1.Execute then
begin

CurrentFile := OpenDialog1.FileName;
Image.Picture.LoadFromFile(CurrentFile);

end;
end;

Saving a picture to a file

The picture object can load and save graphics in several formats, and you can create
and register your own graphic-file formats so that picture objects can load and store
them as well.

To save the contents of an image control in a file, call the SaveToFile method of the
image control’s Picture object.

The SaveToFile method requires the name of a file in which to save. If the picture is
newly created, it might not have a file name, or a user might want to save an existing
picture in a different file. In either case, the application needs to get a file name from
the user before saving, as shown in the next section.

The following pair of event handlers, attached to the File|Save and File|Save As
menu items, respectively, handle the resaving of named files, saving of unnamed
files, and saving existing files under new names.

procedure TForm1.Save1Click(Sender: TObject);
begin

if CurrentFile <> '' then
Image.Picture.SaveToFile(CurrentFile){ save if already named }

else SaveAs1Click(Sender);{ otherwise get a name }
end;
procedure TForm1.Saveas1Click(Sender: TObject);
begin

if SaveDialog1.Execute then{ get a file name }
begin

CurrentFile := SaveDialog1.FileName;{ save the user-specified name }
Save1Click(Sender);{ then save normally }

end;
end;

Replacing the picture

You can replace the picture in an image control at any time. If you assign a new
graphic to a picture that already has a graphic, the new graphic replaces the existing
one.

To replace the picture in an image control, assign a new graphic to the image
control’s Picture object.

Creating the new graphic is the same process you used to create the initial graphic
(see “Setting the initial bitmap size” on page 8-17), but you should also provide a

8-20 D e v e l o p e r ’ s G u i d e

U s i n g t h e c l i p b o a r d w i t h g r a p h i c s

way for the user to choose a size other than the default size used for the initial
graphic. An easy way to provide that option is to present a dialog box. With a dialog
box in your project, add it to the uses clause in the unit for your main form. You can
then attach an event handler to the File|New menu item’s OnClick event. Here’s an
example:

procedure TForm1.New1Click(Sender: TObject);
var

Bitmap: TBitmap;{ temporary variable for the new bitmap }
begin

with NewBMPForm do
begin

ActiveControl := WidthEdit;{ make sure focus is on width field }
WidthEdit.Text := IntToStr(Image.Picture.Graphic.Width);{ use current dimensions... }
HeightEdit.Text := IntToStr(Image.Picture.Graphic.Height);{ ...as default }
if ShowModal <> idCancel then{ continue if user doesn't cancel dialog box }
begin
Bitmap := TBitmap.Create;{ create fresh bitmap object }

Bitmap.Width := StrToInt(WidthEdit.Text);{ use specified width }
Bitmap.Height := StrToInt(HeightEdit.Text);{ use specified height }
Image.Picture.Graphic := Bitmap;{ replace graphic with new bitmap }
CurrentFile := '';{ indicate unnamed file }
Bitmap.Free;
end;

end;
end;

Note Assigning a new bitmap to the picture object’s Graphic property causes the picture
object to copy the new graphic, but it does not take ownership of it. The picture object
maintains its own internal graphic object. Because of this, the previous code frees the
bitmap object after making the assignment.

Using the clipboard with graphics
You can use the clipboard to copy and paste graphics within your applications or to
exchange graphics with other applications. The Clipboard object makes it easy to
handle different kinds of information, including graphics.

Before you can use the Clipboard object in your application, you must add the
QClipbrd unit to the uses clause of any unit that needs to access clipboard data.

Data that is stored on the clipboard is stored as a mime type with an associated
TStream object. CLX provides the following predefined mime source and mime type
string constants for the following CLX objects:

• TBitmap = ‘image/delphi.bitmap’

• TComponent = ‘application/delphi.component’

• TPicture = ‘image/delphi.picture’

• TDrawing = ‘image/delphi.drawing’

W o r k i n g w i t h g r a p h i c s 8-21

U s i n g t h e c l i p b o a r d w i t h g r a p h i c s

Copying graphics to the clipboard

You can copy any picture, including the contents of image controls, to the clipboard.
Once on the clipboard, the picture is available to all applications.

To copy a picture to the clipboard, assign the picture to the clipboard object using the
Assign method.

This code shows how to copy the picture from an image control named Image to the
clipboard in response to a click on an Edit|Copy menu item:

procedure TForm1.Copy1Click(Sender: TObject);
begin

Clipboard.Assign(Image.Picture)
end.

Cutting graphics to the clipboard

Cutting a graphic to the clipboard is exactly like copying it, but you also erase the
graphic from the source.

To cut a graphic from a picture to the clipboard, first copy it to the clipboard, then
erase the original.

In most cases, the only issue with cutting is how to show that the original image is
erased. Setting the area to white is a common solution, as shown in the following
code that attaches an event handler to the OnClick event of the Edit|Cut menu item:

procedure TForm1.Cut1Click(Sender: TObject);
var

ARect: TRect;
begin

Copy1Click(Sender);{ copy picture to clipboard }
with Image.Canvas do
begin

CopyMode := cmWhiteness;{ copy everything as white }
ARect := Rect(0, 0, Image.Width, Image.Height);{ get bitmap rectangle }
CopyRect(ARect, Image.Canvas, ARect);{ copy bitmap over itself }
CopyMode := cmSrcCopy;{ restore normal mode }

end;
end;

Pasting graphics from the clipboard

If the clipboard contains a bitmapped graphic, you can paste it into any image object,
including image controls and the surface of a form.

To paste a graphic from the clipboard,

1 Call the clipboard’s Provides method to see whether the clipboard contains a
graphic.

8-22 D e v e l o p e r ’ s G u i d e

R u b b e r b a n d i n g e x a m p l e

Provides is a Boolean function. It returns True if the clipboard contains an item of
the type specified in the parameter.

2 Assign the clipboard to the destination.

This code shows how to paste a picture from the clipboard into an image control in
response to a click on an Edit|Paste menu item:

procedure TForm1.PasteButtonClick(Sender: TObject);
var

Bitmap: TBitmap;
begin
if Clipboard.Provides(SDelphiBitmap) then { is there a bitmap on the clipboard?)
begin

Image1.Picture.Bitmap.Assign(Clipboard);
end;

end;

The graphic on the clipboard could come from this application, or it could have been
copied from another application. You do not need to check the clipboard format in
this case because the paste menu should be disabled when the clipboard does not
contain a supported format.

Rubber banding example
This section walks you through the details of implementing the “rubber banding”
effect in an graphics application that tracks mouse movements as the user draws a
graphic at runtime. The application draws lines and shapes on a window’s canvas in
response to clicks and drags: pressing a mouse button starts drawing, and releasing
the button ends the drawing.

To start with, the example code shows how to draw on the surface of the main form.
Later examples demonstrate drawing on a bitmap.

The following topics describe the example:

• Responding to the mouse
• Adding a field to a form object to track mouse actions
• Refining line drawing

Responding to the mouse

Your application can respond to the mouse actions: mouse-button down, mouse
moved, and mouse-button up. It can also respond to a click (a complete press-and-
release, all in one place) that can be generated by some kinds of keystrokes (such as
pressing Enter in a modal dialog box).

This section covers:

• What’s in a mouse event
• Responding to a mouse-down action
• Responding to a mouse-up action
• Responding to a mouse move

W o r k i n g w i t h g r a p h i c s 8-23

R u b b e r b a n d i n g e x a m p l e

What’s in a mouse event?
A mouse event occurs when a user moves the mouse in the user interface of an
application. CLX has three mouse events:

When a CLX application detects a mouse action, it calls whatever event handler you’ve
defined for the corresponding event, passing five parameters. Use the information in
those parameters to customize your responses to the events. The five parameters are as
follows:

Most of the time, you need the coordinates returned in a mouse-event handler, but
sometimes you also need to check Button to determine which mouse button caused
the event.

Responding to a mouse-down action
Whenever the user presses a button on the mouse, an OnMouseDown event goes to
the object the pointer is over. The object can then respond to the event.

To respond to a mouse-down action, attach an event handler to the OnMouseDown
event.

CLX generates an empty handler for a mouse-down event on the form:

procedure TForm1.FormMouseDown(Sender: TObject; Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);

begin
end;

The following code displays the string 'Here!' at the location on a form clicked with
the mouse:

procedure TForm1.FormMouseDown(Sender: TObject; Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);

begin
Canvas.TextOut(X, Y, 'Here!');{ write text at (X, Y) }

end;

Table 8.4 Mouse events

Event Description

OnMouseDown event Occurs when the user presses a mouse button with the mouse
pointer over a control.

OnMouseMove event Occurs when the user moves the mouse while the mouse pointer is
over a control.

OnMouseUp event Occurs when the user releases a mouse button that was pressed
with the mouse pointer over a component.

Table 8.5 Mouse-event parameters

Parameter Meaning

Sender The object that detected the mouse action

Button Indicates which mouse button was involved: mbLeft, mbMiddle, or mbRight
Shift Indicates the state of the Alt, Ctrl, and Shift keys at the time of the mouse action

X, Y The coordinates where the event occurred

8-24 D e v e l o p e r ’ s G u i d e

R u b b e r b a n d i n g e x a m p l e

When the application runs, you can press the mouse button down with the mouse
cursor on the form and have the string, “Here!” appear at the point clicked. This code
sets the current drawing position to the coordinates where the user presses the
button:

procedure TForm1.FormMouseDown(Sender: TObject; Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);

begin
Canvas.MoveTo(X, Y);{ set pen position }

end;

Pressing the mouse button now sets the pen position, setting the line’s starting point.
To draw a line to the point where the user releases the button, you need to respond to
a mouse-up event.

Responding to a mouse-up action
An OnMouseUp event occurs whenever the user releases a mouse button. The event
usually goes to the object the mouse cursor is over when the user presses the button,
which is not necessarily the same object the cursor is over when the button is
released. This enables you, for example, to draw a line as if it extended beyond the
border of the form.

To respond to mouse-up actions, define a handler for the OnMouseUp event.

Here’s a simple OnMouseUp event handler that draws a line to the point of the
mouse-button release:

procedure TForm1.FormMouseUp(Sender: TObject; Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);

begin
Canvas.LineTo(X, Y);{ draw line from PenPos to (X, Y) }

end;

This code lets a user draw lines by clicking, dragging, and releasing. In this case, the
user cannot see the line until the mouse button is released.

Responding to a mouse move
An OnMouseMove event occurs periodically when the user moves the mouse. The
event goes to the object that was under the mouse pointer when the user pressed the
button. This allows you to give the user some intermediate feedback by drawing
temporary lines while the mouse moves.

To respond to mouse movements, define an event handler for the OnMouseMove
event. This example uses mouse-move events to draw intermediate shapes on a form
while the user holds down the mouse button, thus providing some feedback to the
user. The OnMouseMove event handler draws a line on a form to the location of the
OnMouseMove event:

procedure TForm1.FormMouseMove(Sender: TObject;Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);

begin
Canvas.LineTo(X, Y);{ draw line to current position }

end;

W o r k i n g w i t h g r a p h i c s 8-25

R u b b e r b a n d i n g e x a m p l e

With this code, moving the mouse over the form causes drawing to follow the mouse,
even before the mouse button is pressed.

Mouse-move events occur even when you haven’t pressed the mouse button.

If you want to track whether there is a mouse button pressed, you need to add an
object field to the form object.

Adding a field to a form object to track mouse actions

To track whether a mouse button was pressed, you must add an object field to the
form object. When you add a component to a form, Kylix adds a field that represents
that component to the form object, so that you can refer to the component by the
name of its field. You can also add your own fields to forms by editing the type
declaration in the form unit’s header file.

In the following example, the form needs to track whether the user has pressed a
mouse button. To do that, it adds a Boolean field and sets its value when the user
presses the mouse button.

To add a field to an object, edit the object’s type definition, specifying the field
identifier and type after the public directive at the bottom of the declaration.

Kylix “owns” any declarations before the public directive: that’s where it puts the
fields that represent controls and the methods that respond to events.

The following code gives a form a field called Drawing of type Boolean, in the form
object’s declaration. It also adds two fields to store points Origin and MovePt of
typeTPoint.

type
TForm1 = class(TForm)
procedure FormMouseDown(Sender: TObject; Button: TMouseButton;

Shift: TShiftState; X, Y: Integer);
procedure FormMouseUp(Sender: TObject; Button: TMouseButton;

Shift: TShiftState; X, Y: Integer);
procedure FormMouseMove(Sender: TObject; Button: TMouseButton;

Shift: TShiftState; X, Y: Integer);
public

Drawing: Boolean;{ field to track whether button was pressed }
Origin, MovePt: TPoint;{ fields to store points }

end;

When you have a Drawing field to track whether to draw, set it to True when the user
presses the mouse button, and False when the user releases it:

procedure TForm1.FormMouseDown(Sender: TObject; Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);

begin
Drawing := True;{ set the Drawing flag }

Canvas.MoveTo(X, Y);
end;
procedure TForm1.FormMouseUp(Sender: TObject; Button: TMouseButton;

Shift: TShiftState; X, Y: Integer);
begin

8-26 D e v e l o p e r ’ s G u i d e

R u b b e r b a n d i n g e x a m p l e

Canvas.LineTo(X, Y);
Drawing := False;{ clear the Drawing flag }

end;

Then you can modify the OnMouseMove event handler to draw only when Drawing is
True:

procedure TForm1.FormMouseMove(Sender: TObject;Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);

begin
if Drawing then{ only draw if Drawing flag is set }
Canvas.LineTo(X, Y);

end;

This results in drawing only between the mouse-down and mouse-up events, but
you still get a scribbled line that tracks the mouse movements instead of a straight
line.

The problem is that each time you move the mouse, the mouse-move event handler
calls LineTo, which moves the pen position, so by the time you release the button,
you’ve lost the point where the straight line was supposed to start.

Refining line drawing

With fields in place to track various points, you can refine an application’s line
drawing.

Tracking the origin point
When drawing lines, track the point where the line starts with the Origin field.

Origin must be set to the point where the mouse-down event occurs, so the mouse-up
event handler can use Origin to place the beginning of the line, as in this code:

procedure TForm1.FormMouseDown(Sender: TObject; Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);

begin
Drawing := True;

Canvas.MoveTo(X, Y);
Origin := Point(X, Y);{ record where the line starts }

end;
procedure TForm1.FormMouseUp(Sender: TObject; Button: TMouseButton;

Shift: TShiftState; X, Y: Integer);
begin

Canvas.MoveTo(Origin.X, Origin.Y);{ move pen to starting point }
Canvas.LineTo(X, Y);
Drawing := False;

end;

Those changes get the application to draw the final line again, but they do not draw
any intermediate actions--the application does not yet support “rubber banding.”

W o r k i n g w i t h g r a p h i c s 8-27

R u b b e r b a n d i n g e x a m p l e

Tracking movement
The problem with this example as the OnMouseMove event handler is currently
written is that it draws the line to the current mouse position from the last mouse
position, not from the original position. You can correct this by moving the drawing
position to the origin point, then drawing to the current point:

procedure TForm1.FormMouseMove(Sender: TObject;Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);

begin
if Drawing then
begin

Canvas.MoveTo(Origin.X, Origin.Y);{ move pen to starting point }
Canvas.LineTo(X, Y);

end;
end;

The above tracks the current mouse position, but the intermediate lines do not go
away, so you can hardly see the final line. The example needs to erase each line
before drawing the next one, by keeping track of where the previous one was. The
MovePt field allows you to do this.

MovePt must be set to the endpoint of each intermediate line, so you can use MovePt
and Origin to erase that line the next time a line is drawn:

procedure TForm1.FormMouseDown(Sender: TObject; Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);

begin
Drawing := True;

Canvas.MoveTo(X, Y);
Origin := Point(X, Y);
MovePt := Point(X, Y);{ keep track of where this move was }

end;
procedure TForm1.FormMouseMove(Sender: TObject;Button: TMouseButton;

Shift: TShiftState; X, Y: Integer);
begin

if Drawing then
begin

Canvas.Pen.Mode := pmNotXor;{ use XOR mode to draw/erase }
Canvas.MoveTo(Origin.X, Origin.Y);{ move pen back to origin }
Canvas.LineTo(MovePt.X, MovePt.Y);{ erase the old line }
Canvas.MoveTo(Origin.X, Origin.Y);{ start at origin again }
Canvas.LineTo(X, Y);{ draw the new line }

end;
MovePt := Point(X, Y);{ record point for next move }
Canvas.Pen.Mode := pmCopy;

end;

Now you get a “rubber band” effect when you draw the line. By changing the pen’s
mode to pmNotXor, you have it combine your line with the background pixels. When
you go to erase the line, you’re actually setting the pixels back to the way they were.
By changing the pen mode back to pmCopy (its default value) after drawing the lines,
you ensure that the pen is ready to do its final drawing when you release the mouse
button.

8-28 D e v e l o p e r ’ s G u i d e

W r i t i n g m u l t i - t h r e a d e d a p p l i c a t i o n s 9-1

C h a p t e r

9
Chapter9Writing multi-threaded applications

CLX provides several objects that make writing multi-threaded applications easier.
Multi-threaded applications are applications that include several simultaneous paths
of execution. While using multiple threads requires careful thought, it can enhance
your programs by

• Avoiding bottlenecks. With only one thread, a program must stop all execution
when waiting for slow processes such as accessing files on disk, communicating
with other machines, or displaying multimedia content. The CPU sits idle until the
process completes. With multiple threads, your application can continue execution
in separate threads while one thread waits for the results of a slow process.

• Organizing program behavior. Often, a program’s behavior can be organized into
several parallel processes that function independently. Use threads to launch a
single section of code simultaneously for each of these parallel cases. Use threads
to assign priorities to various program tasks so that you can give more CPU time
to more critical tasks.

• Multiprocessing. If the system running your program has multiple processors,
you can improve performance by dividing the work into several threads and
letting them run simultaneously on separate processors.

Note Linux is a multiprocessing operating system with Intel MP architecture. Processes
are separate tasks each with their own rights and responsibilities. Each individual
process runs in its own virtual address space and is not capable of interacting with
another process except through secure, kernel-managed mechanisms.

Defining thread objects
For most applications, you can use a thread object to represent an execution thread in
your application. Thread objects simplify writing multi-threaded applications by
encapsulating the most commonly needed uses of threads.

9-2 D e v e l o p e r ’ s G u i d e

D e f i n i n g t h r e a d o b j e c t s

Thread objects do not allow you to control the security attributes or stack size of your
threads. If you need to control these, you must use the BeginThread function. Even
when using BeginThread, you can still benefit from some of the thread
synchronization objects and methods described in “Coordinating threads” on
page 9-6. For more information on using BeginThread, see the online help.

To use a thread object in your application, you must create a new descendant of
TThread. To create a descendant of TThread, choose File|New from the main menu. In
the new objects dialog box, select Thread Object. You are prompted to provide a class
name for your new thread object. After you provide the name, Kylix creates a new
unit file to implement the thread.

Note Unlike most dialog boxes in the IDE that require a class name, the New Thread
Object dialog does not automatically prepend a ‘T’ to the front of the class name you
provide.

The automatically generated unit file contains the skeleton code for your new thread
object. If you named your thread TMyThread, it would look like the following:

unit Unit2;
interface
uses

Classes;
type

TMyThread = class(TThread)
private

{ Private declarations }
protected

procedure Execute; override;
end;

implementation
{ TMyThread }
procedure TMyThread.Execute;
begin

{ Place thread code here }
end;
end.

You must fill in the code for the Execute method. These steps are described in the
following sections.

Initializing the thread

If you want to write initialization code for your new thread class, you must override
the Create method. Add a new constructor to the declaration of your thread class and
write the initialization code as its implementation. This is where you can assign a
default priority for your thread and indicate whether it should be freed automatically
when it finishes executing.

Assigning a default priority
Priority indicates how much preference the thread gets when the operating system
schedules CPU time among all the threads in your application. Use a high priority

W r i t i n g m u l t i - t h r e a d e d a p p l i c a t i o n s 9-3

D e f i n i n g t h r e a d o b j e c t s

thread to handle time critical tasks, and a low priority thread to perform other tasks.
To indicate the priority of your thread object, set the Priority property.

Priority values are integers in Linux where a lower number indicates a higher
priority.

Warning Boosting the thread priority of a CPU intensive operation may “starve” other threads
in the application. Only apply priority boosts to threads that spend most of their time
waiting for external events.

The following code shows the constructor of a low-priority thread that performs
background tasks which should not interfere with the rest of the application’s
performance:

constructor TMyThread.Create(CreateSuspended: Boolean);
begin

inherited Create(CreateSuspended);
Priority := tpIdle;

end;

Indicating when threads are freed
Usually, when threads finish their operation, they can simply be freed. In this case, it
is easiest to let the thread object free itself. To do this, set the FreeOnTerminate
property to True.

There are times, however, when the termination of a thread must be coordinated
with other threads. For example, you may be waiting for one thread to return a value
before performing an action in another thread. To do this, you do not want to free the
first thread until the second has received the return value. You can handle this
situation by setting FreeOnTerminate to False and then explicitly freeing the first
thread from the second.

Writing the thread function

The Execute method is your thread function. You can think of it as a program that is
launched by your application, except that it shares the same process space. Writing
the thread function is a little trickier than writing a separate program because you
must make sure that you don’t overwrite memory that is used by other threads in
your application. On the other hand, because the thread shares the same process
space with other threads, you can use the shared memory to communicate between
threads.

Using the main CLX thread
When you use objects from the CLX object hierarchy, their properties and methods
are not guaranteed to be thread-safe. That is, accessing properties or executing
methods may perform some actions that use memory which is not protected from the
actions of other threads. Because of this, a main CLX thread is set aside for access of
CLX objects.

If all objects access their properties and execute their methods within this single
thread, you need not worry about your objects interfering with each other. To use the

9-4 D e v e l o p e r ’ s G u i d e

D e f i n i n g t h r e a d o b j e c t s

main CLX thread, create a separate routine that performs the required actions. Call
this separate routine from within your thread’s Synchronize method. For example:

procedure TMyThread.PushTheButton;
begin

Button1.Click;
end;
ƒ
procedure TMyThread.Execute;
begin

ƒ
Synchronize(PushTheButton);
ƒ

end;

Synchronize waits for the main CLX thread to enter the message loop and then
executes the passed method.

Note Because Synchronize uses the message loop, it does not work in console applications.
You must use other mechanisms, such as critical sections, to protect access to CLX
objects in console applications.

You do not always need to use the main CLX thread. Some objects are thread-aware.
Omitting the use of the Synchronize method when you know an object’s methods are
thread-safe will improve performance because you don’t need to wait for the CLX
thread to enter its message loop. You do not need to use the Synchronize method in
the following situations:

• Data access components are thread-safe as follows: for dbDirect, as long as the
vendor client library is thread-safe, the dbDirect components will be thread-safe.

When using data access components, you must wrap all calls that involve data-
aware controls in the Synchronize method. Thus, for example, you need to
synchronize calls that link a data control to a dataset by setting the DataSet
property of the data source object, but you don’t need to synchronize to access the
data in a field of the dataset.

• VisualCLX objects are not thread-safe.

• DataCLX objects are thread-safe.

• Graphics objects are thread-safe. You do not need to use the main CLX thread to
access TFont, TPen, TBrush, TBitmap, TDrawing, or TIcon. Canvas objects can be
used outside the Synchronize method by locking them (see “Locking objects” on
page 9-6).

• While list objects are not thread-safe, you can use a thread-safe version,
TThreadList, instead of TList.

Call the CheckSynchronize routine periodically within the main thread of your
application so that background threads can synchronize their execution with the
main thread. The best place to call CheckSynchronize is when the application is idle
(for example, from an OnIdle event handler). This ensures that it is safe to make
method calls in the background thread.

W r i t i n g m u l t i - t h r e a d e d a p p l i c a t i o n s 9-5

D e f i n i n g t h r e a d o b j e c t s

Using thread-local variables
Your Execute method and any of the routines it calls have their own local variables,
just like any other Object Pascal routines. These routines also can access any global
variables. In fact, global variables provide a powerful mechanism for communicating
between threads.

Sometimes, however, you may want to use variables that are global to all the routines
running in your thread, but not shared with other instances of the same thread class.
You can do this by declaring thread-local variables. Make a variable thread-local by
declaring it in a threadvar section. For example,

threadvar
x : integer;

declares an integer type variable that is private to each thread in the application, but
global within each thread.

The threadvar section can only be used for global variables. Pointer and Function
variables can’t be thread variables. Types that use copy-on-write semantics, such as
long strings don’t work as thread variables either.

Checking for termination by other threads
Your thread begins running when the Execute method is called (see “Executing
thread objects” on page 9-10) and continues until Execute finishes. This reflects the
model that the thread performs a specific task, and then stops when it is finished.
Sometimes, however, an application needs a thread to execute until some external
criterion is satisfied.

You can allow other threads to signal that it is time for your thread to finish
executing by checking the Terminated property. When another thread tries to
terminate your thread, it calls the Terminate method. Terminate sets your thread’s
Terminated property to True. It is up to your Execute method to implement the
Terminate method by checking and responding to the Terminated property. The
following example shows one way to do this:

procedure TMyThread.Execute;
begin

while not Terminated do
PerformSomeTask;

end;

Handling exceptions in the thread function
The Execute method must catch all exceptions that occur in the thread. If you fail to
catch an exception in your thread function, your application can cause access
violations. This may not be obvious when you are developing your application,
because the IDE catches the exception, but when you run your application outside of
the debugger, the exception will cause a runtime error and the application will stop
running.

To catch the exceptions that occur inside your thread function, add a try...except
block to the implementation of the Execute method:

procedure TMyThread.Execute;

9-6 D e v e l o p e r ’ s G u i d e

C o o r d i n a t i n g t h r e a d s

begin
try

while not Terminated do
PerformSomeTask;

except
{ do something with exceptions }

end;
end;

Writing clean-up code

You can centralize the code that cleans up when your thread finishes executing. Just
before a thread shuts down, an OnTerminate event occurs. Put any clean-up code in
the OnTerminate event handler to ensure that it is always executed, no matter what
execution path the Execute method follows.

The OnTerminate event handler is not run as part of your thread. Instead, it is run in
the context of the main CLX thread of your application. This has two implications:

• You can’t use any thread-local variables in an OnTerminate event handler (unless
you want the main CLX thread values).

• You can safely access any components and CLX objects from the OnTerminate
event handler without worrying about clashing with other threads.

For more information about the main CLX thread, see “Using the main CLX thread”
on page 9-3.

Coordinating threads
When writing the code that runs when your thread is executed, you must consider
the behavior of other threads that may be executing simultaneously. In particular,
care must be taken to avoid two threads trying to use the same global object or
variable at the same time. In addition, the code in one thread can depend on the
results of tasks performed by other threads.

Avoiding simultaneous access

To avoid clashing with other threads when accessing global objects or variables, you
may need to block the execution of other threads until your thread code has finished
an operation. Be careful not to block other execution threads unnecessarily. Doing so
can cause performance to degrade seriously and negate most of the advantages of
using multiple threads.

Locking objects
Some objects have built-in locking that prevents the execution of other threads from
using that object instance.

W r i t i n g m u l t i - t h r e a d e d a p p l i c a t i o n s 9-7

C o o r d i n a t i n g t h r e a d s

For example, canvas objects (TCanvas and descendants) have a Lock method that
prevents other threads from accessing the canvas until the Unlock method is called.

CLX also includes a thread-safe list object, TThreadList. Calling TThreadList.LockList
returns the list object while also blocking other execution threads from using the list
until the UnlockList method is called. Calls to TCanvas.Lock or TThreadList.LockList can
be safely nested. The lock is not released until the last locking call is matched with a
corresponding unlock call in the same thread.

Using critical sections
If objects do not provide built-in locking, you can use a critical section. Critical
sections work like gates that allow only a single thread to enter at a time. To use a
critical section, create a global instance of TCriticalSection. TCriticalSection has two
methods, Acquire (which blocks other threads from executing the section) and Release
(which removes the block).

Each critical section is associated with the global memory you want to protect. Every
thread that accesses that global memory should first use the Acquire method to
ensure that no other thread is using it. When finished, threads call the Release method
so that other threads can access the global memory by calling Acquire.

Warning Critical sections only work if every thread uses them to access the associated global
memory. Threads that ignore the critical section and access the global memory
without calling Acquire can introduce problems of simultaneous access.

For example, consider an application that has a global critical section variable,
LockXY, that blocks access to global variables X and Y. Any thread that uses X or Y
must surround that use with calls to the critical section such as the following:

LockXY.Acquire; { lock out other threads }
try

Y := sin(X);
finally

LockXY.Release;
end;

Using the multi-read exclusive-write synchronizer
When you use critical sections to protect global memory, only one thread can use the
memory at a time. This can be more protection than you need, especially if you have
an object or variable that must be read often but to which you very seldom write.
There is no danger in multiple threads reading the same memory simultaneously, as
long as no thread is writing to it.

When you have some global memory that is read often, but to which threads
occasionally write, you can protect it using TMultiReadExclusiveWriteSynchronizer.
This object acts like a critical section, but allows multiple threads to read the memory
it protects as long as no thread is writing to it. Threads must have exclusive access to
write to memory protected by TMultiReadExclusiveWriteSynchronizer.

To use a multi-read exclusive-write synchronizer, create a global instance of
TMultiReadExclusiveWriteSynchronizer that is associated with the global memory you
want to protect. Every thread that reads from this memory must first call the

9-8 D e v e l o p e r ’ s G u i d e

C o o r d i n a t i n g t h r e a d s

BeginRead method. BeginRead ensures that no other thread is currently writing to the
memory. When a thread finishes reading the protected memory, it calls the EndRead
method. Any thread that writes to the protected memory must call BeginWrite first.
BeginWrite ensures that no other thread is currently reading or writing to the
memory. When a thread finishes writing to the protected memory, it calls the
EndWrite method, so that threads waiting to read the memory can begin.

Warning Like critical sections, the multi-read exclusive-write synchronizer only works if every
thread uses it to access the associated global memory. Threads that ignore the
synchronizer and access the global memory without calling BeginRead or BeginWrite
introduce problems of simultaneous access.

Other techniques for sharing memory
When using objects in CLX, use the main CLX thread to execute your code. Using the
main CLX thread ensures that the object does not indirectly access any memory that
is also used by CLX objects in other threads. See “Using the main CLX thread” on
page 9-3 for more information on the main CLX thread.

If the global memory does not need to be shared by multiple threads, consider using
thread-local variables instead of global variables. By using thread-local variables,
your thread does not need to wait for or lock out any other threads. See “Using
thread-local variables” on page 9-5 for more information about thread-local
variables.

Waiting for other threads

If your thread must wait for another thread to finish some task, you can tell your
thread to temporarily suspend execution. You can either wait for another thread to
completely finish executing, or you can wait for another thread to signal that it has
completed a task.

Waiting for a thread to finish executing
To wait for another thread to finish executing, use the WaitFor method of that other
thread. WaitFor doesn’t return until the other thread terminates, either by finishing
its own Execute method or by terminating due to an exception. For example, the
following code waits until another thread fills a thread list object before accessing the
objects in the list:

if ListFillingThread.WaitFor then
begin

with ThreadList1.LockList do
begin

for I := 0 to Count - 1 do
ProcessItem(Items[I]);

end;
ThreadList1.UnlockList;

end;

In the previous example, the list items were only accessed when the WaitFor method
indicated that the list was successfully filled. This return value must be assigned by

W r i t i n g m u l t i - t h r e a d e d a p p l i c a t i o n s 9-9

C o o r d i n a t i n g t h r e a d s

the Execute method of the thread that was waited for. However, because threads that
call WaitFor want to know the result of thread execution, not code that calls Execute,
the Execute method does not return any value. Instead, the Execute method sets the
ReturnValue property. ReturnValue is then returned by the WaitFor method when it is
called by other threads. Return values are integers. Your application determines their
meaning.

Waiting for a task to be completed
Sometimes, you need to wait for a thread to finish some operation rather than
waiting for a particular thread to complete execution. To do this, use an event object.
Event objects (TEvent) should be created with global scope so that they can act like
signals that are visible to all threads.

When a thread completes an operation that other threads depend on, it calls
TEvent.SetEvent. SetEvent turns on the signal, so any other thread that checks will
know that the operation has completed. To turn off the signal, use the ResetEvent
method.

For example, consider a situation where you must wait for several threads to
complete their execution rather than a single thread. Because you don’t know which
thread will finish last, you can’t simply use the WaitFor method of one of the threads.
Instead, you can have each thread increment a counter when it is finished, and have
the last thread signal that they are all done by setting an event.

The following code shows the end of the OnTerminate event handler for all of the
threads that must complete. CounterGuard is a global critical section object that
prevents multiple threads from using the counter at the same time. Counter is a global
variable that counts the number of threads that have completed.

procedure TDataModule.TaskThreadTerminate(Sender: TObject);
begin

ƒ
CounterGuard.Acquire; { obtain a lock on the counter }
Dec(Counter); { decrement the global counter variable }
if Counter = 0 then

Event1.SetEvent; { signal if this is the last thread }
CounterGuard.Release; { release the lock on the counter }
ƒ

end;

The main thread initializes the Counter variable, launches the task threads, and waits
for the signal that they are all done by calling the WaitFor method. WaitFor waits for a
specified time period for the signal to be set, and returns one of the values from Table
9.1.

Table 9.1 WaitFor return values

Value Meaning

wrSignaled The signal of the event was set.

wrTimeout The specified time elapsed without the signal being set.

wrAbandoned The event object was destroyed before the timeout period elapsed.

wrError An error occurred while waiting.

9-10 D e v e l o p e r ’ s G u i d e

E x e c u t i n g t h r e a d o b j e c t s

The following shows how the main thread launches the task threads and then
resumes when they have all completed:

Event1.ResetEvent; { clear the event before launching the threads }
for i := 1 to Counter do

TaskThread.Create(False); { create and launch task threads }
if Event1.WaitFor(20000) <> wrSignaled then

raise Exception;
{ now continue with the main thread. All task threads have finished }

Note If you do not want to stop waiting for an event after a specified time period, pass the
WaitFor method a parameter value of INFINITE. Be careful when using INFINITE,
because your thread will hang if the anticipated signal is never received.

Executing thread objects
Once you have implemented a thread class by giving it an Execute method, you can
use it in your application to launch the code in the Execute method. To use a thread,
first create an instance of the thread class. You can create a thread instance that starts
running immediately, or you can create your thread in a suspended state so that it
only begins when you call the Resume method. To create a thread so that it starts up
immediately, set the constructor’s CreateSuspended parameter to False. For example,
the following line creates a thread and starts its execution:

SecondProcess := TMyThread.Create(false); {create and run the thread }

Warning Do not create too many threads in your application. The overhead in managing
multiple threads can impact performance. The recommended limit is 16 threads per
process on single processor systems. This limit assumes that most of those threads
are waiting for external events. If all threads are active, you will want to use fewer.

You can create multiple instances of the same thread type to execute parallel code.
For example, you can launch a new instance of a thread in response to some user
action, allowing each thread to perform the expected response.

Overriding the default priority

When the amount of CPU time the thread should receive is implicit in the thread’s
task, its priority is set in the constructor. This is described in “Initializing the thread”
on page 9-2. However, if the thread priority varies depending on when the thread is
executed, create the thread in a suspended state, set the priority, and then start the
thread running:

SecondProcess := TMyThread.Create(True); { create but don’t run }
SecondProcess.Priority := tpLower; { set the priority lower than normal }
SecondProcess.Resume; { now run the thread }

W r i t i n g m u l t i - t h r e a d e d a p p l i c a t i o n s 9-11

D e b u g g i n g m u l t i - t h r e a d e d a p p l i c a t i o n s

Starting and stopping threads

A thread can be started and stopped any number of times before it finishes executing.
To stop a thread temporarily, call its Suspend method. When it is safe for the thread to
resume, call its Resume method. Suspend increases an internal counter, so you can nest
calls to Suspend and Resume. The thread does not resume execution until all
suspensions have been matched by a call to Resume.

You can request that a thread end execution prematurely by calling the Terminate
method. Terminate sets the thread’s Terminated property to True. If you have
implemented the Execute method properly, it checks the Terminated property
periodically, and stops execution when Terminated is True.

Debugging multi-threaded applications
When debugging multi-threaded applications, it can be confusing trying to keep
track of the status of all the threads that are executing simultaneously, or even to
determine which thread is executing when you stop at a breakpoint. You can use the
Thread Status box to help you keep track of and manipulate all the threads in your
application. To display the Thread status box, choose View|Threads from the main
menu.

When a debug event occurs (breakpoint, exception, paused), the Thread Status view
indicates the status of each thread. Right-click the Thread Status box to access
commands that locate the corresponding source location or make a different thread
current. When a thread is marked as current, the next step or run operation is relative
to that thread.

The Thread Status box lists all your application’s execution threads by their thread
ID. If you are using thread objects, the thread ID is the value of the ThreadID
property. If you are not using thread objects, the thread ID for each thread is returned
by the call to BeginThread.

For additional details on the Thread Status box, see online Help.

9-12 D e v e l o p e r ’ s G u i d e

D e v e l o p i n g c r o s s - p l a t f o r m a p p l i c a t i o n s 10-1

C h a p t e r

10
Chapter10Developing cross-platform

applications
You can develop cross-platform 32-bit applications that run on both the Linux and
Windows operating systems. To do this, you can start with an existing Windows
application and modify it, or you can create a new application by following the
recommended practices for writing platform-independent code.

This chapter describes how to port Kylix Windows applications to Linux and
includes information on the differences between developing applications on
Windows and Linux. It also provides guidelines for writing code that is portable
between the different environments.

Note Most applications developed for Linux (with no Linux-specific API calls) will run on
Linux and, if recompiled, can run on Windows when CLX is available on Windows.

Porting Windows applications to Linux
If you have Kylix applications that were written for the Windows environment, you
can port them to a Linux environment. How easy it will be depends on the nature
and complexity of the application and how many Windows dependencies there are.

The following sections describe some of the major differences between the Windows
and Linux environments and provide guidelines on how to get started porting an
application.

10-2 D e v e l o p e r ’ s G u i d e

P o r t i n g W i n d o w s a p p l i c a t i o n s t o L i n u x

Porting techniques

The following are different approaches you can take to port an application from one
platform to another:

Platform-specific ports
Platform-specific ports tend to be time-consuming, expensive, and only produce a
single targeted result. They create different code bases, which makes them
particularly difficult to maintain. However, each port is designed for the specific
operating system and can take advantage of platform-specific functionality. So, the
application typically runs faster.

Cross-platform ports
Cross-platform ports generally provide the quickest technique and the ported
applications target multiple platforms. In reality, the amount of work involved in
developing cross-platform applications is highly dependent on the existing code. If
code has been developed without regard for platform independence, you may run
into scenarios where platform-independent “logic” and platform-dependent
“implementation” are mixed together.

The cross-platform approach is the preferable approach because business logic is
expressed in platform-independent terms. Some services are abstracted behind an
internal interface that looks the same on all platforms, but has a specific
implementation on each. Kylix’s runtime library is an example of this: The interface is
very similar on both platforms, although the implementation may be vastly different.
You should separate cross-platform parts, then implement specific services on top. In
the end, this approach is the least expensive solution, because of reduced
maintenance costs due to a largely shared source base and an improved application
architecture.

Windows emulation ports
Windows emulation is the most complex method and it can be very costly, but the
resulting Linux application will look most similar to an existing Windows
application. This approach involves implementing Windows functionality on Linux.
From an engineering point of view, this is solution is very hard to maintain.

Porting your application

If you are porting an application to Linux that you want to run on Linux only, you
may choose to remove Windows-specific features entirely. If, however, you are

Table 10.1 Porting techniques

Technique Description

Platform-specific port Targets an operating system and underlying APIs

Cross-platform port Targets a cross-platform API

Windows emulation Leave the code alone and port the API it uses

D e v e l o p i n g c r o s s - p l a t f o r m a p p l i c a t i o n s 10-3

P o r t i n g W i n d o w s a p p l i c a t i o n s t o L i n u x

porting an application that you want to run on both platforms, you need to modify
your code or use $IFDEFs to indicate sections of the code that apply specifically to
Windows or Linux.

Follow these general steps to port your Windows application to Linux:

1 Move your Kylix Windows application source files and other project-related files
onto your Linux computer. (You can share source files between Linux and
Windows if you want the program to run on both platforms. Or you can transfer
the files using a tool such as ftp using the ASCII mode.)

Source files should include your unit files (.pas files), project file (.dpr file), and
any package files (.dpk files). Project-related files include form files (.dfm files),
resource files (.res files), and project options files (.dof files). If you want to
compile your application from the command line only (rather than using the IDE),
you’ll need the configuration file (.cfg file).

2 If you plan to single-source the application for use on both Windows and Linux,
copy .dfm files to .xfm files of the same name (for example, rename unit1.dfm to
unit1.xfm). Rename (or $IFDEF) the reference to the .dfm file in the unit file(s)
from {$R *.dfm} to {$R *.xfm}. (The .dfm file will work on Kylix but will be altered
so it may not work on Delphi.)

3 Change (or $IFDEF) all uses clauses so they refer to the correct units in Kylix. (See
“Kylix and Delphi unit comparison” on page 10-8 for information.)

4 Rewrite any code that does not require Windows dependencies making the code
more platform-independent. Do this using the runtime library routines and
constants. (See “Writing portable code” on page 10-15 for information.)

5 Find equivalent functionality for features that are different on Linux. Use $IFDEFs
(sparingly) to delimit Windows-specific information. (See “Using conditional
directives” on page 10-16 for information.)

For example, you can $IFDEF platform-specific code in your source files:

[$IFDEF MSWINDOWS]
IniFile.LoadfromFile(‘c:\x.txt’);
[$ENDIF]

[$IFDEF LINUX]
IniFile.LoadfromFile(‘/home/name/x.txt’);
[$ENDIF]

6 Search for references to pathnames in all the project files.

• Pathnames in Linux use a forward slash / as a delimiter (for example, /usr/lib)
and files may be located in different directories on the Linux system. Use the
PathDelim constant (in SysUtils) to specify the path delimiter that is
appropriate for the system. Determine the correct location for any files on
Linux.

• Change references to drive letters (for example, C:\) and code that looks for
drive letters by looking for a colon at position 2 in the string. Use the
DriveDelim constant (in SysUtils) to specify the location in terms that are
appropriate for the system.

10-4 D e v e l o p e r ’ s G u i d e

P o r t i n g W i n d o w s a p p l i c a t i o n s t o L i n u x

• In places where you specify multiple paths, change the path separator from
semicolon (;) to colon (:). Use the PathSep constant (in SysUtils) to specify the
path separator that is appropriate for the system.

• Because file names are case-sensitive in Linux, make sure that your application
doesn’t change the case of file names or assume a certain case.

7 Compile the project on Linux. Review any error messages to see where additional
changes need to be made.

CLX versus VCL

Kylix uses the Borland Component Library for Cross Platform (CLX) in place of the
Visual Component Library (VCL). Within the VCL, many controls provide an easy
way to access Windows controls. Similarly, CLX provides access to Qt widgets (from
window + gadget) in the Qt shared libraries.

CLX looks much like the VCL. Most of the component names are the same, many
properties have the same names. In addition, CLX, as well as the VCL, will be
available on Windows (check the latest release of Delphi to determine availability).

CLX components can be grouped into the following parts:

Widgets in VisualCLX replace Windows controls. In CLX, TWidgetControl replaces
the VCL's TWinControl. Other components (such as TScrollingWidget) have
corresponding names. However, you do not need to change occurrences of
TWinControl to TWidgetControl. Type declarations, such as the following

TWinControl = TWidgetControl;

appear in the QControls.pas source file to simplify sharing of source code.
TWidgetControl and its descendants all have a Handle property that is a reference to
the Qt object; and a Hooks property, which is a reference to the hook objects that
handle the event mechanism.

Unit names and locations of some classes are different for CLX. You will need to
modify uses clauses to eliminate references to units that don’t exist on Kylix and to
change the names to Kylix units. (Most project files and the interface sections of most

Table 10.2 CLX parts

Part Description

VisualCLX Native cross-platform GUI components and graphics. The components
in this area may differ on Linux and Windows.

DataCLX Client data-access components. The components in this area are a subset
of the local, client/server, and n-tier based on client datasets. The code is
the same on Linux and Windows.

NetCLX Internet components including Apache DSO and CGI WebBroker. These
are the same on Linux and Windows.

BaseCLX Runtime Library up to and including Classes.pas. The code is the same
on Linux and Windows.

D e v e l o p i n g c r o s s - p l a t f o r m a p p l i c a t i o n s 10-5

P o r t i n g W i n d o w s a p p l i c a t i o n s t o L i n u x

units contain a uses clause. The implementation section of a unit can also contain its
own uses clause.)

What CLX does differently

Although much of CLX is implemented so that it is consistent with the VCL, some
features are implemented differently. This section provides an overview of some of
the differences between CLX and VCL implementations.

Look and feel
The visual environment in Linux looks somewhat different than it does in Windows.
The look of dialogs may differ depending on which window manager is in use (for
example, if using KDE or Gnome).

Styles
Application-wide “styles” can be used in addition to the OwnerDraw properties. You
can use the TApplication.Style property to specify the look and feel of an application's
graphical elements. Using styles, a widget or an application can take on a whole new
look. You can still use owner draw on Linux but using styles is recommended.

Variants
All of the variant/safe array code that was in System is now in two new units:

• Variants.pas

• VarUtils.pas

The operating system dependent code is now isolated in VarUtils.pas, and it also
contains generic versions of everything needed by Variants.pas. If you are porting
code from Windows that included Windows calls, you need to replace these calls to
calls into VarUtils.pas.

If you want to use variants, you must include the Variants unit to your uses clause.

VarIsEmpty does a simple test against varEmpty to see if a variant is clear, and on
Linux you need to use the VarIsClear function to clear a variant.

Custom variant data handler
You can define custom data types for variants. This introduces operator overloading
while the type is assigned to the variant. To create a new variant type, descend from
the class, TCustomVariantType, and instantiate your new variant type.

For an example, see VarCmplx.pas. This unit implements complex mathematics
support via custom variants. It supports the following variant operations: addition,
subtraction, multiplication, division (not integer division), and negation. It also
handles conversion to and from: SmallInt, Integer, Single, Double, Currency, Date,
Boolean, Byte, OleStr, and String. Any of the float/ordinal conversion will lose any
imaginary portion of the complex value.

10-6 D e v e l o p e r ’ s G u i d e

P o r t i n g W i n d o w s a p p l i c a t i o n s t o L i n u x

No registry
Linux does not use a registry to store configuration information. Instead, you use text
configuration files and environment variables instead of using the registry. System
configuration files on Linux are often located in /etc, for example, /etc/hosts. Other
user profiles are located in hidden files (preceded with a dot), such as .bashrc, which
holds bash shell settings or .XDefaults, which is used to set defaults for X programs.

Registry-dependent code may be changed to using a local configuration text file
instead stored, for example, in the same directory as the application. Writing a unit
with all the registry functions but diverting all output to a local configuration file is
one way you could handle a former dependency on the registry.

To place information in a global location, you could store a global configuration file
in the root directory. This makes it so all of your applications can access the same
configuration file. However, you must be sure that the file permissions and access
rights are set up correctly.

You can also use ini files as in Windows. However, in Kylix, you need to use
TMemIniFile instead of TRegIniFile.

Other differences
Kylix implementation also has some other differences that affect the way your
application works. This section describes some of those differences.

ToggleButton doesn't get toggled by the Enter key. Pressing Enter doesn't simulate a
click event on Kylix as it does in Delphi.

TColorDialog does not have a TColorDialog.Options property to set. Therefore, you
cannot customize the appearance and functionality of the color selection dialog. Also,
TColordialog is not always modal. You can manipulate the title bar of an application
with a modal dialog on Kylix (that is, you can select the parent form of the color
dialog and do things like maximizing it while the color dialog is open).

At runtime, combo boxes work differently on Kylix than they do in Delphi. On Kylix
(but not on Delphi), you can add a item to a drop down by entering text and pressing
Enter in the edit field of a combo box. You can turn this feature off by setting
InsertMode to ciNone. It is also possible to add empty (no string) items to the list in
the combo box. Also, if you keep pressing the down arrow key, it does not stop at the
last item of the combo box list. It cycles around to the top again.

TCustomEdit does not implement Undo, ClearUndo, or CanUndo. So there is no way to
programmatically undo edits. But application users can undo their edits in an edit
box (TEdit) at runtime by right-clicking on the edit box and choosing the Undo
command.

Missing in CLX

The following general features are missing in CLX:

• Bi-directional properties (BidiMode) for right-to-left text output or input

D e v e l o p i n g c r o s s - p l a t f o r m a p p l i c a t i o n s 10-7

P o r t i n g W i n d o w s a p p l i c a t i o n s t o L i n u x

• Generic bevel properties on common controls (note that some objects still have
bevel properties)

• Docking properties and methods

• Backward compatibility features such components on the Win3.1 tab and Ctl3D

• DragCursor and DragKind (but drag and drop is included)

Features that will not port

Some Windows-specific features supported on the Windows version of Kylix will not
transport directly to Linux environments. Features, such as COM, ActiveX, OLE,
BDE, and ADO are dependent on Windows technology and are not available in
Kylix. The following table lists features that are different on the two platforms and
lists the equivalent Kylix feature, if one is available.

The Kylix equivalent of Windows DLLs are shared object libraries (.so files), which
contain position-independent code (PIC). This has the following consequences:

• Variables referring to an absolute address in memory (using the absolute
directive) are not allowed.

• Global memory references and calls to external functions are made relative to the
EBX register, which must be preserved across calls.

You only need to worry about global memory references and calls to external
functions if using assembler—Kylix generates the correct code. (For information, see
“Including inline assembler code” on page 10-18.)

Kylix library modules and packages are implemented using .so files.

Table 10.3 Changed or different features

Delphi/Windows feature Kylix/Linux feature

Windows API calls CLX methods, Qt calls, libc calls, or calls to other system
libraries

COM components (including ActiveX) Not available

ADO components Regular database components available

Windows messaging Qt events

Winsock BSD sockets

Messaging Application Programming
Interface (MAPI) includes a standard
library of Windows messaging
functions.

SMTP/POP3 let you send, receive, and save email
messages

Legacy components (such as items on
the Win 3.1 component palette tab)

Not available

10-8 D e v e l o p e r ’ s G u i d e

P o r t i n g W i n d o w s a p p l i c a t i o n s t o L i n u x

Kylix and Delphi unit comparison

All of the objects in the VCL or CLX are defined in unit files (.pas source files). For
example, you can find the implementation of TObject in the System unit, and the
Classes unit defines the base TComponent class. When you drop an object onto a form
or use an object within your application, the name of the unit is added to the uses
clause which tells the compiler which units to link into the project.

This section provides tables that list the units that are in Kylix and the comparable
unit in Delphi, list the units that are in Kylix only, and list the units that are in Delphi
only. If a unit contained in Kylix will appear in future version of Delphi, that is stated
in the Delphi unit column.

The following table lists Delphi units and the comparable Kylix units:

Table 10.4 Units in Kylix and Delphi

Delphi units Kylix units

ActnList QActnList

Buttons QButtons

CheckLst QCheckLst

Classes Classes

Clipbrd QClipbrd

ComCtrls QComCtrls

Consts Consts, QConsts, and
RTLConsts

Contnrs Contnrs

Controls QControls

ConvUtils (future
Delphi)

ConvUtils

DateUtils (future Delphi) DateUtils

DB DB

DBActns QDBActns

DBClient DBClient

DBCommon DBCommon

DBConnAdmin
(future Delphi)

DBConnAdmin

DBConsts DBConsts

DBCtrls QDBCtrls

DBGrids QDBGrids

DBLocal DBLocal

DBLocalS DBLocalS

DBLogDlg DBLogDlg

DBXpress DBXpress

Dialogs QDialogs

DSIntf DSIntf

D e v e l o p i n g c r o s s - p l a t f o r m a p p l i c a t i o n s 10-9

P o r t i n g W i n d o w s a p p l i c a t i o n s t o L i n u x

ExtCtrls QExtCtrls

FMTBCD (future Delphi) FMTBCD

Forms QForms

Graphics QGraphics

Grids QGrids

HelpIntfs HelpIntfs

ImgList QImgList

IniFiles IniFiles

Mask QMask

MaskUtils MaskUtils

Masks Masks

Math Math

Menus QMenus

Midas Midas

MidConst MidConst

Printers QPrinters

Provider Provider

Qt (future Delphi) Qt

Search (future Delphi) QSearch

Sockets (future Delphi) Sockets

StdActns QStdActns

StdCtrls QStdCtrls

SqlConst SqlConst

SqlExpr SqlExpr

SqlTimSt SqlTimSt

StdConvs (future
Delphi)

StdConvs

SyncObjs SyncObjs

SysConst SysConst

SysInit SysInit

System System

SysUtils SysUtils

Types Types and QTypes

TypInfo TypInfo

VarCmplx VarCmplx

Variants (future Delphi) Variants

VarUtils (future Delphi) VarUtils

Table 10.4 Units in Kylix and Delphi (continued)

Delphi units Kylix units

10-10 D e v e l o p e r ’ s G u i d e

P o r t i n g W i n d o w s a p p l i c a t i o n s t o L i n u x

The following units are in Kylix but not in Windows:

The following Windows units are not included in Kylix mostly because they concern
Windows-specific features that are not available on Linux such as ADO, COM, and
the Borland Database Engine. The reason for the unit’s exclusion is listed.

Table 10.5 Units in Kylix, not in Delphi

Unit Description

DirSel Directory selection

QStyle GUI look and feel

Table 10.6 Units in Delphi, not in Kylix

Unit Reason for exclusion

ADOConst No ADO feature

ADODB No ADO feature

AppEvnts No TApplicationEvent object

AxCtrls No COM feature

BdeConst No BDE feature

ComStrs No COM feature

CorbaCon No Corba feature

CorbaStd No Corba feature

CorbaVCL No Corba feature

CtlPanel No Windows Control Panel support

DataBkr May appear later in upsell

DBCGrids No BDE feature

DBExcept No BDE feature

DBInpReq No BDE feature

DBLookup Obsolete

DbOleCtl No COM feature

DBPWDlg No BDE feature

DBTables No BDE feature

DdeMan No DDE feature

DRTable No BDE feature

ExtDlgs No picture dialogs

FileCtrl Obsolete

MConnect No COM feature

Messages Windows-specific area

MidasCon Obsolete

MPlayer Windows-specific media player

Mtsobj No COM feature

MtsRdm No COM feature

Mtx No COM feature

mxConsts No COM feature

D e v e l o p i n g c r o s s - p l a t f o r m a p p l i c a t i o n s 10-11

P o r t i n g W i n d o w s a p p l i c a t i o n s t o L i n u x

Differences in CLX object constructors

When a CLX object is created, either implicitly in the Forms Designer by placing that
object on the form or explicitly in code by using the Create method of the object, an
instance of the underlying associated widget is created also. The instance of the
widget is owned by this CLX object. When the CLX object is deleted by calling the
Free method or automatically deleted by the CLX object's parent container, the
underlying widget is also deleted. This is the same type of functionality that you see
in the VCL in Windows applications.

When you explicitly create a CLX object in code, by using the Create(AHandle)
method of the object, you are passing the instance of an existing Qt widget to the CLX
object to use during its construction. It is important to note that this CLX object does
not own the Qt widget that is passed to it. Therefore, when you call the Free method
after creating the object in this manner, only the CLX object is destroyed and not the
underlying Qt widget instance. This is different from the VCL.

Some CLX objects let you assume ownership of the underlying widget using the
OwnHandle method. After calling OwnHandle, if you delete the CLX object, the
underlying widget is destroyed as well.

ObjBrkr May appear later in upsell

OleConstMay No COM feature

OleCtnrs No COM feature

OleCtrls No COM feature

OLEDB No COM feature

OleServer No COM feature

Outline Obsolete

Registry Windows-specific registry support

ScktCnst Replaced by Sockets

ScktComp Replaced by Sockets

SConnect Unsupported connection protocols

SvcMgr NT Services support

Tabnotbk Obsolete

Tabs Obsolete

ToolWin No docking feature

VCLCom No COM feature

WebConst Windows-specific constants

Windows Windows-specific virtual key codes

Table 10.6 Units in Delphi, not in Kylix (continued)

Unit Reason for exclusion

10-12 D e v e l o p e r ’ s G u i d e

P o r t i n g W i n d o w s a p p l i c a t i o n s t o L i n u x

Sharing source files between Windows and Linux

If you want your application to run on both Windows and Linux, you can share the
source files making them accessible to both operating systems. You can do this many
ways such as placing the source files on a server that is accessible to both computers
or by using Samba on the Linux machine to provide access to files through Microsoft
network file sharing for both Linux and Windows. You can choose to keep the source
on Linux and create a shared drive on Linux. Or you can keep the source on
Windows and create a share on Windows for the Linux machine to access.

You can continue to develop and compile the file on Kylix using objects that are
supported by both VCL and CLX. When you are finished, you can compile on both
Linux and Windows.

Form files (.dfm files in Delphi) are called .xfm files in Kylix. If you want to single-
source your code, you should copy the .dfm from Windows to an .xfm on Linux,
maintaining both files. Otherwise, the .dfm file will be modified on Linux and may
no longer work on Windows. If you plan to write cross-platform applications, the
.xfm will work on versions of Delphi that support CLX.

Environmental differences between Windows and Linux

The following table lists some of the differences on Linux you need to be aware of if
you’re used to working in the Windows environment.

Table 10.7 Differences in the Linux operating environment

Difference Description

File name case sensitivity In Linux, a capital letter is not the same as a lowercase letter. The file
Test.txt is not the same file as test.txt. You need to pay close attention
to capitalization of file names on Linux.

Line ending characters On Windows, lines of text are terminated by CR/LF (that is, ASCII 13
+ ASCII 10), but on Linux it is LF. While the code editor in Kylix can
handle the difference, you should be aware of this when importing
code from Windows.

End of file character In DOS and Windows, the character value #26 (Ctrl-Z) is treated as
the end of the text file, even if there is data in the file after that
character. Linux has no special end of file character; the text data ends
at the end of the file.

Batch files/shell scripts The Linux equivalent of .bat files are shell scripts. A script is a text file
containing instructions, saved and made executable with the
command, chmod +x <scriptfile>. To execute it, type its name. (The
scripting language depends on the shell you are using on Linux. Bash
is commonly used.)

Command confirmation In DOS or Windows, if you try to delete a file or folder, it asks for
confirmation (“Are you sure you want to do that?”). Generally, Linux
won't ask; it will just do it. This makes it easy to accidentally destroy a
file or the entire file system. There is no way to undo a deletion on
Linux unless a file is backed up on another media.

Command feedback If a command succeeds on Linux, it redisplays the command prompt
without a status message.

D e v e l o p i n g c r o s s - p l a t f o r m a p p l i c a t i o n s 10-13

P o r t i n g W i n d o w s a p p l i c a t i o n s t o L i n u x

Command switches Linux uses a dash (-) to indicate command switches or a double dash
(--) for multiple character options where DOS uses a slash (/) or dash
(-).

Configuration files On Windows, configuration is done in the registry or in files such as
autoexec.bat.
On Linux, configuration files are created as hidden files starting with
a dot (.). Many are placed in the /etc directory and your home
directory.
Linux also uses environment variables such as LD_LIBRARY_PATH
(search path for libraries). Other important environment variables:
HOME Your home directory (/home/sam)
TERM Terminal type (xterm, vt100, console)
SHELL Path to your shell (/bin/bash)
USER Your login name (sfuller)
PATH List to search for programs
They are specified in the shell or in rc files such as the .bashrc.

DLLs On Linux, you use shared object files (.so). In Windows, these are
dynamic link libraries (DLLs).

Drive letters Linux doesn't have drive letters. An example Linux pathname is
/lib/security. See DriveDelim in the runtime library.

Exceptions Operating system exceptions are called signals on Linux.

Executable files On Linux, executable files require no extension. On Windows,
executable files have an exe extension.

File name extensions Linux does not use file name extensions to identify file types or to
associate files with applications.

File permissions On Linux, files (and directories) are assigned read, write, and execute
permissions for the file owner, group, and others. For example,
-rwxr-xr-x means, from left to right:
- is the file type (- = ordinary file, d = directory, l = link); rwx are the
permissions for the file owner (read, write, execute); r-x are the
permissions for the group of the file owner (read, execute); and r-x are
the permissions for all other users (read, execute). The root user
(superuser) can override these permissions.
You need to make sure that your application runs under the correct
user and has proper access to required files.

Make utility Borland's make utility is not available on the Linux platform. Instead,
you can use Linux's own GNU make utility.

Multitasking Linux fully supports multitasking. You can run several programs (in
Linux, called processes) at the same time. You can launch processes in
the background (using & after the command) and continue working
straight away. Linux also lets you have several sessions.

Pathnames Linux uses a forward slash (/) wherever DOS uses a backslash (\). A
PathDelim constant can be used to specify the appropriate character
for the platform. See PathDelim in the runtime library.

Table 10.7 Differences in the Linux operating environment (continued)

Difference Description

10-14 D e v e l o p e r ’ s G u i d e

P o r t i n g W i n d o w s a p p l i c a t i o n s t o L i n u x

Directory structure on Linux

Directories are different in Linux. Any file or device can be mounted anywhere on
the file system.

Note Linux pathnames use forward slashes as opposed to Windows use of backslashes.
The initial slash stands for the root directory.

Following are some commonly used directories in Linux.

Search path When executing programs, Windows always checks the current
directory first, then looks at the PATH environment variable. Linux
never looks in the current directory but searches only the directories
listed in PATH. To run a program in the current directory, you
usually have to type ./ before it.
You can also modify your PATH to include ./ as the first path to
search.

Search path separator Windows uses the semicolon as a search path separator. Linux uses a
colon. See PathDelim in the runtime library.

Symbolic links On Linux, a symbolic link is a special file that points to another file on
disk. Place symbolic links in the global bin directory that points to
your application's main files and you don't have to modify the system
search path. A symbolic link is created with the ln (link) command.
Windows has shortcuts for the GUI desktop. To make a program
available at the command line, Windows install programs typically
modify the system search path.

Table 10.7 Differences in the Linux operating environment (continued)

Difference Description

Table 10.8 Common Linux directories

Directory Contents

/ The root or top directory of the entire Linux file system

/root The root file system; the Superuser's home directory

/bin Commands, utilities

/sbin System utilities

/dev Devices shown as files

/lib Libraries

/home/username Files owned by the user where username is the user's login name.

/opt Optional

/boot Kernel that gets called when the system starts up

/etc Configuration files

/usr Applications, programs. Usually includes directories like /usr/spool, /
usr/man, /usr/include, /usr/local

/mnt Other media mounted on the system such as a CD or a floppy disk drive

/var Logs, messages, spool files

/proc Virtual file system and reporting system statistics

/tmp Temporary files

D e v e l o p i n g c r o s s - p l a t f o r m a p p l i c a t i o n s 10-15

P o r t i n g W i n d o w s a p p l i c a t i o n s t o L i n u x

Note Different distributions of Linux sometimes place files in different locations. A utility
program may be placed in /bin in a Red Hat distribution but in /usr/local/bin in a
Debian distribution.

Refer to www.pathname.com for additional details on the organization of the
hierarchical file system and to read the Filesystem Hierarchy Standard.

Writing portable code

If you are writing cross-platform applications that are meant to run on both
operating systems, you can write code that compiles under different conditions.
Using conditional compilation, you can maintain your Windows coding, yet also
make allowances for Linux operating system differences.

To create applications that are easily portable between Windows and Linux,
remember to

• reduce or isolate calls to platform-specific (Win32 or Linux) APIs; use CLX
methods instead.

• eliminate Windows messaging (PostMessage, SendMessage) constructs within an
application.

• use TMemIniFile instead of TRegIniFile.

• observe and preserve case-sensitivity in file and directory names.

• port any external assembler TASM code. The GNU assembler, “as,” does not
support the TASM syntax. (See “Including inline assembler code” on page 10-18.)

Try to write the code to use platform-independent runtime library routines and use
constants found in System, SysUtils, and other runtime library units. For example,
use the PathDelim constant to insulate your code from ‘/’ versus ‘\’ platform
differences.

Another example involves the use of multibyte characters on both platforms.
Windows code traditionally expects only 2 bytes per multibyte character. In Linux,
multibyte character encoding can have many more bytes per char (up to 6 bytes for
UTF-8). Both platforms can be accommodated using the StrNextChar function in
SysUtils. Existing Windows code such as the following

while p^ <> #0 do
begin

if p^ in LeadBytes then
inc(p);

inc(p);
end;

can be replaced with platform-independent code like this:

while p^ <> #0 do
begin

if p^ in LeadBytes then
p := StrNextChar(p)

else
inc(p);

end;

10-16 D e v e l o p e r ’ s G u i d e

P o r t i n g W i n d o w s a p p l i c a t i o n s t o L i n u x

This example is platform portable and supports multibyte characters longer than 2
bytes, but still avoids the performance cost of a procedure call for non-multibyte
locales.

If using runtime library functions is not a workable solution, try to isolate the
platform-specific code in your routine into one chunk or into a subroutine. Try to
limit the number of $IFDEF blocks to maintain source code readability and
portability. The conditional symbol WIN32 is not defined on Linux. The conditional
symbol LINUX is defined, indicating the source code is being compiled for the Linux
platform.

Using conditional directives
Using $IFDEF compiler directives is a reasonable way to conditionalize your code for
the Windows and Linux platforms. However, because $IFDEFs make source code
harder to understand and maintain, you need to understand when it is reasonable to
use $IFDEFs. When considering the use of $IFDEFs, the top questions should be
“Why does this code require an $IFDEF?” and “Can this be written without an
$IFDEF?”

Follow these guidelines for using $IFDEFs within cross-platform applications:

• Try not to use $IFDEFs unless absolutely necessary. $IFDEFs in a source file are
only evaluated when source code is compiled. Unlike C/C++, Kylix does not
require unit sources (header files) to compile a project. Full rebuilds of all source
code is an uncommon event for most Kylix projects.

• Do not use $IFDEFs in package files (.dpk). Limit their use to source files.
Component writers need to create two design-time packages when doing cross-
platform development, not one package using $IFDEFs.

• In general, use $IFDEF MSWINDOWS to test for any Windows platform
including WIN32. Reserve the use of $IFDEF WIN32 for distinguishing between
specific Windows platforms, such as 32-bit versus 64-bit Windows. Don’t limit
your code to WIN32 unless you know for sure that it will not work in WIN64.

• Avoid negative tests like $IFNDEF unless absolutely required. $IFNDEF LINUX
is not equivalent to $IFDEF MSWINDOWS.

• Avoid $IFNDEF/$ELSE combinations. Use a positive test instead ($IFDEF) for
better readability.

• Avoid $ELSE clauses on platform-sensitive $IFDEFs. Use separate $IFDEF blocks
for LINUX- and MSWINDOWS-specific code instead of $IFDEF LINUX/$ELSE or
$IFDEF MSWINDOWS/$ELSE.

For example, old code may contain

{$IFDEF WIN32}
(32-bit Windows code)

{$ELSE}
(16-bit Windows code) //!! By mistake, Linux could fall into this code.

{$ENDIF}

D e v e l o p i n g c r o s s - p l a t f o r m a p p l i c a t i o n s 10-17

P o r t i n g W i n d o w s a p p l i c a t i o n s t o L i n u x

For any non-portable code in $IFDEFs, it is better for the source code to fail to
compile than to have the platform fall into an $ELSE clause and fail mysteriously
at runtime. Compile failures are easier to find than runtime failures.

• Use the $IF syntax for complicated tests. Replace nested $IFDEFs with a boolean
expression in an $IF directive. You should terminate the $IF directive using
$IFEND, not $ENDIF. This allows you to place $IF expressions within $IFDEFs to
hide the new $IF syntax from previous compilers.

All of the conditional directives are documented in the online Help. Also see, the
topic “Conditional Compilation” in Help for more information.

Terminating conditional directives
Use the $IFEND directive to terminate $IF and $ELSEIF conditional directives. This
allows $IF/$IFEND blocks to be hidden from older compilers inside of using $IFDEF/
$ENDIF. Older compilers won't recognize the $IFEND directive. $IF can only be
terminated with $IFEND. You can only terminate old-style directives ($IFDEF,
$IFNDEF, $IFOPT) with $ENDIF.

Note When nesting an $IF inside of $IFDEF/$ENDIF, do not use $ELSE with the $IF.
Older compilers will see the $ELSE and think it is part of the $IFDEF, producing a
compile error down the line. You can use {$ELSEIF True} as a substitute for {$ELSE}
in this situation, since the $ELSEIF won't be taken if the $IF is taken first, and the
older compilers won't know $ELSEIF. Hiding $IF for backwards compatibility is
primarily an issue for third party vendors and application developers who want their
code to run on several different versions.

$ELSEIF is a combination of $ELSE and $IF. The $ELSEIF directive allows you to
write multi-part conditional blocks where only one of the conditional blocks will be
taken. For example:

{$IFDEF doit}
do_doit

{$ELSEIF RTLVersion >= 14}
goforit

{$ELSEIF somestring = 'yes'}
beep

{$ELSE}
last chance

{$IFEND}

Of these four cases, only one is taken. If none of the first three conditions is true, the
$ELSE clause is taken. $ELSEIF must be terminated by $IFEND. $ELSEIF cannot
appear after $ELSE. Conditions are evaluated top to bottom like a normal
$IF...$ELSE sequence. In the example, if doit is not defined, RTLVersion is 15, and
somestring = 'yes', only the “goforit” block will be taken not the “beep” block, even
though the conditions for both are true.

If you forget to use an $ENDIF to end one of your $IFDEFs, the compiler reports the
following error message at the end of the source file:

Missing ENDIF

10-18 D e v e l o p e r ’ s G u i d e

P o r t i n g W i n d o w s a p p l i c a t i o n s t o L i n u x

If you have more than a few $IF/$IFDEF directives in your source file, it can be
difficult to determine which one is causing the problem. Kylix reports the following
error message on the source line of the last $IF/$IFDEF compiler directive with no
matching $ENDIF/$IFEND:

Unterminated conditional directive

You can start looking for the problem at that location.

Emitting messages
The $MESSAGE compiler directive allows source code to emit hints, warnings, and
errors just as the compiler does.

{$MESSAGE HINT|WARN|ERROR|FATAL 'text string' }

The message type is optional. If no message type is indicated, the default is HINT.
The text string is required and must be enclosed in single quotes.

Examples:

{$MESSAGE 'Boo!'} emits a hint.

{$Message Hint 'Feed the cats'} emits a hint.

{$Message Warn 'Looks like rain.'} emits a warning.

{$Message Error 'Not implemented'} emits an error, continues compiling.

{$Message Fatal 'Bang. Yer dead.'} emits an error, terminates the compiler.

Including inline assembler code
If you include inline assembler code in your Windows applications, you may not be
able to use the same code on Linux because of position-independent code (PIC)
requirements on Linux. Linux shared object libraries (DLL equivalents) require that
all code be relocatable in memory without modification. This primarily affects inline
assembler routines that use global variables or other absolute addresses, or that call
external functions.

For units that contain only Object Pascal code, the compiler automatically generates
PIC when required. PIC units have a .dpu extension (instead of .dcu). It's a good idea
to compile every Pascal unit source file into both PIC and non-PIC formats; use the -p
compiler switch to generate PIC. Precompiled units are available in both forms.

You may want to code assembler routines differently depending on whether you'll
be compiling to an executable or a shared library; use {$IFDEF PIC} to branch the two
versions of your assembler code. Or you can consider rewriting the routine in Object
Pascal to avoid the issue.

Following are the PIC rules for inline assembler code:

• PIC requires all memory references be made relative to the EBX register, which
contains the current module's base address pointer (in Linux called the Global
Offset Table or GOT). So, instead of

MOV EAX,GlobalVar

D e v e l o p i n g c r o s s - p l a t f o r m a p p l i c a t i o n s 10-19

P o r t i n g W i n d o w s a p p l i c a t i o n s t o L i n u x

use

MOV EAX,[EBX].GlobalVar

• PIC requires that you preserve the EBX register across calls into your assembly
code (same as on Win32), and also that you restore the EBX register before making
calls to external functions (different from Win32).

• While PIC code will work in base executables, it may slow the performance and
generate more code. You don't have any choice in shared objects, but in
executables you probably still want to get the highest level of performance that
you can.

Messages and system events

Message loops and events work differently on Linux, but this primarily affects
component writing. Most component and property editors port easily.
TObject.Dispatch and message method syntax on classes work fine on Linux; under
Linux, however, operating system notifications are handled using system events
rather than messages.

To create an event handler, you can override one of the methods described in Table
10.9 to write your own custom message instead of responding to Windows messages.
In the override, call the inherited method so any default processes still takes place.

Table 10.9 TWidgetControl protected methods for responding to system events

Method Description

ChangeBounds Used when a TWidgetControl is resized. Roughly analogous to WM_SIZE or
WM_MOVE in Windows. Qt sets the “geometry” of a widget based on the
client area, VCL uses the entire control size, which includes what Qt refers
to as the frame.

ChangeScale Called automatically when resizing controls. Used to change the scale of a
form and all its controls for a different screen resolution or font size. Because
ChangeScale modifies the control’s Top, Left, Width, and Height properties,
it changes the position of the control and its children as well as their size.

ColorChanged Called when the color of the control has been changed.

CursorChanged Called when the cursor changes shape. The mouse cursor assumes this
shape when it's over this widget.

EnabledChanged Called when an application changes the enabled state of a window or
control.

FontChanged Called when the collection of font resources changed. It sets the font for the
widget and informs all children about the change. Roughly analogous to the
WM_FONTCHANGE message.

PaletteChanged Called when the system palette has been changed. Roughly analogous to the
WM_PALETTECHANGED message.

ShowHintChanged Called when Help hints are displayed or hidden on a control.

StyleChanged Called when the window or control’s GUI styles have changed. Roughly
analogous to the WM_STYLECHANGED message.

TabStopChanged Called when the tab order on the form has been changed.

10-20 D e v e l o p e r ’ s G u i d e

P o r t i n g W i n d o w s a p p l i c a t i o n s t o L i n u x

Qt is a C++ toolkit, so all of its widgets are C++ objects. CLX is written in Object
Pascal, and Object Pascal does not interact directly with C++ objects. In addition, Qt
uses multiple inheritance in a few places. So Kylix includes an interface layer that
converts all of the Qt classes to a series of straight C functions. These are then
wrapped in a shared object in Linux and a DLL in Windows.

Every TWidgetControl has CreateWidget, InitWidget, and HookEvents virtual methods
that almost always have to be overridden. CreateWidget creates the Qt widget, and
assigns the Handle to the FHandle private field variable. InitWidget gets called after
the widget is constructed, and the Handle is valid.

Some property assignments on Linux have moved from the Create constructor to
InitWidget. This will allow delayed construction of the Qt object until it's really
needed. For example, say you have a property named Color. In SetColor, you can
check with HandleAllocated to see if you have a Qt handle. If the Handle is allocated,
you can make the proper call to Qt to set the color. If not, you can store the value in a
private field variable, and, in InitWidget, you set the property.

Linux supports two types of events: Widget and System. HookEvents is a virtual
method that hooks the CLX controls event methods to a special hook object that
communicates with the Qt object. The hook object is really just a set of method
pointers. System events on Linux go through EventHandler, which is basically a
replacement for WndProc.

Programming differences on Linux

The Linux wchar_t widechar is 32 bits per character. The 16-bit Unicode standard
that Object Pascal widechars support is a subset of the 32-bit UCS standard
supported by Linux and the GNU libraries. Pascal widechar data must be widened to
32 bits per character before it can be passed to an OS function as wchar_t.

In Linux, widestrings are reference counted like long strings (in Windows, they're
not).

Multibyte handling differs in Linux. In Windows, multibyte characters (MBCS) are
represented as 1- and 2-byte char codes. In Linux, they are represented in 1 to 6 bytes.

AnsiStrings can carry multibyte character sequences, dependent upon the user's
locale settings. The Linux encoding for multibyte characters such as Japanese,
Chinese, Hebrew, and Arabic may not be compatible with the Windows encoding for
the same locale. Unicode is portable, whereas multibyte is not.

In Linux, you cannot use variables on absolute addresses. The syntax var X: Integer
absolute $1234; is not supported in PIC and will be disallowed in all versions of Kylix
that include CLX.

VisibleChanged Called when a control is hidden or shown.

WidgetDestroyed Called when a widget underlying a control is destroyed.

Table 10.9 TWidgetControl protected methods for responding to system events (continued)

Method Description

D e v e l o p i n g c r o s s - p l a t f o r m a p p l i c a t i o n s 10-21

C r o s s - p l a t f o r m d a t a b a s e a p p l i c a t i o n s

Cross-platform database applications
On Windows, Delphi provides several choices for how to access database
information. These include using ADO, the Borland Database Engine (BDE), and
InterBase Express. These three choices are not available on Kylix, however. Instead,
you can use dbExpress, a new, cross-platform data access technology, which is also
available on Windows, starting with Delphi version 6.

Before you port a database application to dbExpress so that it will run on Linux, you
should understand the differences between using dbExpress and the data access
mechanism you were using. These differences occur at different levels.

• At the lowest level, there is a layer that communicates between your application
and the database server. This could be ADO, the BDE, or the InterBase client
software. This layer is replaced by dbExpress, which is a set of lightweight drivers
for dynamic SQL processing.

• The low-level data access is wrapped in a set of components that you add to data
modules or forms. These components include database connection components,
which represent the connection to a database server, and datasets, which represent
the data fetched from the server. Although there are some very important
differences, due to the unidirectional nature of dbExpress cursors, the differences
are less pronounced at this level, because datasets all share a common ancestor, as
do database connection components.

• At the user-interface level, there are the fewest differences. CLX data-aware
controls are designed to be as similar as possible to the corresponding Windows
controls. The major differences at the user interface level arise from changes
needed to accommodate the use of cached updates.

For information on porting existing database applications to dbExpress, see “Porting
database applications to Linux” on page 10-23. For information on designing new
dbExpress applications, see Chapter 14, “Designing database applications”.

dbExpress differences

On Linux, dbExpress manages the communication with database servers. dbExpress
consists of a set of lightweight drivers that implement a set of common interfaces.
Each driver is a shared object (.so file) that must be linked to your application.
Because dbExpress is designed to be cross-platform, it will also be available on
Windows as a set of dynamic-link libraries (.dlls).

As with any data-access layer, dbExpress requires the client-side software provided
by the database vendor. In addition, it uses a database-specific driver, plus two
configuration files, dbxconnections and dbxdrivers. This is markedly less than you
need for, say, the BDE, which requires the main Borland Database Engine library
(Idapi32.dll) plus a database-specific driver and a number of other supporting
libraries.

Here are some other differences between dbExpress and the other data-access layers
from which you need to port your application:

10-22 D e v e l o p e r ’ s G u i d e

C r o s s - p l a t f o r m d a t a b a s e a p p l i c a t i o n s

• dbExpress allows for a simpler and faster path to remote databases. As a result, you
can expect a noticeable performance increase for simple, straight-through data
access.

• dbExpress can process queries and stored procedures, but does not support the
concept of opening tables.

• dbExpress returns only unidirectional cursors.

• dbExpress has no built-in update support other than the ability to execute an
INSERT, DELETE, or UPDATE query.

• dbExpress does no metadata caching, and the design time metadata access interface
is implemented using the core data-access interface.

• dbExpress executes only queries requested by the user, thereby optimizing
database access by not introducing any extra queries.

• dbExpress manages a record buffer or a block of record buffers internally. This
differs from the BDE, where clients are required to allocate the memory used to
buffer records.

• dbExpress does not support local tables that are not SQL-based (such as Paradox,
dBase, or FoxPro).

• dbExpress drivers exist for InterBase, Oracle, DB2, and MySQL. If you are using a
different database server, you must either port your data to one of these databases,
write a dbExpress driver for the database server you are using, or obtain a third-
party dbExpress driver for your database server.

Component-level differences

When you write a dbExpress application, it requires a different set of data-access
components than those used in your existing database applications. The dbExpress
components share the same base classes as other data-access components (TDataSet
and TCustomConnection), which means that many of the properties, methods, and
events are the same as the components used in your existing applications.

Table 10.10 lists some of the important database components used in InterBase
Express, BDE, and ADO in the Windows environment and shows the comparable
dbExpress components for use on Linux and in cross-platform applications.

Table 10.10 Comparable data-access components

InterBase Express
components BDE components ADO components

dbExpress
components

TIBDatabase TDatabase TADOConnection TSQLConnection

TIBTable TTable TADOTable TSQLTable

TIBQuery TQuery TADOQuery TSQLQuery

TIBStoredProc TStoredProc TADOStoredProc TSQLStoredProc

TIBDataSet TADODataSet TSQLDataSet

D e v e l o p i n g c r o s s - p l a t f o r m a p p l i c a t i o n s 10-23

C r o s s - p l a t f o r m d a t a b a s e a p p l i c a t i o n s

The dbExpress datasets (TSQLTable, TSQLQuery, TSQLStoredProc, and TSQLDataSet)
are more limited than their counterparts, however, because they do not support
editing and only allow forward navigation. For details on the differences between the
dbExpress datasets and the other datasets that are available on Windows, see Chapter
18, “Using unidirectional datasets.”.

Because of the lack of support for editing and navigation, most dbExpress applications
do not work directly with the dbExpress datasets. Rather, they connect the dbExpress
dataset to a client dataset, which buffers records in memory and provides support for
editing and navigation. For more information about this architecture, see “Database
architecture” on page 14-4.

Note For very simple applications, you can use TSQLClientDataSet instead of a dbExpress
dataset connected to a client dataset. This has the benefit of simplicity, because there
is a 1:1 correspondence between the dataset in the application you are porting and
the dataset in the ported application, but is less flexible that explicitly connecting a
dbExpress dataset to a client dataset. For most applications, it is recommended that
you use a dbExpress dataset connected to a TClientDataSet component.

User interface-level differences

CLX data-aware controls are designed to be as similar as possible to the
corresponding Windows controls. As a result, porting the user-interface portion of
your database applications introduces few additional considerations beyond those
involved in porting any Windows application to CLX.

The major differences at the user interface level arise from differences in the way
dbExpress datasets or client datasets supply data.

If you are using only dbExpress datasets, then you must adjust your user interface to
accommodate the fact that the datasets do not support editing and only support
forward navigation. Thus, for example, you may need to remove controls that allow
users to move to a previous record. Because dbExpress datasets do not buffer data,
you can’t display data in a data-aware grid: only one record can be displayed at a
time.

If you have connected the dbExpress dataset to a client dataset, then the user interface
elements associated with editing and navigation should still work. You need only
reconnect them to the client dataset. The main consideration in this case is handling
how updates are written to the database. By default, most datasets on Windows write
updates to the database server automatically when they are posted (for example,
when the user moves to a new record). Client datasets, on the other hand, always
cache updates in memory. For information on how to accommodate this difference,
see “Updating data in dbExpress applications” on page 10-25.

Porting database applications to Linux

Porting your database application to dbExpress allows you to create a cross-platform
application that runs both on Windows and Linux. The porting process involves
making changes to your application because the technology is different. How

10-24 D e v e l o p e r ’ s G u i d e

C r o s s - p l a t f o r m d a t a b a s e a p p l i c a t i o n s

difficult it is to port depends on the type of application it is, how complex it is, and
what it needs to accomplish. An application that heavily uses Windows-specific
technologies such as ADO will be more difficult to port than one that uses Delphi
database technology.

Follow these general steps to port your Windows database application to Linux:

1 Consider where database data is stored. dbExpress provides drivers for Oracle,
Interbase, DB2, and MySQL. The data needs to reside on one of these SQL servers.

If you have the Delphi 5 Enterprise version, you can use the Data Pump utility to
move local database data from platforms such as Paradox, dBase, and FoxPro onto
one of the supported platforms. (See the datapump.hlp file in Program Files\
Common Files\Borland\Shared\BDE for information on using the utility.)

2 If you have not isolated your user interface forms from data modules containing
the datasets and connection components, you may want to consider doing so
before you start the port. That way, you isolate the portions of your application
that require a completely new set of components into data modules. Forms that
represent the user interface can then be ported like any other application. For
details, see “Porting your application” on page 10-2.

The remaining steps assume that your datasets and connection components are
isolated in their own data modules.

3 Create a new data module to hold the CLX versions of your datasets and
connection components.

4 For each dataset in the original application, add a dbExpress dataset,
TDataSetProvider component, and TClientDataSet component. Use the
correspondences in Table 10.10 to decide which dbExpress dataset to use. Give
these components meaningful names.

• Set the ProviderName property of the TClientDataSet component to the name of
the TDataSetProvider component.

• Set the DataSet property of the TDataSetProvider component to the dbExpress
dataset.

• Change the DataSet property of any data source components that referred to the
original dataset so that it now refers to the client dataset.

5 Set properties on the new dataset to match the original dataset:

• If the original dataset was a TTable, TADOTable, or TIBTable component, set the
new TSQLTable’s TableName property to the original dataset’s TableName. Also
copy any properties used to set up master/detail relationships or specify
indexes. Properties specifying ranges and filters should be set on the client
dataset rather than the new TSQLTable component.

• If the original dataset was a TQuery, TADOQuery, or TIBQuery component, set
the new TSQLQuery component’s SQL property to the original dataset’s SQL
property. Set the Params property of the new TSQLQuery to match the value of
the original dataset’s Params or Parameters property. If you have set the
DataSource property to establish a master/detail relationship, copy this as well.

D e v e l o p i n g c r o s s - p l a t f o r m a p p l i c a t i o n s 10-25

C r o s s - p l a t f o r m d a t a b a s e a p p l i c a t i o n s

• If the original dataset was a TStoredProc, TADOStoredProc, or TIBStoredProc
component, set the new TSQLStoredProc component’s StoredProcName to the
StoredProcName or ProcedureName property of the original dataset. Set the
Params property of the new TSQLStoredProc to match the value of the original
dataset’s Params or Parameters property.

6 For any database connection components in the original application (TDatabase,
TIBDatabase, or TADOConnection), add a TSQLConnection component to the new
data module. You must also add a TSQLConnection component for every database
server to which you connected without a connection component (for example, by
using the ConnectionString property on an ADO dataset or by setting the
DatabaseName property of a BDE dataset to a BDE alias).

7 For each dbExpress dataset placed in step 4, set its SQLConnection property to the
TSQLConnection component that corresponds to the appropriate database
connection.

8 On each TSQLConnection component, specify the information needed to establish a
database connection. To do so, double-click the TSQLConnection component to
display the Connection Editor and set parameter values to indicate the
appropriate settings. If you had to transfer data to a new database server in step 1,
then specify settings appropriate to the new server. If you are using the same
server as before, you can look up some of this information on the original
connection component:

• If the original application used TDatabase, you must transfer the information
that appears in the Params and TransIsolation properties.

• If the original application used TADOConnection, you must transfer the
information that appears in the ConnectionString and IsolationLevel properties.

• If the original application used TIBDatabase, you must transfer the information
that appears in the DatabaseName and Params properties.

• If there was no original connection component, you must transfer the
information associated with the BDE alias or that appeared in the dataset’s
ConnectionString property.

You may want to save this set of parameters under a new connection name. For
more details on this process, see “Describing the server connection” on page 19-2.

Updating data in dbExpress applications

dbExpress applications use client datasets to support editing. When you post edits to a
client dataset, the changes are written to the client dataset’s in-memory snapshot of
the data, but are not automatically written to the database server. If your original
application used a client dataset for caching updates, then you do not need to change
anything to support editing on Linux. However, if you relied on the default behavior
of most datasets on Windows, which is to write edits to the database server when
you post records, you must make changes to accommodate the use of a client dataset.

There are two ways to convert an application that did not previously cache updates:

10-26 D e v e l o p e r ’ s G u i d e

C r o s s - p l a t f o r m d a t a b a s e a p p l i c a t i o n s

• You can mimic the behavior of the dataset on Windows by writing code to apply
each updated record to the database server as soon as it is posted. To do this,
supply the client dataset with an AfterPost event handler that applies update to the
database server:

procedure TForm1.ClientDataSet1AfterPost(DataSet: TDataSet);
begin

with DataSet as TClientDataSet do
ApplyUpdates(1);

end;

• You can adjust your user interface to deal with cached updates. This approach has
certain advantages, such as reducing the amount of network traffic and
minimizing transaction times. However, if you switch to using cached updates,
you must decide when to apply those updates back to the database server, and
probably make user interface changes to let users initiate the application of
updates or inform provide them with feedback about whether their edits have
been written to the database. Further, because update errors are not detected when
the user posts a record, you will need to change the way you report such errors to
the user, so that they can see which update caused a problem as well as what type
of problem occurred.

If your original application used the support provided by the BDE or ADO for
caching updates, you will need to make some adjustments in your code to switch to
using a client dataset. The following table lists the properties, events, and methods
that support cached updates on BDE and ADO datasets, and the corresponding
properties, methods and events on TClientDataSet:

Table 10.11 Properties, methods, and events for cached updates

On BDE datasets
(or TDatabase) On ADO datasets On TClientDataSet Purpose

CachedUpdates LockType Not needed, client
datasets always
cache updates.

Determines whether cached
updates are in effect.

Not supported. CursorType Not supported. Specifies how isolated the dataset
is from changes on the server.

UpdatesPending Not supported. ChangeCount Indicates whether the local cache
contains updated records that
need to be applied to the
database.

UpdateRecordTypes FilterGroup StatusFilter Indicates the kind of updated
records to make visible when
applying cached updates.

UpdateStatus RecordStatus UpdateStatus Indicates if a record is unchanged,
modified, inserted, or deleted.

OnUpdateError Not supported. OnReconcileError An event for handling update
errors on a record-by-record basis.

ApplyUpdates
(on dataset or
database)

UpdateBatch ApplyUpdates Applies records in the local cache
to the database.

D e v e l o p i n g c r o s s - p l a t f o r m a p p l i c a t i o n s 10-27

C r o s s - p l a t f o r m I n t e r n e t a p p l i c a t i o n s

Cross-platform Internet applications
An Internet application is a client/server application that uses standard Internet
protocols for connecting the client to the server. Because your applications use
standard Internet protocols for client/server communications, you can make your
applications cross-platform. For example, a server-side program for an Internet
application communicates with the client through the Web server software for the
machine. The server application is typically written for Linux or Windows, but can
also be cross-platform. The clients can be on either platform.

Kylix allows you to create Web server applications as CGI or Apache applications for
deployment on Linux. On Windows, you can create other types of Web servers such
as Microsoft Server DLLs (ISAPI), Netscape Server DLLs (NSAPI), and Windows
CGI applications. Only straight CGI applications and some applications that use
WebBroker will run on both Windows and Linux.

Porting Internet applications to Linux

If you have existing Internet applications that you want to move to Linux, you
should consider whether you want to port your Web server application or if you
want to create a new application on Linux. See Chapter 22, “Creating Internet server
applications” for information on writing Web servers. If your application uses
WebBroker and writes to the WebBroker interface and does not use native API calls,
it will not be as difficult to port it to Linux.

If your application writes to ISAPI, NSAPI, Windows CGI, or other Web APIs, it will
be more difficult to port. You will need to search through your source files and
translate these API calls into Apache (see httpd.pas in the Internet directory for
function prototypes for Apache APIs) or CGI calls. You also need to make all other
suggested changes described in “Porting Windows applications to Linux” on
page 10-1.

CancelUpdates CancelUpdates or
CancelBatch

CancelUpdates Removes pending updates from
the local cache without applying
them.

CommitUpdates Handled
automatically

Reconcile Clears the update cache following
successful application of updates.

FetchAll Not supported GetNextPacket
(and PacketRecords)

Copies database records to the
local cache for editing and
updating.

RevertRecord CancelBatch RevertRecord Undoes updates to the current
record if updates are not yet
applied.

Table 10.11 Properties, methods, and events for cached updates (continued)

On BDE datasets
(or TDatabase) On ADO datasets On TClientDataSet Purpose

10-28 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h p a c k a g e s a n d c o m p o n e n t s 11-1

C h a p t e r

11
Chapter11Working with packages and

components
A package is a special shared object file used by Kylix applications, the IDE, or both.
Runtime packages provide functionality when a user runs an application. Design-time
packages are used to install components in the IDE and to create special property
editors for custom components. A single package can function at both design time
and runtime, and design-time packages frequently work by calling runtime
packages. Packages are stored in shared object files (typically prefixed with bpl) such
as bplpackage.so.

Like other runtime libraries, packages contain code that can be shared among
applications. For example, the most frequently used Kylix components reside in a
package called bplclx. Each time you create an application, you can specify that it
uses bplclx. When you compile an application created this way, the application’s
executable image contains only the code and data unique to it; the common code is in
bplclx.so.6. A computer with several package-enabled applications installed on it
needs only a single copy of bplclx.so.6, which is shared by all the applications and the
IDE itself.

Kylix ships with several precompiled runtime packages that encapsulate CLX
components. Kylix also uses design-time packages to manipulate components in the
IDE.

You can build applications with or without packages. However, if you want to add
custom components to the IDE, you must install them as design-time packages.

You can create your own runtime packages to share among applications. If you write
Kylix components, you can compile them into design-time packages before installing
them.

11-2 D e v e l o p e r ’ s G u i d e

W h y u s e p a c k a g e s ?

Why use packages?
Design-time packages simplify the tasks of distributing and installing custom
components. Runtime packages, which are optional, offer several advantages over
conventional programming. By compiling reused code into a runtime library, you
can share it among applications. For example, all of your applications—including
Kylix itself—can access standard components through packages. Since the
applications don’t have separate copies of the component library bound into their
executables, the executables are much smaller—saving both system resources and
hard disk storage. Moreover, packages allow faster compilation because only code
unique to the application is compiled with each build.

Packages and standard shared object files

Create a package when you want to make a custom component that’s available
through the IDE. Create a standard shared object file when you want to build a
library that can be called from any application, regardless of the development tool
used to build the application.

The following table lists the file types associated with packages

Note Packages share their global data with other modules in an application.

For more information about shared object files and packages, see the Object Pascal
Language Guide.

Runtime packages
Runtime packages are deployed with Kylix applications. They provide functionality
when a user runs the application.

To run an application that uses packages, a computer must have both the
application’s executable file and all the packages that the application uses. The
package files must be on the system path for an application to use them. When you

Table 11.1 Compiled package files

File extension Contents

dpk The source file listing the units contained in the package.

dcp A binary image containing a package header and the concatenation of all dpu
files in the package, including all symbol information required by the compiler.
A single dcp file is created for each package. The base name for the dcp is the
base name of the dpk source file. You must have a .dcp file to build an
application with packages.

dpu A binary image for a unit file contained in a package. One dpu is created, when
necessary, for each unit file.

so The runtime package. This file is a shared object file with special Kylix-specific
features. The name for the package is bplpackage.so where package is the base
name of the dpk file.

W o r k i n g w i t h p a c k a g e s a n d c o m p o n e n t s 11-3

R u n t i m e p a c k a g e s

deploy an application, you must make sure that users have correct versions of any
required packages.

Using packages in an application

To use packages in an application,

1 Load or create a project in the IDE.

2 Choose Project|Options.

3 Choose the Packages tab.

4 Select the “Build with Runtime Packages” check box, and enter one or more
package names in the edit box underneath. (Runtime packages associated with
installed design-time packages are already listed in the edit box.)

5 To add a package to an existing list, click the Add button and enter the name of the
new package in the Add Runtime Package dialog.

6 To browse from a list of available packages, click the Add button, then click the
Browse button next to the Package Name edit box in the Add Runtime Package
dialog.

If you edit the Search Path edit box in the Add Runtime Package dialog, you will
be changing Kylix’s global Library Path.

You do not need to include file extensions with package names. If you type directly
into the Runtime Packages edit box, be sure to separate multiple names with
semicolons.

Packages listed in the Runtime Packages edit box are automatically linked to your
application when you compile. Duplicate package names are ignored, and if the edit
box is empty the application is compiled without packages.

Runtime packages are selected for the current project only. To make the current
choices into automatic defaults for new projects, select the “Defaults” check box at
the bottom of the dialog.

Note When you create an application with packages, you still need to include the names of
the original Kylix units in the uses clause of your source files. For example, the
source file for your main form might begin like this:

unit MainForm;

interface

uses
SysUtils, Types, Classes, QGraphics, QControls, QForms, QDialogs;

Each of the units referenced in this example is contained in the bplclx package.
Nonetheless, you must keep these references in the uses clause, even if you use
bplclx in your application, or you will get compiler errors. In generated source files,
Kylix adds these units to the uses clause automatically.

11-4 D e v e l o p e r ’ s G u i d e

D e s i g n - t i m e p a c k a g e s

Dynamically loading packages

To load a package at runtime, call the LoadPackage function. For example, the
following code could be executed when a file is chosen in a file-selection dialog.

with OpenDialog1 do
if Execute then

with PackageList.Items do
AddObject(FileName, Pointer(LoadPackage(FileName)));

To unload a package dynamically, call UnloadPackage. Be careful to destroy any
instances of classes defined in the package and to unregister classes that were
registered by it.

Deciding which runtime packages to use

Kylix ships with several precompiled runtime packages, including bplclx, which
supply basic language and component support.

The bplclx package contains the most commonly used components, system functions,
and user interface elements. It does not include database components, which are
available in separate packages.

For a list of the other runtime packages shipped with Kylix, see “runtime packages,
precompiled” in your online Help index.

To create a client/server database application that uses packages, you need at least
two runtime packages: bplclx and bpldataclx. To use these packages, choose Project|
Options, select the Packages tab, and list the packages you want to use in the
Runtime Packages edit box.

Custom packages

A custom package is either a package you code and compile yourself, or a
precompiled package from a third-party vendor. To use a custom runtime package
with an application, choose Project|Options and add the name of the package to the
Runtime Packages edit box on the Packages page. For example, suppose you have a
statistical package called bplstats.so. To use it in an application, include it in the
Runtime Packages edit box.

If you create your own packages, you can add them to the list as needed.

Design-time packages
Design-time packages are used to install components on the IDE’s Component
palette and to create special property editors for custom components.

Kylixships with the following design-time component packages preinstalled in the
IDE.

W o r k i n g w i t h p a c k a g e s a n d c o m p o n e n t s 11-5

D e s i g n - t i m e p a c k a g e s

The design-time packages work by calling runtime packages, which they reference in
their Requires clauses. (See “The Requires clause” on page 11-8.) For example, dclstd
references bplvcl. The dclstd package contains additional functionality that makes
many of the standard components available on the Component palette.

In addition to preinstalled packages, you can install your own component packages,
or component packages from third-party developers, in the IDE. The dclusr design-
time package is provided as a default container for new components.

Installing component packages

All components are installed in the IDE as packages. If you’ve written your own
components, create and compile a package that contains them. (See “Creating and
editing packages” on page 11-6.) Your component source code must follow the
model described in Part IV, “Creating custom components”.

To install or uninstall your own components, or components from a third-party
vendor, follow these steps:

1 If you are installing a new package, copy or move the package files to a local
directory. If the package is shipped with additional files, be sure to copy all of
them. (For information about these files, see “Package files created by a successful
compilation” on page 11-11.)

The directory where you store the .dcp file—and the .dpu files, if they are included
with the distribution—must be in the Kylix Library Path.

2 Choose Component|Install Packages from the IDE menu, or choose Project|
Options and click the Packages tab.

3 A list of available packages appears under “Design packages”.

• To install a package in the IDE, select the check box next to it.

• To uninstall a package, deselect its check box.

• To see a list of components included in an installed package, select the package
and click Components.

• To add a package to the list, click Add and browse in the Open Package dialog
box for the directory where the package file resides (see step 1). Select the
package file and click Open.

• To remove a package from the list, select the package and click Remove.

Table 11.2 Design-time packages

Package Component palette pages

dclstd Standard, Additional, Common Controls, Dialogs

dcldbdesign Data Controls, dbExpress, Data Access

dclnet Internet

dclindy Indy Clients, Indy Servers, Indy Misc

11-6 D e v e l o p e r ’ s G u i d e

C r e a t i n g a n d e d i t i n g p a c k a g e s

4 Click OK.

The components in the package are installed on the Component palette pages
specified in the components’ RegisterComponents procedure, with the names they
were assigned in the same procedure.

New projects are created with all available packages installed, unless you change the
default settings. To make the current installation choices into the automatic default
for new projects, check the Default check box at the bottom of the dialog box.

To remove components from the Component palette without uninstalling a package,
select Component|Configure Palette, or select Tools|Environment Options and click
the Palette tab. The Palette options tab lists each installed component along with the
name of the Component palette page where it appears. Selecting any component and
clicking Hide removes the component from the palette.

Creating and editing packages
Creating a package involves specifying

• A name for the package.

• A list of other packages to be required by, or linked to, the new package.

• A list of unit files to be contained by, or bound into, the package when it is
compiled. The package is essentially a wrapper for these source-code units, which
contain the functionality of the compiled package. The Contains clause is where
you put the source-code units for custom components that you want to compile
into a package.

Package source files, which end with the .dpk extension, are generated by the
Package editor.

Creating a package

To create a package, follow the procedure below. Refer to “Understanding the
structure of a package” on page 11-8 for more information about the steps outlined
here.

Note Do not use IFDEFs in a package file (.dpk) such as when doing cross platform
development. You can use them in the source code, however.

1 Choose File|New, select the Package icon, and click OK.

2 The generated package is displayed in the Package editor.

3 The Package editor shows a Requires node and a Contains node for the new
package.

4 To add a unit to the contains clause, click the Add to package speed button. In the
Add unit page, type a .pas file name in the Unit file name edit box, or click Browse
to browse for the file, and then click OK. The unit you’ve selected appears under
the Contains node in the Package editor. You can add additional units by
repeating this step.

W o r k i n g w i t h p a c k a g e s a n d c o m p o n e n t s 11-7

C r e a t i n g a n d e d i t i n g p a c k a g e s

5 To add a package to the requires clause, click the Add to package speed button. In
the Requires page, type a .dcp file name in the Package name edit box, or click
Browse to browse for the file, and then click OK. The package you’ve selected
appears under the Requires node in the Package editor. You can add additional
packages by repeating this step.

6 Click the Options speed button, and decide what kind of package you want to
build.

• To create a design-time only package (a package that cannot be used at
runtime), select the Designtime only radio button. (Or add the
{$DESIGNONLY} compiler directive to the dpk file.)

• To create a runtime-only package (a package that cannot be installed), select the
Runtime only radio button. (Or add the {$RUNONLY} compiler directive to the
dpk file.)

• To create a package that is available at both design time and runtime, select the
Designtime and runtime radio button.

7 In the Package editor, click the Compile package speed button to compile your
package.

Editing an existing package

You can open an existing package for editing in several ways:

• Choose File|Open (or File|Reopen) and select a dpk file.

• Choose Component|Install Packages, select a package from the Design Packages
list, and click the Edit button.

• When the Package editor is open, select one of the packages in the Requires node,
right-click, and choose Open.

To edit a package’s description or set usage options, click the Options speed button in
the Package editor and select the Description tab.

The Project Options dialog has a Default check box in the lower left corner. If you
click OK when this box is checked, the options you’ve chosen are saved as default
settings for new projects. To restore the original defaults, delete or rename the
defjproj.dof file.

Editing package source files manually

Package source files, like project files, are generated by Kylix from information you
supply. Like project files, they can also be edited manually. A package source file
should be saved with the .dpk (Kylix package) extension to avoid confusion with
other files containing Object Pascal source code.

To open a package source file in the Code editor,

1 Open the package in the Package editor.

11-8 D e v e l o p e r ’ s G u i d e

C r e a t i n g a n d e d i t i n g p a c k a g e s

2 Right-click in the Package editor and select View Source.

• The package heading specifies the name for the package.

• The requires clause lists other, external packages used by the current package.
If a package does not contain any units that use units in another package, then it
doesn’t need a requires clause.

• The contains clause identifies the unit files to be compiled and bound into the
package. All units used by contained units which do not exist in required
packages will also be bound into the package, although they won’t be listed in
the contains clause (the compiler will give a warning).

For example, the following code declares the bplclxdb package.

package bplclxdb;
requires bplclx;
contains Db, Dbcgrids, Dbctrls, Dbgrids, Dbinpreq, Dblogdlg, Dbpwdlg, Dbtables,

mycomponent in ‘usr/components/mycomponent.pas’;
end.

Understanding the structure of a package

Packages include the following parts:

• Package name
• Requires clause
• Contains clause

Naming packages
Package names must be unique within a project. If you name a package stats, the
Package editor generates a source file for it called stats.dpk; the compiler generates
an executable and a binary image called bplstats.so and stats.dcp, respectively. Use
stats to refer to the package in the requires clause of another package, or when using
the package in an application.

The Requires clause
The requires clause specifies other, external packages that are used by the current
package. An external package included in the requires clause is automatically linked
at compile time into any application that uses both the current package and one of
the units contained in the external package.

If the unit files contained in your package make references to other packaged units,
the other packages should appear in your package’s requires clause or you should
add them. If the other packages are omitted from the requires clause, the compiler
will import them into your package ‘implicitly contained units.’

Note Most packages that you create will require bplclx. Any package that depends on CLX
units (including SysUtils) must list bplclx, or another package that requires bplclx, in
its requires clause.

W o r k i n g w i t h p a c k a g e s a n d c o m p o n e n t s 11-9

C r e a t i n g a n d e d i t i n g p a c k a g e s

Avoiding circular package references

Packages cannot contain circular references in their requires clause. This means that

• A package cannot reference itself in its own requires clause.

• A chain of references must terminate without rereferencing any package in the
chain. If package A requires package B, then package B cannot require package A;
if package A requires package B and package B requires package C, then package
C cannot require package A.

Handling duplicate package references

Duplicate references in a package’s requires clause—or in the Runtime Packages edit
box—are ignored by the compiler. For programming clarity and readability,
however, you should catch and remove duplicate package references.

The Contains clause
The contains clause identifies the unit files to be bound into the package. If you are
writing your own package, put your source code in pas files and include them in the
contains clause.

Avoiding redundant source code uses

A package cannot appear in the contains clause of another package.

All units included directly in a package’s contains clause, or included indirectly in
any of those units, are bound into the package at compile time.

A unit cannot be contained (directly or indirectly) in more than one package used by
the same application, including the Kylix IDE. This means that if you create a package
that contains one of the units in bplclx, you won’t be able to install your package in
the IDE. To use an already-packaged unit file in another package, put the first
package in the second package’s requires clause.

Compiling packages

You can compile a package from the IDE or from the command line. To recompile a
package by itself from the IDE,

1 Choose File|Open.

2 Select Kylix Package (*.dpk) from the Files of Type drop-down list.

3 Select a .dpk file in the dialog.

4 When the Package editor opens, click the Compile speed button.

You can insert compiler directives into your package source code. For more
information, see “Package-specific compiler directives” below.

11-10 D e v e l o p e r ’ s G u i d e

C r e a t i n g a n d e d i t i n g p a c k a g e s

If you compile from the command line, several package-specific switches are
available. For more information, see “Using the command-line compiler and linker”
on page 11-11.

Package-specific compiler directives
The following table lists package-specific compiler directives that you can insert into
your source code.

Note Including {$DENYPACKAGEUNIT ON} in your source code prevents the unit file
from being packaged. Including {$G-} or {IMPORTEDDATA OFF} may prevent a
package from being used in the same application with other packages. Packages
compiled with the {$DESIGNONLY ON} directive should not ordinarily be used in
applications, since they contain extra code required by the IDE. Other compiler
directives may be included, if appropriate, in package source code. See Compiler
directives in the online help for information on compiler directives not discussed
here.

Weak packaging

The $WEAKPACKAGEUNIT directive affects the way a .dpu file is stored in a
package’s files. (For information about files generated by the compiler, see “Package
files created by a successful compilation” on page 11-11.) If
{$WEAKPACKAGEUNIT ON} appears in a unit file, the compiler omits the unit
from packages when possible, and creates a non-packaged local copy of the unit
when it is required by another application or package. A unit compiled with this
directive is said to be “weakly packaged.”

For example, suppose you’ve created a package called pack that contains only one
unit, unit1. Suppose unit1 does not use any further units, but it makes calls to rare.so.
If you put {$WEAKPACKAGEUNIT ON} in unit1.pas when you compile your
package, unit1 will not be included in bplpack.so; you will not have to distribute
copies of rare.so with pack. However, unit1 will still be included in pack.dcp. If unit1

Table 11.3 Package-specific compiler directives

Directive Purpose

{$IMPLICITBUILD OFF} Prevents a package from being implicitly recompiled later.
Use in .dpk files when compiling packages that provide
low-level functionality, that change infrequently between
builds, or whose source code will not be distributed.

{$G-} or {IMPORTEDDATA OFF} Disables creation of imported data references. This directive
increases memory-access efficiency, but prevents the unit
where it occurs from referencing variables in other
packages.

{$WEAKPACKAGEUNIT ON} Packages unit “weakly.” See “Weak packaging” on
page 11-10 below.

{$DENYPACKAGEUNIT ON} Prevents unit from being placed in a package.

{$DESIGNONLY ON} Compiles the package for installation in the IDE. (Put in
.dpk file.)

{$RUNONLY ON} Compiles the package as runtime only. (Put in .dpk file.)

W o r k i n g w i t h p a c k a g e s a n d c o m p o n e n t s 11-11

C r e a t i n g a n d e d i t i n g p a c k a g e s

is referenced by another package or application that uses pack, it will be copied from
pack.dcp and compiled directly into the project.

Now suppose you add a second unit, unit2, to pack. Suppose that unit2 uses unit1.
This time, even if you compile pack with {$WEAKPACKAGEUNIT ON} in
unit1.pas, the compiler will include unit1 in bplpack.so. But other packages or
applications that reference unit1 will use the (non-packaged) copy taken from
pack.dcp.

Note Unit files containing the {$WEAKPACKAGEUNIT ON} directive must not have
global variables, initialization sections, or finalization sections.

The $WEAKPACKAGEUNIT directive is an advanced feature intended for
developers who distribute their packages to other Kylix programmers. It can help
you to avoid distribution of infrequently used shared object files, and to eliminate
conflicts among packages that may depend on the same external library.

Using the command-line compiler and linker
When you compile from the command line, you can use the package-specific
switches listed in the following table.

Note Using the -$G- switch may prevent a package from being used in the same
application with other packages. Other command-line options may be used, if
appropriate, when compiling packages. See “The Command-line compiler” in the
online help for information on command-line options not discussed here.

Package files created by a successful compilation
To create a package, you compile a source file that has a .dpk extension. The base
name of the .dpk file becomes the base name of the files generated by the compiler.
For example, if you compile a package source file called traypak.dpk, the compiler
creates a package called bpltraypak.so.

Table 11.4 Package-specific command-line compiler switches

Switch Purpose

-$G- Disables creation of imported data references. Using this switch increases
memory-access efficiency, but prevents packages compiled with it from
referencing variables in other packages.

-LEpath Specifies the directory where the package (bcppackage.so) file will be placed.

-LNpath Specifies the directory where the package (package.dcp) file will be placed.

-LUpackage Use packages.

-Z Prevents a package from being implicitly recompiled later. Use when compiling
packages that provide low-level functionality, that change infrequently between
builds, or whose source code will not be distributed.

11-12 D e v e l o p e r ’ s G u i d e

D e p l o y i n g p a c k a g e s

The following table lists the files produced by the successful compilation of a
package.

When compiled, the package and library files are generated by default in the
directories specified on the Library page of the Tools|Environment Options dialog.
You can override the default settings by clicking the Options speed button in the
Package editor to display the Project Options dialog; make any changes on the
Directories/Conditionals page.

Deploying packages
The following sections provide recommendations about package deployment.

Deploying applications that use packages

When distributing an application that uses runtime packages, make sure that your
users have the application’s executable file as well as all the library files that the
application calls. If the library files are in a different directory from the executable
file, they must be accessible through the user’s path.

Distributing packages to other developers

If you distribute runtime or design-time packages to other Kylix developers, be sure
to supply both the .dcp and .so files. You will probably want to include .dpu files as
well.

Table 11.5 Compiled package files

Filename or
extension Contents

dcp A binary image containing a package header and the concatenation of all dpu
files in the package. A single dcp file is created for each package. The base name
for the dcp is the base name of the dpk source file.

dpu A binary image for a unit file contained in a package. One dpu is created, when
necessary, for each unit file.

bplpackage.so The runtime package. This file is a shared object file with special Kylix-specific
features. In the name, package is the base name of the dpk source file.

C r e a t i n g i n t e r n a t i o n a l a p p l i c a t i o n s 12-1

C h a p t e r

12
Chapter12Creating international applications

This chapter discusses guidelines for writing applications that you plan to distribute
to an international market. By planning ahead, you can reduce the amount of time
and code necessary to make your application function in its foreign market as well as
in its domestic market.

Internationalization and localization
To create an application that you can distribute to foreign markets, there are two
major steps that need to be performed:

• Internationalization
• Localization

Internationalization

Internationalization is the process of enabling your program to work in multiple
locales. A locale is the user’s environment, which includes the cultural conventions of
the target country as well as the language. Linux supports many locales, each of
which is described by a language and country pair (for example, en_US for English/
United States). The user locale identifier can be obtained from the operating system
by looking for the LANG environment variable.

Most Kylix applications do not need to determine the exact locale in which the
application is running but do need to handle strings in a locale-independent manner.

Localization

Localization is the process of translating an application so that it functions in a
specific locale. In addition to translating the user interface, localization may include
functionality customization. For example, a financial application may be modified to
be aware of the different tax laws in different countries.

12-2 D e v e l o p e r ’ s G u i d e

I n t e r n a t i o n a l i z i n g a p p l i c a t i o n s

Internationalizing applications
It is not difficult to create internationalized applications. You need to complete the
following steps:

1 You must enable your code to handle strings from international character sets.

2 You need to design your user interface so that it can accommodate the changes
that result from localization.

3 You need to isolate all resources that need to be localized.

Enabling application code

You must make sure that the code in your application can handle the strings it will
encounter in the various target locales.

Character sets
The Linux operating system uses UTF-8 to encode file names and paths, and other
strings passed to the operating system kernel. The Linux operating system generally
has no knowledge of locale specifics.

End user applications generally require more specific locale support than simply
which character set to display on the screen. Locales and languages have different
rules on how string data should be sorted, what characters are considered equivalent
in comparisons, and how numbers should be formatted for display. UTF-8 provides
no such support; you have to use locales and local character sets.

Multiple byte character sets
The ideographic character sets used in Asia cannot use the simple 1:1 mapping
between characters in the language and the one byte (8-bit) char type. These
languages have too many characters to be represented using the 1-byte char. Instead,
characters in a multibyte string can contain one or more bytes per character.
AnsiStrings can contain a mix of single-byte and multibyte characters.

The first byte of every multibyte character code is taken from a reserved range that
depends on the specific character set. The second and subsequent bytes can
sometimes be the same as the character code for a separate 1-byte character, or it can
fall in the range reserved for the first byte of multibyte characters. Thus, the only way
to tell whether a particular byte in a string represents a single character or is part of a
multibyte character is to read the string, starting at the beginning, parsing it into 2- or
more byte characters when a lead byte from the reserved range is encountered.

When writing code for Asian locales, you must be sure to handle all string
manipulation using functions that are enabled to parse strings into multibyte

C r e a t i n g i n t e r n a t i o n a l a p p l i c a t i o n s 12-3

I n t e r n a t i o n a l i z i n g a p p l i c a t i o n s

characters. Kylix also provides a number of runtime library functions that allow you
to do this many of which are listed here:

Note If your application will be run on Linux systems using pre-2.2 versions of glibc, avoid
passing large strings (greater than 50K) to multibyte-enabled routines. (There are no
string limitations if using glibc version 2.2 or greater.)

Remember that the length of the strings in bytes does not necessarily correspond to
the length of the string in characters. Be careful not to truncate strings by cutting a
multibyte character in half. Do not pass characters as a parameter to a function or
procedure, since the size of a character can’t be known up front. Instead, always pass
a pointer to a character or a string.

Wide characters
Display string properties such as captions, descriptions, text properties, combo
boxes, and so on are all wide strings.

Note The Linux wchar_t WideChar is 32 bits per character. The 16-bit Unicode standard
that Object Pascal WideChars support is a subset of the 32-bit UCS standard
supported by Linux and the GNU libraries. Pascal WideChar data must be widened
to 32 bits per character before it can be passed to an OS function as wchar_t.

The Linux kernel uses 4-byte widechars. The kernel expects strings (file names and so
forth) to be encoded in UTF-8. Kylix WideChar and WideString are 2 bytes per
character Unicode, which is a subset of the UCS-4 specification. To translate Unicode
2-byte characters to UCS 4-byte characters, you must add two bytes of zeros in front.

AdjustLineBreaks AnsiStrLIComp CharToByteLen

AnsiCompareFileName AnsiStrLower ExtractFileDir

AnsiCompareText AnsiStrPos ExtractFileExt

AnsiCompareStr AnsiStrRScan ExtractFileName

AnsiDequotedStr AnsiStrScan ExtractFilePath

AnsiExtractQuotedStr AnsiStrUpper ExtractRelativePath

AnsiLastChar AnsiToUtf8 FileSearch

AnsiLowerCase AnsiUpperCase IsDelimiter

AnsiLowerCaseFileName AnsiUpperCaseFileName IsPathDelimiter

AnsiPos ByteToCharIndex LastDelimiter

AnsiQuotedStr ByteToCharLen StrByteType

AnsiStrComp ByteType StringReplace

AnsiStrIComp ChangeFileExt Utf8ToAnsi

AnsiStrLastChar AnsiStrLIComp WrapText

AnsiStrLComp CharToByteIndex

12-4 D e v e l o p e r ’ s G u i d e

I n t e r n a t i o n a l i z i n g a p p l i c a t i o n s

Designing the user interface

When creating an application for several foreign markets, it is important to design
your user interface so that it can accommodate the changes that occur during
translation.

Text
All text that appears in the user interface must be translated. English text is almost
always shorter than its translations. Design the elements of your user interface that
display text so that there is room for the text strings to grow. Create dialogs, menus,
status bars, and other user interface elements that display text so that they can easily
display longer strings. Avoid abbreviations—they do not exist in languages that use
ideographic characters.

Short strings tend to grow in translation more than long phrases. Table 12.1 provides
a rough estimate of how much expansion you should plan for given the length of
your English strings:

Graphic images
Ideally, you will want to use images that do not require translation. Most obviously,
this means that graphic images should not include text, which will always require
translation. If you must include text in your images, it is a good idea to use a label
object with a transparent background over an image rather than including the text as
part of the image.

There are other considerations when creating graphic images. Try to avoid images
that are specific to a particular culture. For example, mailboxes in different countries
look very different from each other. Religious symbols are not appropriate if your
application is intended for countries that have different dominant religions. Even
color can have different symbolic connotations in different cultures.

Formats and sort order
The date, time, number, and currency formats used in your application should be
localized for the target locale. If you specify any of your own format strings, be sure
to declare them as resourced constants so that they can be localized.

The order in which strings are sorted also varies from country to country. Many
European languages include diacritical marks that are sorted differently, depending

Table 12.1 Estimating string lengths

Length of English string (in characters) Expected increase

1-5 100%

6-12 80%

13-20 60%

21-30 40%

31-50 20%

over 50 10%

C r e a t i n g i n t e r n a t i o n a l a p p l i c a t i o n s 12-5

I n t e r n a t i o n a l i z i n g a p p l i c a t i o n s

on the locale. In addition, in some countries, 2-character combinations are treated as a
single character in the sort order. For example, in Spanish, the combination ch is
sorted like a single unique letter between c and d. Sometimes a single character is
sorted as if it were two separate characters, such as the German eszett.

Keyboard mappings
Be careful with key-combinations shortcut assignments. Not all the characters
available on the US keyboard are easily reproduced on all international keyboards.
Where possible, use number keys and function keys for shortcuts, as these are
available on virtually all keyboards.

Isolating resources

The most obvious task in localizing an application is translating the strings that
appear in the user interface. To create an application that can be translated without
altering code everywhere, the strings in the user interface should be isolated into a
single module. Kylix automatically creates a form file that contains the resources for
your menus, dialogs, and bitmaps.

In addition to these obvious user interface elements, you will need to isolate any
strings, such as error messages, that you present to the user. String resources are not
included in the form file. You can isolate them by declaring constants for them using
the resourcestring keyword. For more information about resource string constants,
see the Object Pascal Language Guide. It is best to include all resource strings in a
single, separate unit.

Kylix resource strings are encoded in UTF-8 (1 byte per character, usually) in the
executable file.

Creating resource modules

Isolating resources simplifies the translation process. The next level of resource
separation is the creation of a resource module. A resource module is a library that
contains all the resources and only the resource strings for a program (no code).
Resource modules allow you to create a program that supports many translations
simply by swapping the resource module.

To create a resource module for your program, create a file that contains the
resourcestring strings for the project and generate a project for a resource only
shared object file that contains the relevant forms. The resources are compiled into a
separate section of the executable file.

You should create a resource module for each translation you want to support. Each
resource module should have a file name specific to the target locale, for example
en_US for US English.

12-6 D e v e l o p e r ’ s G u i d e

L o c a l i z i n g a p p l i c a t i o n s

Using resource modules

The executable, shared object files, and packages that make up your application
contain all the necessary resources. However, to replace those resources with
localized versions, you need only ship your application with localized resource
modules that have the same name as your executable, shared object file, or package
files.

When your application starts up, it checks the locale of the local system by looking at
the LC_ALL environment variable. If it finds any resource modules with the same
name as the executable file, shared object file, or package files it is using, it checks the
extension of those shared object files. If the extension of the resource module matches
the language and country of the system locale, your application will use the
resources in that resource module instead of the resources in the executable, shared
object file, or package. If no resource module matches both the language and the
country, your application will try to locate a resource module that matches the
language only. If no resource module file name extension matches the language, your
application uses the resources compiled into the executable, shared object file, or
package.

You can ship a single application that adapts itself automatically to the locale of the
system it is running on, simply by providing the appropriate resource modules.

Localizing applications
Once your application is internationalized, you can create localized versions for the
different foreign markets in which you want to distribute it.

Ideally, your resources have been isolated into a resource module that contains form
files. You can open your forms in the IDE, translate the relevant properties, then
compile the application. You can extract any resources needed using the resbind
command line utility located in ~/kylix/bin.

Resbind extracts the Borland resources from your application and creates a shared
object file that contains the resources. You can then dynamically link the resources at
runtime or let the application check the environment variable on the local system on
which it is running.

Resbind reads resources from an ELF file and optionally one or more resource files.
The ELF file may be a Linux i386 executable or shared object file. Resbind accepts
resource files in Windows 32-bit and 16-bit formats, and in Borland's resource file
format for Linux.

Resbind can print the resources, copy them to a new resource file, or copy them to a
copy of the ELF file with the resources replaced by resources read from the resource
files using the following syntax:

resbind [option]... ELF-FILE RESOURCE-FILE...

C r e a t i n g i n t e r n a t i o n a l a p p l i c a t i o n s 12-7

L o c a l i z i n g a p p l i c a t i o n s

The following table lists the resbind options.

Resbind can be used to copy resources from a application into a resource file for
editing. Later, you can copy the edited resources back into the application.

For example, the following command copies resources from an ELF file called
“program” to a Windows 32-bit resource file called “program.res:”

$ resbind -r program.res program

You can then combine the edited resources located in “program.res” with the ELF file
called “program” and write the result to “program.new.”

$ resbind -o program.new program program.res

Resources not included in “program.res” remain unchanged.

You can also write combined resources to a resource shared object:

$ resbind -s program-res.so program program.res

Table 12.2 Resbind options

Option Description

-h Display help and exit

-V Output version information and exit

-f FMT Control the resource file output format. FMT may be ‘w32’ (default) or ‘borland’

-l FILE Dynamic linker to use for -s, default /lib/ld-linux.so.2

-o FILE Write the updated ELF-FILE to FILE

-p Print combined resources

-r FILE Write combined resources to resource file FILE

-s FILE Write combined resources to resource shared object FILE

-S SONAME Define soname for -s

12-8 D e v e l o p e r ’ s G u i d e

D e p l o y i n g a p p l i c a t i o n s 13-1

C h a p t e r

13
Chapter13Deploying applications

Once your Kylix application is up and running, you can deploy it. That is, you can
make it available for others to run. A number of steps must be taken to deploy an
application to another computer so that the application is completely functional. The
steps required by a given application vary, depending on the type of application. The
following sections describe those steps for deploying applications:

• Deploying general applications
• Deploying database applications
• Deploying Web applications
• Programming for varying host environments
• Software license requirements

Deploying general applications
In Linux, applications are commonly deployed using one of the following methods:

• Using a tool such as Red Hat Package Manager (RPM) from Red Hat, Inc.
• By creating tar files (tar.gz) or gnu zip files (gzip)
• Using a setup program developed for Linux such as the Setup Graphic Installer

open sourced by Loki Entertainment Software

Each of these methods has its advantages and disadvantages and which one to use
depends on the type of application and files required to run the application. Simple
programs can be deployed using tar files. More complex programs should be
deployed using either RPM or a setup program.

RPM is used to install, uninstall, upgrade, verify, and build software packages. RPM
creates an archive of files and application information (including a name, version,
and brief description). It is available on many versions of Linux and UNIX and is
widely used for software distribution. When using RPM, the term package is used to

13-2 D e v e l o p e r ’ s G u i d e

D e p l o y i n g g e n e r a l a p p l i c a t i o n s

mean a .rpm file or a preassembled unit containing software that is meant to be
installed using RPM. RPM is a command executed from the shell:

rpm -i [options] [packages]

Other setup programs are available for deploying applications on Linux. For
example, the Setup Graphic Installer is a graphic installation utility that developers
can use to create an easy-to-use installation for all types of applications.

Deployment issues

Beyond the executable file, an application may require a number of supporting files,
such as shared object files, initialization files, package files, and helper applications.
The process of copying an application’s files to a computer and making any needed
settings can be automated by an installation program. Following are the main
deployment concerns common to nearly all types of applications:

• Using installation programs
• Identifying application files

Kylix applications that access databases and those that run across the Web require
additional installation steps beyond those that apply to general applications. For
additional information on installing database applications, see “Deploying database
applications” on page 13-3. For more information on installing Web applications, see
“Deploying Web applications” on page 13-4.

Using installation programs

Simple Kylix applications that consist of only an executable file are easy to install on
a target computer. Just copy the executable file onto the computer. However, more
complex applications that comprise multiple files require more extensive installation
procedures. These applications require dedicated installation programs.

Identifying application files
Besides the executable file, a number of other files may need to be distributed with an
application.

The following types of files may need to be distributed with an application.

• Application files
• Shared object files
• Initialization files
• Package files
• Helper applications
• Help files
• Database files

Package files
If the application uses runtime packages, those package files need to be distributed
with the application. By convention, package files are typically placed in a lib

D e p l o y i n g a p p l i c a t i o n s 13-3

D e p l o y i n g d a t a b a s e a p p l i c a t i o n s

directory along with other shared objects. This serves as a common location so that
multiple applications could access a single instance of the files. For packages you
create, it is recommended that you install them in the same directory as the
application. Only the .so files need to be distributed.

If you are distributing packages to other developers, you need to supply both the .so
and the .dcp files.

Helper applications
Helper applications are separate programs without which your Kylix application
would be partially or completely unable to function. Helper applications may be
those supplied by Borland, or they might be third-party products.

If an application depends on a helper program, be sure to deploy it with your
application, where possible. Distribution of helper programs may be governed by
redistribution license agreements. Consult the documentation provided with the
helper program for specific information.

Shared object file locations
You can install shared object files used only by a single application in the same
directory as the application. Shared object files that will be used by a number of
applications should be installed in a location accessible to all of those applications. A
common convention for locating such community shared object files on Linux
systems is to place them in the /bin directory.

Deploying database applications
Applications that access databases involve special installation considerations beyond
copying the application’s executable file onto the host computer. Database access is
most often handled by a separate database engine, the files of which cannot be linked
into the application’s executable file. The data files, when not created beforehand,
must be made available to the application. Multi-tier database applications require
additional handling on installation, because the files that make up the application are
typically located on multiple computers.

Kylix applications use dbExpress to connect to a database. dbExpress is a set of
database drivers that provide quick access to SQL database servers. For each
supported database, dbExpress provides a driver that adapts the server-specific
software to a set of uniform dbExpress interfaces. When you deploy your application,
you need only include a single shared object (the server-specific driver) with the
application files you build. If you are supporting multiple databases, you’ll need a
shared object file for each database.

If you are using a client dataset (TClientDataSet or TSQLClientDataSet) or if you are
using TDataSetProvider, you also need to distribute midas.so.

13-4 D e v e l o p e r ’ s G u i d e

D e p l o y i n g W e b a p p l i c a t i o n s

Connecting to a database

To open a database connection, you must identify both the driver to use and a set of
connection parameters to be passed to that driver. The driver is identified by its
DriverName property, which is the name of an installed dbExpress driver. Supported
drivers include databases such as InterBase, MYSQL, Oracle, or DB2. Two files are
connected to the driver name:

• A dbExpress driver, which is a shared object file with names such as libsqlib.so,
libsqlmys.so, libsqlora.so, or libsqldb2.so

• On the client side, the shared object file provided by the database vendor.

The relationship between these two shared object files and the database name is
stored in a file called dbxdrivers. dbExpress also lets you define database connection
names and save them in a file called dbxconnections. This allows you to deploy your
database applications onto systems that access different databases. You only need to
deploy the dbxdrivers and the dbxconnections files if you are loading database
information at runtime. Details about database connections are covered in
“Controlling connections” on page 19-2.

Install the drivers and connections files either in the same directory as your
executable or in a .borland subdirectory under the home directory. If you want to
share the dbExpress drivers and configuration files among several applications that
you are developing, put them in the .borland directory. (This is the same place that
Kylix places the dbxdrivers and dbxconnections files.)

Updating configuration files
If using shared configuration files, your installation program can use the
MergeIniFile utility provided with the product to merge the contents of an existing
drivers or connections file with a new or updated one. The syntax is:

MergeIniFile(SourceIniFile, TargetIniFile, FOverwrite)

The utility returns a count of the number of sections added. FOverwrite is False by
default. If set to True, it adds the section even if it exists already and overwrites any
settings for the section found in the SourceIniFile. Sections not in the SourceIniFile
remain unchanged, and settings not in the configuration file are not deleted.

Deploying Web applications
Some Kylix applications are designed to be run over the World Wide Web, such as
those in the form of Apache shared object files and CGI applications. CGI
applications can be deployed on any Web server that supports CGI interfaces. For
deployment on Apache Web servers, see “Deployment on Apache” on page 13-5.

The steps for installing Web applications are the same as those for general
applications, except the application’s files are deployed on the Web server. For
information on installing general applications, see “Deploying general applications”
on page 13-1.

D e p l o y i n g a p p l i c a t i o n s 13-5

P r o g r a m m i n g f o r v a r y i n g h o s t e n v i r o n m e n t s

Here are some special considerations for deploying Web applications:

• For database applications, the dbExpress driver is installed along with the
application files on the Web server.

• Security for the directories must not be so high that access to application files or
database files is not possible.

• The directory containing an application must have read and execute attributes.

• Apache configuration files must specify the location of CGI applications. That
directory must have read and execute attributes.

• The application should not use hard-coded paths for accessing database or other
files.

Deployment on Apache

WebBroker supports Apache version 1.3.9 and later. If using Apache, you need to be
sure to set appropriate directives in the Apache configuration file, called httpd.conf.
The SetEnv directive should be set to export the LD_LIBRARY_PATH variable and
set it to point to the location of all shared objects required by the application at
runtime. Therefore, httpd.conf must contain:

SetEnv LD_LIBRARY_PATH <directory>

where <directory> is the full path to the Kylix installation directory.

The physical directory must have the ExecCGI option set to allow execution of
programs; httpd.conf should contain lines similar to the following:

<Directory "/<directory>/httpd/cgi-bin">
AllowOverride None
Options ExecCGI
Order allow,deny
Allow from all

</Directory>

You also need to set the HomeEnv variable in the httpd.conf file. For database
applications, dbExpress requires a .borland directory to be located in the home
directory.

Apache executes locally on the server within the account specified in the User
directive in the httpd.conf file.

Programming for varying host environments
Due to the nature of the Linux environment, there are a number of factors that vary
with user preference or configuration. The following factors can affect an application
deployed to another computer:

• Screen resolutions and color depths
• Fonts
• Helper applications
• Shared object file locations

13-6 D e v e l o p e r ’ s G u i d e

P r o g r a m m i n g f o r v a r y i n g h o s t e n v i r o n m e n t s

Screen resolutions and color depths

The size of the desktop and number of available colors on a computer is configurable
and dependent on the hardware and Xserver that is installed. These attributes are
also likely to differ on the deployment computer compared to those on the
development computer.

An application’s appearance (window, object, and font sizes) on computers
configured for different screen resolutions can be handled in various ways:

• Design the application for the lowest resolution users will have (typically,
640x480). Take no special actions to dynamically resize objects to make them
proportional to the host computer’s screen display. Visually, objects will appear
smaller the higher the resolution is set.

• Design using any screen resolution on the development computer and, at runtime,
dynamically resize all forms and objects proportional to the difference between
the screen resolutions for the development and deployment computers (a screen
resolution difference ratio).

• Design using any screen resolution on the development computer and, at runtime,
dynamically resize only the application’s forms. Depending on the location of
visual controls on the forms, this may require the forms be scrollable for the user
to be able to access all controls on the forms.

Considerations when not dynamically resizing
If the forms and visual controls that make up an application are not dynamically
resized at runtime, design the application’s elements for the lowest resolution.
Otherwise, the forms of an application run on a computer configured for a lower
screen resolution than the development computer may overlap the boundaries of the
screen.

For example, if the development computer is set up for a screen resolution of
1024x768 and a form is designed with a width of 700 pixels, not all of that form will
be visible within the desktop on a computer configured for a 640x480 screen
resolution.

Considerations when dynamically resizing forms and controls
If the forms and visual controls for an application are dynamically resized,
accommodate all aspects of the resizing process to ensure optimal appearance of the
application under all possible screen resolutions. Here are some factors to consider
when dynamically resizing the visual elements of an application:

• The resizing of forms and visual controls is done at a ratio calculated by
comparing the screen resolution of the development computer to that of the
computer onto which the application installed. Use a constant to represent one
dimension of the screen resolution on the development computer: either the
height or the width, in pixels. Retrieve the same dimension for the user’s computer
at runtime using the TScreen.Height or the TScreen.Width property. Divide the
value for the development computer by the value for the user’s computer to derive
the difference ratio between the two computers’ screen resolutions.

D e p l o y i n g a p p l i c a t i o n s 13-7

P r o g r a m m i n g f o r v a r y i n g h o s t e n v i r o n m e n t s

• Resize the visual elements of the application (forms and controls) by reducing or
increasing the size of the elements and their positions on forms. This resizing is
proportional to the difference between the screen resolutions on the development
and user computers. Resize and reposition visual controls on forms automatically
by setting the CustomForm.Scaled property to True and calling the
TWidgetControl.ScaleBy method. The ScaleBy method does not change the form’s
height and width, though. Do this manually by multiplying the current values for
the Height and Width properties by the screen resolution difference ratio.

• The controls on a form can be resized manually, instead of automatically with the
TWidgetControl.ScaleBy method, by referencing each visual control in a loop and
setting its dimensions and position. The Height and Width property values for
visual controls are multiplied by the screen resolution difference ratio. Reposition
visual controls proportional to screen resolution differences by multiplying the
Top and Left property values by the same ratio.

• If an application is designed on a computer configured for a higher screen
resolution than that on the user’s computer, font sizes will be reduced in the
process of proportionally resizing visual controls. If the size of the font at design
time is too small, the font as resized at runtime may be unreadable. For example,
the default font size for a form is 8. If the development computer has a screen
resolution of 1024x768 and the user’s computer 640x480, visual control dimensions
will be reduced by a factor of 0.625 (640 / 1024 = 0.625). The original font size of 8
is reduced to 5 (8 * 0.625 = 5). Text in the application appears jagged and
unreadable as it is displayed in the reduced font size.

• Some visual controls, such as TLabel and TEdit, dynamically resize when the size
of the font for the control changes. This can affect deployed applications when
forms and controls are dynamically resized. The resizing of the control due to font
size changes are in addition to size changes due to proportional resizing for screen
resolutions. This effect is offset by setting the AutoSize property of these controls to
False.

• Avoid making use of explicit pixel coordinates, such as when drawing directly to a
canvas. Instead, modify the coordinates by a ratio proportionate to the screen
resolution difference ratio between the development and user computers. For
example, if the application draws a rectangle to a canvas ten pixels high by twenty
wide, instead multiply the ten and twenty by the screen resolution difference ratio.
This ensures that the rectangle visually appears the same size under different
screen resolutions.

Accommodating varying color depths
To account for all deployment computers not being configured with the same color
availability, the safest way is to use graphics with the least possible number of colors.
This is especially true for control glyphs, which should typically use 16-color
graphics. For displaying pictures, either provide multiple copies of the images in
different resolutions and color depths or explain in the application the minimum
resolution and color requirements for the application.

13-8 D e v e l o p e r ’ s G u i d e

S o f t w a r e l i c e n s e r e q u i r e m e n t s

Fonts

Linux comes with a standard set of fonts. When designing an application to be
deployed on other computers, realize that not all computers will have fonts outside
the standard set.

Text components used in the application should all use fonts that are likely to be
available on all deployment computers.

When use of a nonstandard font is absolutely necessary in an application, you need
to distribute that font with the application. Either the installation program or the
application itself must install the font on the deployment computer. Distribution of
third-party fonts may be subject to limitations imposed by the font creator.

Software license requirements
The distribution of some files associated with Kylix applications is subject to
limitations or cannot be redistributed at all. The following documents describe the
legal stipulations regarding the distribution of these files:

• deploy.txt

• README

• No-nonsense license agreement

• GPL license agreement

• Third-party product documentation

Deploy.txt

Deploy.txt covers some of the legal aspects of distributing of various components
and utilities, and other product areas that can be part of or associated with a Kylix
application. Deploy.txt is a text file installed in the main Kylix directory. The topics
covered include

• Executable files, shared object files, and package files
• Components and design-time packages
• Sample Images
• Client datasets (TDataSetProvider, TClientDataSet, or TSQLDataSet)

README

The README file contains last minute information about Kylix, possibly including
information that could affect the redistribution rights for components, or utilities, or
other product areas. README is a text file installed into the main Kylix directory.

D e p l o y i n g a p p l i c a t i o n s 13-9

S o f t w a r e l i c e n s e r e q u i r e m e n t s

No-nonsense license agreement

The Kylix no-nonsense license agreement, a printed document, covers other legal
rights and obligations concerning Kylix.

GPL license agreement

The General Public License (GPL) agreement specifies information concerning open
source licensing terms for using CLX to develop open sourced applications.

Third-party product documentation

Redistribution rights for third-party components, utilities, helper applications,
database engines, and other products are governed by the vendor supplying the
product. Consult the documentation for the product or the vendor for information
regarding the redistribution of the product with Kylix applications prior to
distribution.

13-10 D e v e l o p e r ’ s G u i d e

D e v e l o p i n g d a t a b a s e a p p l i c a t i o n s

P a r t

II
PartIIDeveloping database applications

The chapters in “Developing Database Applications” present concepts and skills
necessary for creating Kylix database applications.

Note Database components are not available in all versions of Kylix.

D e s i g n i n g d a t a b a s e a p p l i c a t i o n s 14-1

C h a p t e r

14
Chapter14Designing database applications

Database applications let users interact with information that is stored in databases.
Databases provide structure for the information, and allow it to be shared among
different applications.

Kylix provides support for relational database applications. Relational databases
organize information into tables, which contain rows (records) and columns (fields).
These tables can be manipulated by simple operations known as the relational
calculus.

You have several choices available when designing a database application. This
chapter describes the various architectures available. Consider each type of
architecture’s advantages and disadvantages to choose the approach that best suits
your needs. You may want to start with a simple approach, and then scale it up later
to another, more powerful architecture. Kylix’s database support makes this easy
because the same components are used in most of the architectures.

Using databases
The components on the dbExpress page of the Component palette let your
application connect to and read from databases. These components use dbExpress to
access database information, which they make available to other components that
repackage and buffer the information, or display it to end-users.

dbExpress is a set of drivers for different types of databases. While all types of
databases contain tables which store information, different types support additional
features such as

• Database security
• Transactions
• Referential integrity, stored procedures, and triggers

14-2 D e v e l o p e r ’ s G u i d e

U s i n g d a t a b a s e s

Types of databases

Relational database servers vary in the way they store information and in the way
they allow multiple users to access that information simultaneously. Kylix provides
support for two types of relational database server:

• Remote database servers typically reside on a separate machine. Sometimes, the
data from a remote database server does not even reside on a single machine, but
is distributed over several servers. Although remote database servers vary in the
way they store information, they provide a common logical interface to clients.
This common interface is Structured Query Language (SQL). Because you access
them using SQL, they are sometimes called SQL servers. (Another name is Remote
Database Management system, or RDBMS.) In addition to the common commands
that make up SQL, most remote database servers support a unique “dialect” of
SQL. Examples of SQL servers include InterBase, Oracle, DB2, and MySQL.

• Local databases reside on your local drive or on a local area network. They often
have proprietary APIs for accessing the data. When they are shared by several
users, they use file-based locking mechanisms. Because of this, they are sometimes
called file-based databases. Kylix provides support for two types of local
databases: Local InterBase, which is a local version of the InterBase server, and a
proprietary file format for the data stored in a client dataset.

Applications that use local databases are called single-tiered applications because
the application and the database share a single file system. Applications that use
remote database servers are called two-tiered applications or multi-tiered
applications because the application and the database operate on independent
systems (or tiers).

Choosing the type of database to use depends on several factors. For example, your
data may already be stored in an existing database. If you are creating the database
tables your application uses, you may want to consider the following questions:

• How many users will be sharing these tables? Remote database servers are
designed for access by several users at the same time. They provide support for
multiple users through a mechanism called transactions. Some local databases
(such as Local InterBase) also provide transaction support, but many only provide
file-based locking mechanisms, and some (such as client dataset files) provide no
multi-user support at all.

• How much data will the tables hold? Remote database servers can hold more data
than local databases. Some remote database servers are designed for warehousing
large quantities of data while others are optimized for other criteria (such as fast
updates).

• What type of performance (speed) do you require from the database? Local
databases are usually faster than remote database servers because they reside on
the same system as the database application. Different remote database servers are
optimized to support different types of operations, so you may want to consider
performance when choosing a remote database server.

• What type of support will be available for database administration? Local
databases require less support than remote database servers. Typically, they are

D e s i g n i n g d a t a b a s e a p p l i c a t i o n s 14-3

U s i n g d a t a b a s e s

less expensive to operate because they do not require separately installed servers
or expensive site licenses.

Database security

Databases often contain sensitive information. Most SQL servers provide security at
multiple levels. Typically, they require a password and user name to use the
database server at all. Once the user has logged in to the database, that username and
password determine which tables can be used. For information on providing
passwords to SQL servers, see “Controlling server login” on page 19-5.

When designing database applications, you must consider what type of
authentication is required by your database server. Often, applications are designed
to hide the explicit database login from users, who need only log in to the application
itself. If you do not want to require your users to provide a database password, you
must either use a database that does not require one or you must provide the
password and username to the server programmatically. When providing the
password programmatically, care must be taken that security can’t be breached by
reading the password from the application.

If your application requires multiple passwords because you must log in to several
protected systems or databases, you can have your users provide a single master
password which is used to access a table of passwords required by the protected
systems. The application then supplies passwords programmatically, without
requiring the user to provide multiple passwords.

In multi-tiered applications, you may want to use a different security model
altogether. You can use a protocol such as HTTPs to control access to middle tiers,
and let the middle tiers handle all details of logging into database servers.

Transactions

A transaction is a group of actions that must all be carried out successfully on one or
more tables in a database before they are committed (made permanent). If any of the
actions in the group fails, then all actions are rolled back (undone).

Transactions ensure that

• All updates in a single transaction are either committed or aborted and rolled back
to their previous state. This is referred to as atomicity.

• A transaction is a correct transformation of the system state, preserving the state
invariants. This is referred to as consistency.

• Concurrent transactions do not see each other's partial or uncommitted results,
which might create inconsistencies in the application state. This is referred to as
isolation.

• Committed updates to records survive failures, including communication failures,
process failures, and server system failures. This is referred to as durability.

14-4 D e v e l o p e r ’ s G u i d e

D a t a b a s e a r c h i t e c t u r e

Thus, transactions protect against hardware failures that occur in the middle of a
database command or set of commands. Transactional logging allows you to recover
the durable state after disk media failures. Transactions also form the basis of multi-
user concurrency control on SQL servers. When each user interacts with the database
only through transactions, one user’s commands can’t disrupt the unity of another
user’s transaction. Instead, the SQL server schedules incoming transactions, which
either succeed as a whole or fail as a whole.

Transaction support is provided by most SQL servers. However, some servers, such
as MySQL, provide no support for transactions. Similarly, if you are only using client
datasets and storing the data in files, there is no transaction support.

For details on using transactions in your database applications, see “Managing
transactions” on page 19-7.

Referential integrity, stored procedures, and triggers

All relational databases have certain features in common that allow applications to
store and manipulate data. In addition, databases often provide other, database-
specific, features that can prove useful for ensuring consistent relationships between
the tables in a database. These include

• Referential integrity. Referential integrity provides a mechanism to prevent
master/detail relationships between tables from being broken. When the user
attempts to delete a field in a master table which would result in orphaned detail
records, referential integrity rules prevent the deletion or automatically delete the
orphaned detail records.

• Stored procedures. Stored procedures are sets of SQL statements that are named
and stored on an SQL server. Stored procedures usually perform common
database-related tasks on the server, and sometimes return sets of records
(datasets).

• Triggers. Triggers are sets of SQL statements that are automatically executed in
response to a particular command.

Database architecture
Database applications are built from user interface elements, components that
represent database information (datasets), and components that connect these to each
other and to the source of the database information. How you organize these pieces is
the architecture of your database application.

General structure

While there are many distinct ways to organize the components in a database
application, most follow the general scheme illustrated in Figure 14.1:

D e s i g n i n g d a t a b a s e a p p l i c a t i o n s 14-5

D a t a b a s e a r c h i t e c t u r e

Figure 14.1 Generic Database Architecture

The user interface form
It is a good idea to isolate the user interface on a form that is completely separate
from the rest of the application. This has several advantages. By isolating the user
interface from the components that represent the database information itself, you
introduce a greater flexibility into your design: Changes to the way you manage the
database information do not require you to rewrite your user interface, and changes
to the user interface do not require you to change the portion of your application that
works with the database. In addition, this type of isolation lets you develop common
forms that you can share between multiple applications, thereby providing a
consistent user interface. By storing links to well-designed forms in the Object
Repository, you and other developers can build on existing foundations rather than
starting over from scratch for each new project. Sharing forms also makes it possible
for you to develop corporate standards for application interfaces. For more
information about creating the user interface for a database application, see
Chapter 15, “Using data controls”.

The data module
If you have isolated your user interface into its own form, you can use a data module
to house the components that represent database information (datasets), and the
components that connect these datasets to the other parts of your application. Like
the user interface forms, you can share data modules in the Object Repository so that
they can be reused or shared between applications.

The data source
The first item in the data module is a data source. The data source acts as a conduit
between the user interface and a dataset that represents information from a database.
Several data-aware controls on a form can share a single data source, in which case
the display in each control is synchronized so that as the user scrolls through records,
the corresponding value in the fields for the current record is displayed in each
control.

The dataset
The heart of your database application is the dataset. This component represents a set
of records from the underlying database. These records can be the data from a single
database table, a subset of the fields or records in a table, or information from more
than one table joined into a single view. By using datasets, your application logic is
buffered from restructuring of the physical tables in your databases. When the
underlying database changes, you might need to alter the way the dataset

Data module

Dataset
UI

Data source Connection
to data

14-6 D e v e l o p e r ’ s G u i d e

D a t a b a s e a r c h i t e c t u r e

component specifies the data it contains, but the rest of your application can continue
to work without alteration. For more information on the common properties and
methods of datasets, see Chapter 16, “Understanding datasets”.

The data connection
Different types of datasets use different mechanisms for connecting to the underlying
database information. These different mechanisms, in turn, make up the major
differences in the architecture of the database applications you can build. Kylix
provides support for two types of datasets:

• Client datasets, which buffer data in memory so that you can navigate through
records more easily and perform operations on the data such as filtering records or
maintaining aggregate values that summarize the data. Client datasets provide
support for applying the updates in the in-memory cache back to the underlying
database. Because client datasets cache the records in memory, they can only hold
a limited number of records. There are two types of client datasets: generic client
datasets and SQL client datasets. Generic client datasets access their data by
working directly with a file stored locally on disk, connecting to another dataset in
the same data module, or connecting to an application server on another (server)
machine. SQL client datasets can use a file stored locally on disk or connect to a
database server. For more information about client datasets, see Chapter 20,
“Using client datasets”.

• Unidirectional datasets, which can read data that is described by an SQL query or
that is returned by a stored procedure. Unidirectional datasets do not buffer data,
so they are less flexible than client datasets. The only way to navigate through the
records of a unidirectional dataset is to iterate through them in the order specified
by the ORDER BY clause of the SQL query. Further, you can’t use a unidirectional
dataset to update data. However, unidirectional datasets provide fast access to
information from a database server, and can represent far larger sets of data than
client datasets. Unidirectional datasets always fetch their data using an SQL
connection component For more information about unidirectional data sets, see
Chapter 18, “Using unidirectional datasets.”

In addition, you can create your own custom datasets. These are descendants of
TDataSet that represent a body of data that you create or access in code you write.
Writing custom datasets allows you the flexibility of managing the data using any
method you choose, while still letting you use the CLX data controls to build your
user interface.

The following topics describe the most common ways to use client datasets, local
datsets, and unidirectional datasets in database applications.

Using a client dataset with data stored on disk

The simplest form of database application you can write does not use a database
server at all. Instead, it uses the ability of client datasets to save themselves to a file
and to load the data from a file. The architecture for this type of application is
illustrated in Figure 14.2:

D e s i g n i n g d a t a b a s e a p p l i c a t i o n s 14-7

D a t a b a s e a r c h i t e c t u r e

Figure 14.2 Architecture of a file-based database application

This simple file-based architecture is a single-tiered application. The logic that
manipulates database information is in the same application that implements the
user interface, although isolated into a data module.

The file-based approach has the benefit of simplicity. There is no database server to
install, configure, or deploy (although the client dataset does require midas.so).
There is no need for site licenses or database administration.

However, there is no support for multiple users. The dataset must be dedicated
entirely to the application. Data is saved to files on disk, and loaded at a later time,
but there is no built-in protection to prevent multiple users from overwriting each
other’s data files.

Because there is no separate database server, you are responsible for creating the
underlying table yourself. Once this table is created, you can save it to a file. From
then on, you do not need to recreate the table, only load it from the file you saved.
When beginning a file-based database application, you may want to first create and
save empty files for your datasets before writing the application itself. This way, you
do not need to define the metadata for your client datasets in the final application.
For more information about creating the tables for file-based applications, see
“Creating a new dataset” on page 20-37.

In this file-based model, all edits to the data exist only in an in-memory change log.
This log can be maintained separately from the data itself, although it is completely
transparent to objects that use the client dataset. That is, controls that navigate the
client dataset or display its data see a view of the data that includes the changes. If
you do not want to back out of changes, however, you should merge the change log
into the data of the client dataset by calling the MergeChangeLog method. For more
information about the change log, see “Editing data” on page 20-14.

Even when you have merged changes into the data of the client dataset, this data still
exists only in memory. While it persists if you close the client dataset and reopen it in
your application, it will disappear when your application shuts down. To make the
data permanent, it must be written to disk. Write changes to disk using the SaveToFile
method. SaveToFile takes one parameter, the name of the file which is created (or
overwritten) containing the table. When you want to read a table previously written
using the SaveToFile method, use the LoadFromFile method. LoadFromFile also takes
one parameter, the name of the file containing the table.

Data module

Client dataset
UI

Data source
File

14-8 D e v e l o p e r ’ s G u i d e

D a t a b a s e a r c h i t e c t u r e

If you always load to and save from the same file, you can use the FileName property
instead of the SaveToFile and LoadFromFile methods. When FileName is set to a valid
file name, the data is automatically loaded from the file when the client dataset is
opened and saved to the file when the client dataset is closed.

Using a unidirectional dataset directly

Kylix requires a unidirectional dataset to connect to a database server. Thus, the
simplest way to use data from an SQL server is to connect this unidirectional dataset
directly to the user interface. The architecture for this type of application is illustrated
in Figure 14.3.

Figure 14.3 Architecture of a unidirectional database application

This architecture represents either a single-tiered or two-tiered application,
depending on whether the database server is a local database such as Local InterBase
or a remote database server. The logic that manipulates database information is in the
same application that implements the user interface, although isolated into a data
module.

This model provides very fast access when working with a database server. There is
no overhead for buffering data or managing metadata. Because no data is buffered in
memory, you can use this model with arbitrarily large datasets.

However, when using this model, your application can only view one record at a
time, and you can only progress through records in order. In addition, the data is
read-only: there is no built-in way to post changes back to the database.

This model is best suited to applications that read the data and analyze it to present a
set of summary statistics or print a report. It can, however, be used to present users
with values through which to browse.

Client application

Data module

Unidirectional
dataset

UI
Data source

Database server

SQL
connection

D e s i g n i n g d a t a b a s e a p p l i c a t i o n s 14-9

D a t a b a s e a r c h i t e c t u r e

The dataset in this model is a unidirectional dataset (TSQLDataSet, TSQLQuery,
TSQLTable, or TSQLStoredProcedure). Unidirectional datasets execute an SQL
statement on the database server and, if the SQL statement returns data (that is, if it is
a SELECT statement), obtains a unidirectional cursor for accessing the resulting data.

In order to connect a unidirectional dataset to a server, the data module must contain
a SQL connection component (TSQLConnection). The unidirectional dataset is linked
to this SQL connection component via its SQLConnection property. The SQL
connection component represents the connection to the database server, and requires
dbExpress. Double-click on the SQL connection component to identify the server in
the Connection Editor. This editor lets you specify a connection name, which
represents a named set of configuration parameters for a specific driver. Each named
connection configuration is defined in a special file called connections.ini. You can
use the Connection Editor to select a configuration, modify a named configuration, or
define a new one.

Note You may need to purchase some of the drivers separately.

Using a client dataset to buffer records

To display multiple records, use data-aware controls to update data, move
backwards through records, or move to records that meet a specific criterion, you
must use a client dataset. On the other hand, you must use a unidirectional dataset to
connect to a database server. You can combine these to create an application that has
the flexibility of a client dataset but works with data from a database server. The
architecture for this type of application is illustrated in Figure 14.4:

Figure 14.4 Architecture combining a client dataset and a unidirectional dataset

Client application

Data module

Client dataset

UI
Data source

Unidirectional
dataset

SQL
connection Provider

Database server

14-10 D e v e l o p e r ’ s G u i d e

D a t a b a s e a r c h i t e c t u r e

The connection between the client dataset and the unidirectional dataset is provided
by a dataset provider. The provider packages database information into
transportable data packets (which can be used by client datasets) and applies updates
received in delta packets (which client datasets create) back to a database server. To
link the client dataset to the provider, set its ProviderName property to the name of the
provider component. The provider and the client dataset must be in the same data
module. To link the provider to the unidirectional dataset, set its DataSet property to
the unidirectional dataset.

To simplify this architecture, Kylix includes a special type of client dataset, called an
SQL client dataset, that contains its own, internal provider and unidirectional
dataset. By using an SQL client dataset, the preceding arrangement is simplified to
look like Figure 14.5.

Figure 14.5 Architecture using a client dataset with an internal unidirectional dataset

When using an SQL client dataset, you need not explicitly add a dataset provider and
unidirectional dataset to the data module: these components are internal to the SQL
client dataset. This simplifies your application, but at the cost of some control:

• Because the unidirectional dataset is internal to the SQL client dataset component,
you can’t link two unidirectional datasets in a master/detail relationship to obtain
nested detail sets. (You can, however, link two SQL client datasets into a master/
detail relationship.)

• The SQL client dataset component does not surface most of the events that occur
on its internal dataset provider. However, in most cases, these events are used in
multi-tiered applications, and are not needed for two-tiered applications.

Both of these models represent either a single-tiered or two-tiered application,
depending on whether the database server is a local database such as Local Interbase
or a remote database server. The logic that manipulates database information is in the
same application that implements the user interface, although isolated into a data
module.

Client application

Data module

SQL client
dataset

UI
Data source

Database server

SQL
connection

D e s i g n i n g d a t a b a s e a p p l i c a t i o n s 14-11

D a t a b a s e a r c h i t e c t u r e

These models represent a hybrid of the two previous models. They use a (possibly
internal) unidirectional dataset to access the database server and fetch records, while
the client dataset buffers the records to provide more flexibility and applies updates
back to the database server when the user edits the data.

Client datasets automatically handle all the details necessary for fetching, displaying,
and navigating through database records. To apply user edits back to the database,
you need only call the client dataset’s ApplyUpdates method. (Note that, unlike when
using a client dataset with data stored on disk, you must not call the MergeChangeLog
method, or the client can’t produce accurate delta packets for the provider.)

Using a multi-tiered architecture

When the database information includes complicated relationships between several
tables, or the number of clients grows, you may want to use a multi-tiered model.
Multi-tiered applications have middle tiers between the client application and the
database server. This architecture is illustrated in Figure 14.6:

Figure 14.6 Multi-tiered database architecture

Client application

Data module

Client dataset
UI

Data source

Database server

Connection
component

Application server

Unidirectional
dataset

SQL
connection Provider

14-12 D e v e l o p e r ’ s G u i d e

D a t a b a s e a r c h i t e c t u r e

The preceding figure represents three-tiered application. The logic that manipulates
database information is on a separate system, or tier. This middle tier centralizes the
logic that governs your database interactions so there is centralized control over data
relationships. This allows different client applications to use the same data while
ensuring that the data logic is consistent. It also allows for smaller client applications
because much of the processing is off-loaded onto the middle tier. These smaller
client applications are easier to install, configure, and maintain. Multi-tiered
applications can also improve performance by spreading the data-processing tasks
over several systems.

The multi-tiered architecture is very similar to using a client dataset to buffer records
from an external provider and unidirectional dataset. It differs mainly in that the
unidirectional dataset that connects to the database server and the provider that acts
as an intermediary between that unidirectional dataset and the client dataset have
both moved to a separate application. That separate application is called the
application server (or sometimes the “remote data broker”).

Because the provider has moved to a separate application, the client dataset can no
longer connect to the unidirectional dataset by simply setting its ProviderName
property. In addition, it must use some type of connection component to locate and
connect to the application server. This component is a descendant of
TCustomRemoteServer such as TSoapConnection. Link the client dataset to its
connection component by setting the RemoteServer property.

Note You may need to purchase the components to connect a client dataset with a remote
application server separately.

The connection component establishes a connection to the application server and
returns an interface that the client dataset uses to call the provider specified by its
ProviderName property. Each time the client dataset calls the application server, it
passes the value of ProviderName, and the application server forwards the call to the
provider.

Combining approaches

The previous sections describe several architectures you can use when writing
database applications. There is no reason, however, why you can’t combine two or
more of the available architectures in a single application. In fact, some combinations
can be extremely powerful.

For example, you can combine the disk-based architecture described in “Using a
client dataset with data stored on disk” on page 14-6 with another approach such as
“Using a client dataset to buffer records” on page 14-9 or “Using a multi-tiered
architecture” on page 14-11. The result is called the briefcase model (or sometimes
the disconnected model, or mobile computing).

The briefcase model is useful in a situation such as the following: An onsite company
database contains customer contact data that sales representatives can use and
update in the field. While onsite, sales representatives download information from
the database. Later, they work with it on their laptops as they fly across the country,
and even update records at existing or new customer sites. When the sales reps

D e s i g n i n g d a t a b a s e a p p l i c a t i o n s 14-13

D a t a b a s e a r c h i t e c t u r e

return onsite, they upload their data changes to the company database for everyone
to use.

When operating on site, the client dataset in a briefcase model application fetches its
data from a provider. The dataset is therefore connected to the database server and
can, through the provider, fetch server data and send updates back to the server.
Before disconnecting from the provider, the client dataset saves its snapshot of the
information to a file on disk. While offsite, the client dataset loads its data from the
file, and saves any changes back to that file. Finally, back onsite, the client dataset
reconnects to the provider so that it can apply its updates to the database server or
refresh its snapshot of the data.

14-14 D e v e l o p e r ’ s G u i d e

U s i n g d a t a c o n t r o l s 15-1

C h a p t e r

15
Chapter15Using data controls

The Data Controls page of the Component palette provides a set of data-aware
controls that represent data from fields in a database record, and, if the dataset allows
it, enable users to edit that data and post changes back to the database. By placing
data controls onto the forms in your database application, you can build your
database application’s user interface (UI) so that information is visible and accessible
to users.

The data-aware controls you add to your user interface depend on several factors,
including the following:

• The type of data you are displaying. You can choose between controls that are
designed to display and edit plain text, controls that work with formatted text,
controls for graphics, multimedia elements, and so on. Controls that display
different types of information are described in “Displaying a single record” on
page 15-7.

• How you want to organize the information. You may choose to display
information from a single record on the screen, or list the information from
multiple records using a grid. “Choosing how to organize the data” on page 15-7
describes some of the possibilities.

• The type of dataset that supplies data to the controls. You want to use controls that
reflect the limitations of the underlying dataset. For example, you would not use a
grid with a unidirectional dataset because unidirectional datasets can only supply
a single record at a time.

• How (or if) you want to let users navigate through the records of datasets and add
or edit data. You may want to add your own controls or mechanisms to navigate
and edit, or you may want to use a built-in control such as a data navigator. For
more information about using a data navigator, see “Navigating and
manipulating records” on page 15-25.

Regardless of the data-aware controls you choose to add to your interface, certain
common features apply. These are described below.

15-2 D e v e l o p e r ’ s G u i d e

U s i n g c o m m o n d a t a c o n t r o l f e a t u r e s

Using common data control features
The following tasks are common to most data controls:

• Associating a data control with a dataset
• Editing and updating data
• Disabling and enabling data display
• Refreshing data display
• Enabling mouse, keyboard, and timer events

Data controls generally let you display and edit fields of data associated with the
current record in a dataset. Table 15.1 summarizes the data controls that appear on
the Data Controls page of the Component palette.

Data controls are data-aware at design time. When you associate the data control
with an active dataset while building an application, you can immediately see live
data in the control. You can use the Fields editor to scroll through a dataset at design
time to verify that your application displays data correctly without having to compile
and run the application. For more information about the Fields editor, see “Creating
persistent fields” on page 17-4.

At runtime, data controls display data and, if your application, the control, and the
dataset all permit it, a user can edit data through the control.

Table 15.1 Data controls

Data control Description

TDBGrid Displays information from a data source in a tabular format. Columns in
the grid correspond to columns in the underlying table or query’s
dataset. Rows in the grid correspond to records.

TDBNavigator Navigates through data records in a dataset. updating records, posting
records, deleting records, canceling edits to records, and refreshing data
display.

TDBText Displays data from a field as a label.

TDBEdit Displays data from a field in an edit box.

TDBMemo Displays data from a memo or BLOB field in a scrollable, multi-line edit
box.

TDBImage Displays graphics from a data field in a graphics box.

TDBListBox Displays a list of items from which to update a field in the current data
record.

TDBComboBox Displays a list of items from which to update a field, and also permits
direct text entry like a standard data-aware edit box.

TDBCheckBox Displays a check box that indicates the value of a Boolean field.

TDBRadioGroup Displays a set of mutually exclusive options for a field.

TDBLookupListBox Displays a list of items looked up from another dataset based on the
value of a field.

TDBLookupComboBox Displays a list of items looked up from another dataset based on the
value of a field, and also permits direct text entry like a standard data-
aware edit box.

U s i n g d a t a c o n t r o l s 15-3

U s i n g c o m m o n d a t a c o n t r o l f e a t u r e s

Associating a data control with a dataset

Data controls connect to datasets by using a data source. A data source component
(TDataSource) acts as a conduit between the control and a dataset containing data.
Each data-aware control must be associated with a data source component to have
data to display and manipulate. Similarly, all datasets must be associated with a data
source component in order for their data to be displayed and manipulated in data-
aware controls on a form.

Note Data source components are also required for linking unnested datasets in master-
detail relationships.

To associate a data control with a dataset,

1 Place a dataset in a data module (or on a form), and set its properties as
appropriate.

2 Place a data source in the same data module (or form). Using the Object Inspector,
set its DataSet property to the dataset you placed in step 1.

3 Place a data control from the Data Access page of the Component palette onto a
form.

4 Using the Object Inspector, set the DataSource property of the control to the data
source component you placed in step 2.

5 Set the DataField property of the control to the name of a field to display, or select a
field name from the drop-down list for the property. This step does not apply to
TDBGrid and TDBNavigator because they access all available fields in the dataset.

6 Set the Active property of the dataset to True to display data in the control.

Changing the associated dataset at runtime
In the preceding example, the datasource was associated with its dataset by setting
the DataSet property at design time. At runtime, you can switch the dataset for a data
source component as needed. For example, the following code swaps the dataset for
the CustSource data source component between the dataset components named
Customers and Orders:

with CustSource do begin
if (DataSet = Customers) then

DataSet := Orders
else

DataSet := Customers;
end;

You can also set the DataSet property to a dataset on another form to synchronize the
data controls on two forms. For example:

procedure TForm2.FormCreate (Sender : TObject);
begin

DataSource1.DataSet := Form1.ClientDataSet1;
end;

15-4 D e v e l o p e r ’ s G u i d e

U s i n g c o m m o n d a t a c o n t r o l f e a t u r e s

Enabling and disabling the data source
The data source has an Enabled property that determines if it is connected to its
dataset. When Enabled is True, the data source is connected to a dataset.

You can temporarily disconnect a single data source from its dataset by setting
Enabled to False. When Enabled is False, all data controls attached to the data source
component go blank and become inactive until Enabled is set to True. It is
recommended, however, to control access to a dataset through a dataset component’s
DisableControls and EnableControls methods because they affect all attached data
sources.

Responding to changes mediated by the data source
Because the data source provides the link between the data control and its dataset, it
mediates all of the communication that occurs between the two. Typically, the data-
aware control automatically responds to changes in the dataset. However, if your
user interface is using controls that are not data-aware, you can use the events of a
data source component to manually provide the same sort of response.

The OnDataChange event occurs whenever the data in a record may change,
including field edits or when the cursor moves to a new record. This event is useful
for making sure the control reflects the current field values in the dataset, because it
is triggered by all changes. Typically, an OnDataChange event handler refreshes the
value of a non-data-aware control that displays field data.

The OnUpdateData event occurs when the data in the current record is about to be
posted. For instance, an OnUpdateData event occurs after Post is called, but before the
data is actually posted to the change log.

The OnStateChange event occurs when the state of the dataset changes. When this
event occurs, you can examine the dataset’s State property to determine its current
state.

For example, the following OnStateChange event handler enables or disables buttons
or menu items based on the current state:

procedure Form1.DataSource1.StateChange(Sender: TObject);
begin

CustTableEditBtn.Enabled := (CustTable.State = dsBrowse);
CustTableCancelBtn.Enabled := CustTable.State in [dsInsert, dsEdit, dsSetKey];
CustTableActivateBtn.Enabled := CustTable.State in [dsInactive];
ƒ

end;

Note For more information about dataset states, see “Determining and setting dataset
states” on page 16-3.

Editing and updating data

All data controls except the navigator display data from a database field. In addition,
you can use them to edit and update data as long as the underlying dataset allows it.

Note Unidirectional datasets never permit users to edit and update data.

U s i n g d a t a c o n t r o l s 15-5

U s i n g c o m m o n d a t a c o n t r o l f e a t u r e s

Enabling editing in controls on user entry
A dataset must be in dsEdit state to permit editing to its data. If the data source’s
AutoEdit property is True (the default), the data control handles the task of putting
the dataset into dsEdit mode as soon as the user tries to edit its data.

If AutoEdit is False, you must provide an alternate mechanism for putting the dataset
into edit mode. One such mechanism is to use a TDBNavigator control with an Edit
button, which lets users explicitly put the dataset into edit mode. For more
information about TDBNavigator, see “Navigating and manipulating records” on
page 15-25. Alternately, you can write code that calls the dataset’s Edit method when
you want to put the dataset into edit mode.

Editing data in a control
A data control can only post edits to its associated dataset if the dataset’s CanModify
property is True. CanModify is always False for unidirectional datasets. Client datasets
have a ReadOnly property that lets you specify whether CanModify is True.

Note Whether a client dataset can update data does not depend on whether its source
dataset permits updates, but rather, it depends on whether the underlying database
table permits updates. Thus, a client dataset can set ReadOnly to False, even if it
fetches its data from a unidirectional dataset, which is always read-only. This is
because client datasets can apply updates directly to the underlying database server.

Even if the dataset’s CanModify property is True, the Enabled property of the data
source that connects the dataset to the control must be True as well before the control
can post updates back to the database table. The Enabled property of the data source
determines whether the control can display field values from the dataset, and
therefore also whether a user can edit and post values. If Enabled is True (the default),
controls can display field values.

Finally, you can control whether the user can even enter edits to the data that is
displayed in the control. The ReadOnly property of the data control determines if a
user can edit the data displayed by the control. If False (the default), users can edit
data. Clearly, you will want to ensure that the control’s ReadOnly property is True
when the dataset’s CanModify property is False. Otherwise, you give users the false
impression that they can affect the data in the underlying database table.

In all data controls except TDBGrid, when you modify a field, the modification is
copied to the underlying dataset when you Tab from the control. If you press Esc
before you Tab from a field, the data control abandons the modifications, and the
value of the field reverts to the value it held before any modifications were made.

In TDBGrid, modifications are posted when you move to a different record; you can
press Esc in any record of a field before moving to another record to cancel all
changes to the record.

Client datasets cache all modifications to the data in a change log. These
modifications are not applied to the underlying database table until you call the
client dataset’s ApplyUpdates method or, if you are storing data in a file on disk, until
you call the client dataset’s MergeChangeLog method and then save the client dataset.

15-6 D e v e l o p e r ’ s G u i d e

U s i n g c o m m o n d a t a c o n t r o l f e a t u r e s

Disabling and enabling data display

When your application iterates through a dataset or performs a search, you should
temporarily prevent refreshing of the values displayed in data-aware controls each
time the current record changes. Preventing refreshing of values speeds the iteration
or search and prevents annoying screen-flicker.

DisableControls is a dataset method that disables display for all data-aware controls
linked to a dataset. As soon as the iteration or search is over, your application should
immediately call the dataset’s EnableControls method to re-enable display for the
controls.

Usually you disable controls before entering an iterative process. The iterative
process itself should take place inside a try...finally statement so that you can re-
enable controls even if an exception occurs during processing. The finally clause
should call EnableControls. The following code illustrates how you might use
DisableControls and EnableControls in this manner:

CustTable.DisableControls;
try

CustTable.First; { Go to first record, which sets EOF False }
while not CustTable.EOF do { Cycle until EOF is True }
begin

{ Process each record here }
ƒ
CustTable.Next; { EOF False on success; EOF True when Next fails on last record }

end;
finally

CustTable.EnableControls;
end;

Refreshing data display

The Refresh method for a dataset flushes local buffers and refetches data for an open
dataset. You can use this method to update the display in data-aware controls if you
think that the underlying data has changed because other applications have
simultaneous access to the data used in your application. However, before you
refresh the dataset, be sure to apply any updates the dataset has currently cached.
Client datasets raise an exception if you attempt to refresh the data before applying
pending updates.

Refreshing can sometimes lead to unexpected results. For example, if a user is
viewing a record deleted by another application, then the record disappears the
moment your application calls Refresh. Data can also appear to change if another user
changes a record after you originally fetched the data and before you call Refresh.

U s i n g d a t a c o n t r o l s 15-7

C h o o s i n g h o w t o o r g a n i z e t h e d a t a

Enabling mouse, keyboard, and timer events

The Enabled property of a data control determines whether it responds to mouse,
keyboard, or timer events, and passes information to its data source. The default
setting for this property is True.

To prevent mouse, keyboard, or timer events from reaching a data control, set its
Enabled property to False. When Enabled is False, the data source that connects the
control to its dataset does not receive information from the data control. The data
control continues to display data, but the text displayed in the control is dimmed.

Choosing how to organize the data
When you build the user interface for your database application, you have choices to
make about how you want to organize the display of information and the controls
that manipulate that information.

One of the first decisions to make is whether you want to display a single record at a
time, or multiple records.

In addition, you will want to add controls to navigate and manipulate records. The
TDBNavigator control provides built-in support for many of the functions you may
want to perform.

Displaying a single record

In many applications, you may only want to provide information about a single
record of data at a time. For example, an order-entry application may display the
information about a single order without indicating what other orders are currently
logged. This information probably comes from a single record in an orders dataset. If
you are connecting your user interface directly to a unidirectional dataset, a single-
record user interface is the only available possibility.

Applications that display a single record are usually easy to read and understand,
because all database information is about the same thing (in the previous case, the
same order). The data-aware controls in these user interfaces represent a single field
from a database record. The Data Controls page of the Component palette provides a
wide selection of controls to represent different kinds of fields. These controls are
typically data-aware versions of other controls that are available on the component
palette. For example, the TDBEdit control is a data-aware version of the standard
TEdit control which enables users to see and edit a text string.

Which control you use depends on the type of data (text, formatted text, graphics,
boolean information, and so on) contained in the field.

Displaying data as labels
TDBText is a read-only control similar to the TLabel component on the Standard page
of the Component palette. A TDBText control is useful when you want to provide

15-8 D e v e l o p e r ’ s G u i d e

C h o o s i n g h o w t o o r g a n i z e t h e d a t a

display-only data on a form that allows user input in other controls. For example,
suppose a form is created around the fields in a customer list table, and that once the
user enters a street address, city, and state or province information in the form, you
use a dynamic lookup to automatically determine the zip code field from a separate
table. A TDBText component tied to the zip code table could be used to display the
zip code field that matches the address entered by the user.

TDBText gets the text it displays from a specified field in the current record of a
dataset. Because TDBText gets its text from a dataset, the text it displays is dynamic—
the text changes as the user navigates the database table. Therefore you cannot
specify the display text of TDBText at design time as you can with TLabel.

Note When you place a TDBText component on a form, make sure its AutoSize property is
True (the default) to ensure that the control resizes itself as necessary to display data
of varying widths. If AutoSize is False, and the control is too small, data display is
clipped.

Displaying and editing fields in an edit box
TDBEdit is a data-aware version of an edit box component. TDBEdit displays the
current value of a data field to which it is linked and permits it to be edited using
standard edit box techniques.

For example, suppose CustomersSource is a TDataSource component that is active and
linked to an open TSQLClientDataSet called CustomersTable. You can then place a
TDBEdit component on a form and set its properties as follows:

• DataSource: CustomersSource

• DataField: CustNo

The data-aware edit box component immediately displays the value of the current
row of the CustNo column of the CustomersTable dataset, both at design time and at
runtime.

Displaying and editing text in a memo control
TDBMemo is a data-aware component—similar to the standard TMemo component—
that can display lengthy text data. TDBMemo displays multi-line text, and permits a
user to enter multi-line text as well. You can use TDBMemo controls to display large
text fields or text data contained in binary large object (BLOB) fields.

By default, TDBMemo permits a user to edit memo text. To prevent editing, set the
ReadOnly property of the memo control to True. To display tabs and permit users to
enter them in a memo, set the WantTabs property to True. To limit the number of
characters users can enter into the database memo, use the MaxLength property. The
default value for MaxLength is 0, meaning that there is no character limit other than
that imposed by the operating system.

Several properties affect how the database memo appears and how text is entered. To
prevent word wrap, set the WordWrap property to False. The Alignment property
determines how the text is aligned within the control. Possible choices are
taLeftJustify (the default), taCenter, and taRightJustify. To change the font of the text,
use the Font property.

U s i n g d a t a c o n t r o l s 15-9

C h o o s i n g h o w t o o r g a n i z e t h e d a t a

At runtime, users can cut, copy, and paste text to and from a database memo control.
You can accomplish the same task programmatically by using the CutToClipboard,
CopyToClipboard, and PasteFromClipboard methods.

Because the TDBMemo can display large amounts of data, it can take time to populate
the display at runtime. To reduce the time it takes to scroll through data records,
TDBMemo has an AutoDisplay property that controls whether the accessed data
should be displayed automatically. If you set AutoDisplay to False, TDBMemo displays
the field name rather than actual data. Double-click inside the control to view the
actual data.

Displaying and editing graphics fields in an image control
TDBImage is a data-aware control that displays graphics contained in BLOB fields.

By default, TDBImage permits a user to edit a graphics image by cutting and pasting
to and from the clipboard using the CutToClipboard, CopyToClipboard, and
PasteFromClipboard methods. You can, instead, supply your own editing methods
attached to the event handlers for the control.

By default, an image control displays as much of a graphic as fits in the control,
cropping the image if it is too big. You can set the Stretch property to True to resize
the graphic to fit within an image control as it is resized.

Because the TDBImage can display large amounts of data, it can take time to populate
the display at runtime. To reduce the time it takes scroll through data records,
TDBImage has an AutoDisplay property that controls whether the accessed data
should automatically displayed. If you set AutoDisplay to False, TDBImage displays
the field name rather than actual data. Double-click inside the control to view the
actual data.

Displaying and editing data in list and combo boxes
There are four data controls that provide the user with a set of default data values to
choose from at runtime. These are data-aware versions of standard list box and
combo box controls:

• TDBListBox, which displays a scrollable list of items from which a user can choose
to enter in a data field. A data-aware list box displays a default value for a field in
the current record and highlights its corresponding entry in the list. If the current
row’s field value is not in the list, no value is highlighted in the list box. When a
user selects a list item, the corresponding field value is changed in the underlying
dataset.

• TDBComboBox, which combines the functionality of a data-aware edit control and
a drop-down list. At runtime it can display a drop-down list from which a user can
pick from a predefined set of values, and it can permit a user to enter an entirely
different value.

• TDBLookupListBox, which behaves like TDBListBox except the list of display items
is looked up in another dataset.

• TDBLookupComboBox, which behaves like TDBComboBox except the list of display
items is looked up in another dataset.

15-10 D e v e l o p e r ’ s G u i d e

C h o o s i n g h o w t o o r g a n i z e t h e d a t a

Note At runtime, users can use an incremental search to find list box items. When the
control has focus, for example, typing ‘ROB’ selects the first item in the list box
beginning with the letters ‘ROB’. Typing an additional ‘E’ selects the first item
starting with ‘ROBE’, such as ‘Robert Johnson’. The search is case-insensitive.
Backspace and Esc cancel the current search string (but leave the selection intact), as
does a two second pause between keystrokes.

Using TDBListBox and TDBComboBox
When using TDBListBox or TDBComboBox, you must use the String List editor at
design time to create the list of items to display. To bring up the String List editor,
click the ellipsis button for the Items property in the Object Inspector. Then type in
the items that you want to have appear in the list. At runtime, use the methods of the
Items property to manipulate its string list. You can specify that the items in the list
should be displayed in alphabetical order by setting the Sorted property to True.

When a TDBListBox or TDBComboBox control is linked to a field through its DataField
property, the field value appears selected in the list. If the current value is not in the
list, no item appears selected. However, TDBComboBox displays the current value for
the field in its edit box, regardless of whether it appears in the Items list.

The items in the list of TDBListBox or the drop-down list of TDBComboBox each have
the height specified by ItemHeight. To ensure that the bottom on the list is fully visible
in TDBListBox, you may therefore want to set the Height property to a multiple of
ItemHeight. On TDBComboBox, this is not necessary, because the size of the drop-
down list is not controlled by the Height property. Instead, you can set the
DropDownCount: the maximum number of items displayed in the list. If the number
of items in the list exceeds the size of the list (as determined by Height on TDBListBox
or DropDownCount on TDBComboBox), the user can scroll the list.

For TDBComboBox, the Style property determines user interaction with the control. By
default, Style is csDropDown, meaning a user can enter values from the keyboard, or
choose an item from the drop-down list. The possible values of Style are as follows:

• csDropDown (default): Displays a drop-down list with an edit box in which the
user can enter text. All items are strings and have the same height.

• csDropDownList: Displays a drop-down list and edit box, but the user cannot enter
or change values that are not in the drop-down list at runtime.

• csOwnerDrawFixed and csOwnerDrawVariable: Allows the items list to display
values other than strings (for example, bitmaps) or to use different fonts for
individual items in the list.

Displaying and editing data in lookup list and combo boxes
Lookup list boxes and lookup combo boxes (TDBLookupListBox and
TDBLookupComboBox) present the user with a restricted list of choices from which to
set a valid field value. When a user selects a list item, the corresponding field value is
changed in the underlying dataset.

For example, consider an order form whose fields are tied to the OrdersTable.
OrdersTable contains a CustNo field corresponding to a customer ID, but OrdersTable
does not have any other customer information. The CustomersTable, on the other

U s i n g d a t a c o n t r o l s 15-11

C h o o s i n g h o w t o o r g a n i z e t h e d a t a

hand, contains a CustNo field corresponding to a customer ID, and also contains
additional information, such as the customer’s company and mailing address. It
would be convenient if the order form enabled a clerk to select a customer by
company name instead of customer ID when creating an invoice. A
TDBLookupListBox that displays all company names in CustomersTable enables a user
to select the company name from the list, and set the CustNo on the order form
appropriately.

These lookup controls derive the list of display items from one of two sources:

• A lookup field defined for a dataset. To specify list box items using a lookup
field, the dataset to which you link the control must already define a lookup field.
(This process is described in “Defining a lookup field” on page 17-8). To specify
the lookup field for the list box items,

1 Set the DataSource property of the list box to the data source for the dataset
containing the lookup field to use.

2 Choose the lookup field to use from the drop-down list for the DataField
property.

When you activate a table associated with a lookup control, the control recognizes
that its data field is a lookup field, and displays the appropriate values from the
lookup.

• A secondary data source, data field, and key. If you have not defined a lookup
field for a dataset, you can establish a similar relationship using a secondary data
source, a field value to search on in the secondary data source, and a field value to
return as a list item. To specify a secondary data source for list box items,

1 Set the DataSource property of the list box to the data source for the control.

2 Choose a field into which to insert looked-up values from the drop-down list
for the DataField property. The field you choose cannot be a lookup field.

3 Set the ListSource property of the list box to the data source for the dataset that
contain the field whose values you want to look up.

4 Choose a field to use as a lookup key from the drop-down list for the KeyField
property. The drop-down list displays fields for the dataset associated with
data source you specified in Step 3. The field you choose need not be part of an
index, but if it is, lookup performance is even faster.

5 Choose a field whose values to return from the drop-down list for the ListField
property. The drop-down list displays fields for the dataset associated with the
data source you specified in Step 3.

When you activate a table associated with a lookup control, the control recognizes
that its list items are derived from a secondary source, and displays the
appropriate values from that source.

To specify the number of items that appear at one time in a TDBLookupListBox
control, use the RowCount property. The height of the list box is adjusted to fit this
row count exactly.

15-12 D e v e l o p e r ’ s G u i d e

C h o o s i n g h o w t o o r g a n i z e t h e d a t a

To specify the number of items that appear in the drop-down list of
TDBLookupComboBox, use the DropDownRows property instead.

Note You can also set up a column in a data grid to act as a lookup combo box. For
information on how to do this, see “Defining a lookup list column” on page 15-19.

Handling Boolean field values with check boxes
TDBCheckBox is a data-aware check box control. It can be used to set the values of
Boolean fields in a dataset. For example, a customer invoice form might have a check
box control that when checked indicates the customer is tax-exempt, and when
unchecked indicates that the customer is not tax-exempt.

The data-aware check box control manages its checked or unchecked state by
comparing the value of the current field to the contents of ValueChecked and
ValueUnchecked properties. If the field value matches the ValueChecked property, the
control is checked. Otherwise, if the field matches the ValueUnchecked property, the
control is unchecked.

Note The values in ValueChecked and ValueUnchecked cannot be identical.

Set the ValueChecked property to a value the control should post to the database if the
control is checked when the user moves to another record. By default, this value is set
to “true,” but you can make it any alphanumeric value appropriate to your needs.
You can also enter a semicolon-delimited list of items as the value of ValueChecked. If
any of the items matches the contents of that field in the current record, the check box
is checked. For example, you can specify a ValueChecked string like:

DBCheckBox1.ValueChecked := 'True;Yes;On';

If the field for the current record contains values of “true,” “Yes,” or “On,” then the
check box is checked. Comparison of the field to ValueChecked strings is case-
insensitive. If a user checks a box for which there are multiple ValueChecked strings,
the first string is the value that is posted to the database.

Set the ValueUnchecked property to a value the control should post to the database if
the control is not checked when the user moves to another record. By default, this
value is set to “false,” but you can make it any alphanumeric value appropriate to
your needs. You can also enter a semicolon-delimited list of items as the value of
ValueUnchecked. If any of the items matches the contents of that field in the current
record, the check box is unchecked.

A data-aware check box is disabled whenever the field for the current record does
not contain one of the values listed in the ValueChecked or ValueUnchecked properties.

If the field with which a check box is associated is a logical field, the check box is
always checked if the contents of the field is True, and it is unchecked if the contents
of the field is False. In this case, strings entered in the ValueChecked and
ValueUnchecked properties have no effect on logical fields.

Restricting field values with radio controls
TDBRadioGroup is a data-aware version of a radio group control. It enables you to set
the value of a data field with a radio button control where there is a limited number
of possible values for the field. The radio group includes one button for each value a

U s i n g d a t a c o n t r o l s 15-13

C h o o s i n g h o w t o o r g a n i z e t h e d a t a

field can accept. Users can set the value for a data field by selecting the desired radio
button.

The Items property determines the radio buttons that appear in the group. Items is a
string list. One radio button is displayed for each string in Items, and each string
appears to the right of a radio button as the button’s label.

If the current value of a field associated with a radio group matches one of the strings
in the Items property, that radio button is selected. For example, if three strings,
“Red,” “Yellow,” and “Blue,” are listed for Items, and the field for the current record
contains the value “Blue,” then the third button in the group appears selected.

Note If the field does not match any strings in Items, a radio button may still be selected if
the field matches a string in the Values property. If the field for the current record
does not match any strings in Items or Values, no radio button is selected.

The Values property can contain an optional list of strings that can be returned to the
dataset when a user selects a radio button and posts a record. Strings are associated
with buttons in numeric sequence. The first string is associated with the first button,
the second string with the second button, and so on. For example, suppose Items
contains “Red,” “Yellow,” and “Blue,” and Values contains “Magenta,” “Yellow,”
and “Cyan.” If a user selects the button labeled “Red,” “Magenta” is posted to the
database.

If strings for Values are not provided, the Item string for a selected radio button is
returned to the database when a record is posted.

Displaying multiple records

Sometimes you want to display many records in the same form. For example, an
invoicing application might show all the orders made by a single customer on the
same form.

To display multiple records, use a grid control. Grid controls provide a multi-field,
multi-record view of data that can make your application’s user interface more
compelling and effective. They are discussed in “Viewing and editing data with
TDBGrid” on page 15-14.

Note You can’t display multiple records when using a unidirectional dataset.

You may want to design a user interface that displays both fields from a single record
and grids that represent multiple records. There are two models that combine these
two approaches:

• Master-detail forms: You can represent information from both a master table and
a detail table by including both controls that display a single field and grid
controls. For example, you could display information about a single customer with
a detail grid that displays the orders for that customer. For information about
linking the underlying tables in a master-detail form, see “Setting up master/
detail relationships” on page 18-13 and “Making the client dataset a detail of
another dataset” on page 20-10.

15-14 D e v e l o p e r ’ s G u i d e

V i e w i n g a n d e d i t i n g d a t a w i t h T D B G r i d

• Drill-down forms: In a form that displays multiple records, you can include single
field controls that display detailed information from the current record only. This
approach is particularly useful when the records include long memos or graphic
information. As the user scrolls through the records of the grid, the memo or
graphic updates to represent the value of the current record. Setting this up is very
easy. The synchronization between the two displays is automatic if the grid and
the memo or image control share a common data source.

Tip It is generally not a good idea to combine these two approaches on a single form.
While the result can sometimes be effective, it can be confusing for users to
understand the data relationships.

Viewing and editing data with TDBGrid
A TDBGrid control lets you view and edit records from a dataset in a tabular grid
format.

Figure 15.1 TDBGrid control

Three factors affect the appearance of records displayed in a grid control:

• Existence of persistent column objects defined for the grid using the Columns
editor. Persistent column objects provide great flexibility setting grid and data
appearance. For information on using persistent columns, see “Creating a
customized grid” on page 15-15.

• Creation of persistent field components for the dataset displayed in the grid. For
information about creating persistent field components using the Fields editor, see
Chapter 17, “Working with field components.”

• The dataset’s ObjectView property setting for grids displaying nested dataset or
array fields. For information on displaying such composite fields in a grid, see
“Displaying composite fields” on page 15-21.

A grid control has a Columns property that is itself a wrapper on a TDBGridColumns
object. TDBGridColumns is a collection of TColumn objects representing all of the
columns in a grid control. You can use the Columns editor to set up column
attributes at design time, or use the Columns property of the grid to access the
properties, events, and methods of TDBGridColumns at runtime.

Current field Column titles

Record
indicator

U s i n g d a t a c o n t r o l s 15-15

V i e w i n g a n d e d i t i n g d a t a w i t h T D B G r i d

Using a grid control in its default state

The State property of the grid’s Columns property indicates whether persistent
column objects exist for the grid. Columns.State is a runtime-only property that is
automatically set for a grid. The default state is csDefault, meaning that persistent
column objects do not exist for the grid. In that case, the display of data in the grid is
determined primarily by the properties of the fields in the grid’s dataset, or, if there
are no persistent field components, by a default set of display characteristics.

When the grid’s Columns.State property is csDefault, grid columns are dynamically
generated from the visible fields of the dataset and the order of columns in the grid
matches the order of fields in the dataset. Every column in the grid is associated with
a field component. Property changes to field components immediately show up in
the grid.

Using a grid control with dynamically-generated columns is useful for viewing and
editing the contents of arbitrary tables selected at runtime. Because the grid’s
structure is not set, it can change dynamically to accommodate different datasets. A
single grid with dynamically-generated columns can display a Local InterBase table
at one moment, then switch to display the results of a MySQL query when the grid’s
DataSource property changes or the DataSet property of the data source changes.

You can change the appearance of a dynamic column at design time or runtime, but
what you are actually modifying are the corresponding properties of the field
component displayed in the column. Properties of dynamic columns exist only so
long as a column is associated with a particular field in a single dataset. For example,
changing the Width property of a column changes the DisplayWidth property of the
field associated with that column. Changes made to column properties that are not
based on field properties, such as Font, exist only for the lifetime of the column.

If a grid’s dataset consists of dynamic field components, the fields are destroyed each
time the dataset is closed. When the field components are destroyed, all dynamic
columns associated with them are destroyed as well. If a grid’s dataset consists of
persistent field components, the field components exist even when the dataset is
closed, so the columns associated with those fields also retain their properties when
the dataset is closed.

Note Changing a grid’s Columns.State property to csDefault at runtime deletes all column
objects in the grid (even persistent columns), and rebuilds dynamic columns based
on the visible fields of the grid’s dataset.

Creating a customized grid

A customized grid is one for which you define persistent column objects that
describe how a column appears and how the data in the column is displayed. A
customized grid lets you configure multiple grids to present different views of the
same dataset (different column orders, different field choices, and different column
colors and fonts, for example). A customized grid also enables you to let users
modify the appearance of the grid at runtime without affecting the fields used by the
grid or the field order of the dataset.

15-16 D e v e l o p e r ’ s G u i d e

V i e w i n g a n d e d i t i n g d a t a w i t h T D B G r i d

Customized grids are best used with datasets whose structure is known at design
time. Because they expect field names established at design time to exist in the
dataset, customized grids are not well suited to browsing arbitrary tables selected at
runtime.

Understanding persistent columns
When you create persistent column objects for a grid, they are only loosely associated
with underlying fields in a grid’s dataset. Default property values for persistent
columns are dynamically fetched from a default source (the associated field or the
grid itself) until a value is assigned to the column property. Until you assign a
column property a value, its value changes as its default source changes. Once you
assign a value to a column property, it no longer changes when its default source
changes.

For example, the default source for a column title caption is an associated field’s
DisplayLabel property. If you modify the DisplayLabel property, the column title reflects
that change immediately. If you then assign a string to the column title’s caption, the
title caption is independent of the associated field’s DisplayLabel property.
Subsequent changes to the field’s DisplayLabel property no longer affect the column’s
title.

Persistent columns exist independently from field components with which they are
associated. In fact, persistent columns need not be associated with field objects at all.
If a persistent column’s FieldName property is blank, or if the field name does not
match the name of any field in the grid’s current dataset, the column’s Field property
is NULL and the column is drawn with blank cells. If you override the cell’s default
drawing method, you can display your own custom information in the blank cells.
For example, you can use a blank column to display aggregated values on the last
record of a group of records that the aggregate summarizes. Another possibility is to
display a bitmap or bar chart that graphically depicts some aspect of a record’s data.

Two or more persistent columns can be associated with the same field in a dataset.
For example, you might display a part number field at the left and right extremes of a
wide grid to make it easier to find the part number without having to scroll the grid.

Note Because persistent columns do not have to be associated with a field in a dataset, and
because multiple columns can reference the same field, a customized grid’s
FieldCount property can be less than or equal to the grid’s column count. Also note
that if the currently selected column in a customized grid is not associated with a
field, the grid’s SelectedField property is NULL and the SelectedIndex property is –1.

Persistent columns can be configured to display grid cells as a combo box drop-down
list of lookup values from another dataset or from a static pick list, or as an ellipsis
button (…) in a cell that users can click to launch special data viewers or dialogs
related to the current cell.

Creating persistent columns
To customize the appearance of grid at design time, you invoke the Columns editor
to create a set of persistent column objects for the grid. At runtime, the State property
for a grid with persistent column objects is automatically set to csCustomized.

U s i n g d a t a c o n t r o l s 15-17

V i e w i n g a n d e d i t i n g d a t a w i t h T D B G r i d

To create persistent columns for a grid control,

1 Select the grid component in the form.

2 Invoke the Columns editor by double clicking on the grid’s Columns property in
the Object Inspector.

The Columns list box displays the persistent columns that have been defined for the
selected grid. When you first bring up the Columns editor, this list is empty because
the grid is in its default state, containing only dynamic columns.

You can create persistent columns for all fields in a dataset at once, or you can create
persistent columns on an individual basis. To create persistent columns for all fields:

1 Right-click the grid to invoke the context menu and choose Add All Fields. Note
that if the grid is not already associated with a data source, Add All Fields is
disabled. Associate the grid with a data source that has an active dataset before
choosing Add All Fields.

2 If the grid already contains persistent columns, a dialog box asks if you want to
delete the existing columns, or append to the column set. If you choose Yes, any
existing persistent column information is removed, and all fields in the current
dataset are inserted by field name according to their order in the dataset. If you
choose No, any existing persistent column information is retained, and new
column information, based on any additional fields in the dataset, are appended to
the dataset.

3 Click Close to apply the persistent columns to the grid and close the dialog box.

To create persistent columns individually:

1 Choose the Add button in the Columns editor. The new column will be selected in
the list box. The new column is given a sequential number and default name (for
example, 0 - TColumn).

2 To associate a field with this new column, set the FieldName property in the Object
Inspector.

3 To set the title for the new column, expand the Title property in the Object
Inspector and set its Caption property.

4 Close the Columns editor to apply the persistent columns to the grid and close the
dialog box.

At runtime, you can switch to persistent columns by assigning csCustomized to the
Columns.State property. Any existing columns in the grid are destroyed and new
persistent columns are built for each field in the grid’s dataset. You can then add a
persistent column at runtime by calling the Add method for the column list:

DBGrid1.Columns.Add;

Deleting persistent columns
Deleting a persistent column from a grid is useful for eliminating fields that you do
not want to display. To remove a persistent column from a grid,

1 Double-click the grid to display the Columns editor.

15-18 D e v e l o p e r ’ s G u i d e

V i e w i n g a n d e d i t i n g d a t a w i t h T D B G r i d

2 Select the field to remove in the Columns list box.

3 Click Delete (you can also use the context menu or Del key, to remove a column).

Note If you delete all the columns from a grid, the Columns.State property reverts to its
csDefault state and automatically build dynamic columns for each field in the dataset.

You can delete a persistent column at runtime by simply freeing the column object:

DBGrid1.Columns[5].Free;

Arranging the order of persistent columns
The order in which columns appear in the Columns editor is the same as the order
the columns appear in the grid. You can change the column order by dragging and
dropping columns within the Columns list box.

To change the order of a column,

1 Select the column in the Columns list box.

2 Drag it to a new location in the list box.

You can also change the column order by clicking on the column title of the actual
grid and dragging the column to a new position, just as you can at runtime.

Note Reordering persistent fields in the Fields editor also reorders columns in a default
grid, but not a custom grid.

Important You cannot reorder columns in grids containing both dynamic columns and dynamic
fields at design time, since there is nothing persistent to record the altered field or
column order.

At runtime, a user can use the mouse to drag a column to a new location in the grid if
its DragMode property is set to dmManual. Reordering the columns of a grid with a
State property of csDefault state also reorders field components in the dataset
underlying the grid. The order of fields in the physical table is not affected. To
prevent a user from rearranging columns at runtime, set the grid’s DragMode
property to dmAutomatic.

At runtime, the grid’s OnColumnMoved event is fired after a column has been moved.

Setting column properties at design time
Column properties determine how data is displayed in the cells of that column. Most
column properties obtain their default values from properties associated with
another component, called the default source, such as a grid or an associated field
component.

U s i n g d a t a c o n t r o l s 15-19

V i e w i n g a n d e d i t i n g d a t a w i t h T D B G r i d

To set a column’s properties, select the column in the Columns editor and set its
properties in the Object Inspector. The following table summarizes key column
properties you can set.

The following table summarizes the options you can specify for the Title property.

Defining a lookup list column
You can create a column that displays a drop-down list of values, similar to a lookup
combo box control. To specify that the column acts like a combo box, set the column’s
ButtonStyle property to cbsAuto. Once you populate the list with values, the grid
automatically displays a combo box-like drop-down button when a cell of that
column is in edit mode.

Table 15.2 Column properties

Property Purpose

Alignment Left justifies, right justifies, or centers the field data in the column. Default
source: TField.Alignment.

ButtonStyle cbsAuto: (default) Displays a drop-down list if the associated field is a lookup
field, or if the column’s PickList property contains data.
cbsEllipsis: Displays an ellipsis (...) button to the right of the cell. Clicking on
the button fires the grid’s OnEditButtonClick event.
cbsNone: The column uses only the normal edit control to edit data in the
column.

Color Specifies the background color of the cells of the column. Default Source:
TDBGrid.Color. (For text foreground color, see the Font property.)

DropDownRows The number of lines of text displayed by the drop-down list. Default: 7.

Expanded Specifies whether the column is expanded. Only applies to columns
representing composite fields.

FieldName Specifies the field name associated with this column. This can be blank.

ReadOnly True: The data in the column cannot be edited by the user.
False: (default) The data in the column can be edited.

Width Specifies the width of the column in screen pixels. Default Source: derived
from TField.DisplayWidth.

Font Specifies the font type, size, and color used to draw text in the column. Default
Source: TDBGrid.Font.

PickList Contains a list of values to display in a drop-down list in the column.

Title Sets properties for the title of the selected column.

Table 15.3 Expanded TColumn Title properties

Property Purpose

Alignment Left justifies (default), right justifies, or centers the caption text in the column title.

Caption Specifies the text to display in the column title. Default Source: TField.DisplayLabel.

Color Specifies the background color used to draw the column title cell. Default Source:
TDBGrid.FixedColor.

Font Specifies the font type, size, and color used to draw text in the column title. Default
Source: TDBGrid.TitleFont.

15-20 D e v e l o p e r ’ s G u i d e

V i e w i n g a n d e d i t i n g d a t a w i t h T D B G r i d

There are two ways to populate that list with the values for users to select:

• You can fetch the values from a lookup table. To make a column display a drop-
down list of values drawn from a separate lookup table, you must define a lookup
field in the dataset. For information about creating lookup fields, see “Defining a
lookup field” on page 17-8. Once the lookup field is defined, set the column’s
FieldName to the lookup field name. The drop-down list is automatically
populated with lookup values defined by the lookup field.

• You can specify a list of values explicitly at design time. To enter the list values at
design time, double-click the PickList property for the column in the Object
Inspector. This brings up the String List editor, where you can enter the values that
populate the pick list for the column.

By default, the drop-down list displays 7 values. You can change the length of this list
by setting the DropDownRows property.

Note To restore a column with an explicit pick list to its normal behavior, delete all the text
from the pick list using the String List editor.

Putting a button in a column
A column can display an ellipsis button (…) to the right of the normal cell editor.
Ctrl+Enter or a mouse click fires the grid’s OnEditButtonClick event. You can use the
ellipsis button to bring up forms containing more detailed views of the data in the
column. For example, in a table that displays summaries of invoices, you could set up
an ellipsis button in the invoice total column to bring up a form that displays the
items in that invoice, or the tax calculation method, and so on. For graphic fields, you
could use the ellipsis button to bring up a form that displays an image.

To create an ellipsis button in a column:

1 Select the column in the Columns list box.

2 Set ButtonStyle to cbsEllipsis.

3 Write an OnEditButtonClick event handler.

Restoring default values to a column
At runtime you can test a column’s AssignedValues property to determine whether a
column property has been explicitly assigned. Values that are not explicitly defined
are dynamically based on the associated field or the grid’s defaults.

You can undo property changes made to one or more columns. In the Columns
editor, select the column or columns to restore, and then select Restore Defaults from
the context menu. Restore defaults discards assigned property settings and restores a
column’s properties to those derived from its underlying field component

At runtime, you can reset all default properties for a single column by calling the
column’s RestoreDefaults method. You can also reset default properties for all
columns in a grid by calling the column list’s RestoreDefaults method:

DBGrid1.Columns.RestoreDefaults;

U s i n g d a t a c o n t r o l s 15-21

V i e w i n g a n d e d i t i n g d a t a w i t h T D B G r i d

Displaying composite fields

Sometimes the fields of the grid’s dataset do not represent simple values such as text,
graphics, numerical values, and so on. Some database servers allow fields that are a
composite of simpler data types, such as ADT fields or array fields.

There are two ways a grid can display composite fields:

• It can “flatten out” a composite field type so that each of the simpler types that
make up the field appears as a separate field in the dataset. When a composite
field is flattened out, its constituents appear as separate fields that reflect their
common source only in that each field name is preceded by the name of the
common parent field in the underlying database table.

To display composite fields as if they were flattened out, set the dataset’s
ObjectView property to False. The dataset stores composite fields as a set of
separate fields, and the grid reflects this by assigning each constituent part a
separate column.

• It can display composite fields in a single column, reflecting the fact that they are a
single field. When displaying composite fields in a single column, the column can
be expanded and collapsed by clicking on the arrow in the title bar of the field, or
by setting the Expanded property of the column:

• When a column is expanded, each child field appears in its own sub-column
with a title bar that appears below the title bar of the parent field. That is, the
title bar for the grid increases in height, with the first row giving the name of
the composite field, and the second row subdividing that for the individual
parts. Fields that are not composites appear with title bars that are extra high.
This expansion continues for constituents that are in turn composite fields (for
example, a detail table nested in a detail table), with the title bar growing in
height accordingly.

• When the field is collapsed, only one column appears with an uneditable
comma delimited string containing the child fields.

To display a composite field in an expanding and collapsing column, set the
dataset’s ObjectView property to True. The dataset stores the composite field as a
single field component that contains a set of nested sub-fields. The grid reflects
this in a column that can expand or collapse.

Table 15.4 Properties that affect the way composite fields appear

Property Object Purpose

Expandable TColumn Indicates whether the column can be expanded to show child
fields in separate, editable columns. (read-only)

Expanded TColumn Specifies whether the column is expanded.

MaxTitleRows TDBGrid Specifies the maximum number of title rows that can appear in
the grid

ObjectView TDataSet Specifies whether fields are displayed flattened out, or in object
mode, where each object field can be expanded and collapsed.

ParentColumn TColumn Refers to the TColumn object that owns the child field’s column.

15-22 D e v e l o p e r ’ s G u i d e

V i e w i n g a n d e d i t i n g d a t a w i t h T D B G r i d

Note In addition to Composite fields, some datasets include fields that refer to another
dataset (dataset fields) or a record in another dataset (reference) fields. Data-aware
grids display such fields as “(DataSet)” or “(Reference)”, respectively. At runtime an
ellipsis button appears to the right. Clicking on the ellipsis brings up a new form with
a grid displaying the contents of the field. For dataset fields, this grid displays the
dataset that is the field’s value. For reference fields, this grid contains a single row
that displays the record from another dataset.

Setting grid options

You can use the grid Options property at design time to control basic grid behavior
and appearance at runtime. When a grid component is first placed on a form at
design time, the Options property in the Object Inspector is displayed with a + (plus)
sign to indicate that the Options property can be expanded to display a series of
Boolean properties that you can set individually. To view and set these properties,
click on the + sign. The list of options in the Object Inspector below the Options
property. The + sign changes to a – (minus) sign, that collapses the list back when
you click it.

The following table lists the Options properties that can be set, and describes how
they affect the grid at runtime.

Table 15.5 Expanded TDBGrid Options properties

Option Purpose

dgEditing True: (Default). Enables editing, inserting, and deleting records in the
grid.
False: Disables editing, inserting, and deleting records in the grid.

dgAlwaysShowEditor True: When a field is selected, it is in Edit state.
False: (Default). A field isn’t automatically in Edit state when selected.

dgTitles True: (Default). Displays field names across the top of the grid.
False: Field name display is turned off.

dgIndicator True: (Default). The indicator column is displayed at the left of the
grid, and the current record indicator (an arrow at the left of the grid)
is activated to show the current record. On insert, the arrow becomes
an asterisk. On edit, the arrow becomes an I-beam.
False: The indicator column is turned off.

dgColumnResize True: (Default). Columns can be resized by dragging the column rulers
in the title area. Resizing can change the corresponding width of the
underlying TField component.
False: Columns cannot be resized in the grid.

dgColLines True: (Default). Displays vertical dividing lines between columns.
False: Does not display dividing lines between columns.

dgRowLines True: (Default). Displays horizontal dividing lines between records.
False: Does not display dividing lines between records.

dgTabs True: (Default). Enables tabbing between fields in records.
False: Tabbing exits the grid control.

U s i n g d a t a c o n t r o l s 15-23

V i e w i n g a n d e d i t i n g d a t a w i t h T D B G r i d

Editing in the grid

At runtime, you can use a grid to modify existing data and enter new records, if the
following default conditions are met:

• The CanModify property of the Dataset is True.

• The ReadOnly property of grid is False.

When a user edits a record in the grid, changes to each field are posted to an internal
record buffer, but are not posted until the user moves to a different record in the grid.
Even if focus changes to another control on a form, the grid does not post changes
until the cursor for the dataset moves to another record. When a record is posted, the
dataset checks all associated data-aware components for a change in status. If there is
a problem updating any fields that contain modified data, it raises an exception, and
does not modify the record.

Note Posting record changes to a client dataset only adds them to the client dataset’s
internal change log. They are not posted back to the underlying database table until
the client dataset applies its updates.

You can cancel all edits for a record by pressing Esc in any field before moving to
another record.

Controlling grid drawing

Your first level of control over how a grid control draws itself is setting column
properties. The grid automatically uses the font, color, and alignment properties of a
column to draw the cells of that column. The text of data fields is drawn using the
DisplayFormat or EditFormat properties of the field component associated with the
column.

dgRowSelect True: The selection bar spans the entire width of the grid.
False: (Default). Selecting a field in a record selects only that field.

dgAlwaysShowSelection True: (Default). The selection bar in the grid is always visible, even if
another control has focus.
False: The selection bar in the grid is only visible when the grid has
focus.

dgConfirmDelete True: (Default). Prompt for confirmation to delete records (Ctrl+Del).
False: Delete records without confirmation.

dgCancelOnExit True: (Default). Cancels a pending insert when focus leaves the grid.
This option prevents inadvertent posting of partial or blank records.
False: Permits pending inserts.

dgMultiSelect True: Allows user to select noncontiguous rows in the grid using
Ctrl+Shift or Shift+ arrow keys.
False: (Default). Does not allow user to multi-select rows.

Table 15.5 Expanded TDBGrid Options properties (continued)

Option Purpose

15-24 D e v e l o p e r ’ s G u i d e

V i e w i n g a n d e d i t i n g d a t a w i t h T D B G r i d

You can augment the default grid display logic with code in a grid’s
OnDrawColumnCell event. If the grid’s DefaultDrawing property is True, all the
normal drawing is performed before your OnDrawColumnCell event handler is
called. Your code can then draw on top of the default display. This is primarily useful
when you have defined a blank persistent column and want to draw special values in
that column’s cells.

If you want to replace the drawing logic of the grid entirely, set DefaultDrawing to
False and place your drawing code in the grid’s OnDrawColumnCell event. If you
want to replace the drawing logic only in certain columns or for certain field data
types, you can call the DefaultDrawColumnCell method inside your
OnDrawColumnCell event handler to have the grid use its normal drawing code for
selected columns. This reduces the amount of work you have to do if you only want
to change the way Boolean field types are drawn, for example.

Responding to user actions at runtime

You can modify grid behavior by writing event handlers to respond to specific
actions within the grid at runtime. Because a grid typically displays many fields and
records at once, you may have very specific needs to respond to changes to
individual columns. For example, you might want to activate and deactivate a button
elsewhere on the form every time a user enters and exits a specific column.

The following table lists the grid events available in the Object Inspector.

Table 15.6 Grid control events

Event Purpose

OnCellClick Occurs when a user clicks on a cell in the grid.

OnColEnter Occurs when a user moves into a column on the grid.

OnColExit Occurs when a user leaves a column on the grid.

OnColumnMoved Occurs when the user moves a column to a new location.

OnDblClick Occurs when a user double clicks in the grid.

OnDragDrop Occurs when a user drags and drops in the grid.

OnDragOver Occurs when a user drags over the grid.

OnDrawColumnCell Occurs when application needs to draw individual cells.

OnDrawDataCell (obsolete) Occurs when application needs to draw individual cells if State
is csDefault.

OnEditButtonClick Occurs when the user clicks on an ellipsis button in a column.

OnEndDrag Occurs when a user stops dragging on the grid.

OnEnter Occurs when the grid gets focus.

OnExit Occurs when the grid loses focus.

OnKeyDown Occurs when a user presses any key or key combination on the keyboard
when the grid has focus.

OnKeyPress Occurs when a user presses a single alphanumeric key on the keyboard
when the grid has focus.

OnKeyUp Occurs when a user releases a key when in the grid.

U s i n g d a t a c o n t r o l s 15-25

N a v i g a t i n g a n d m a n i p u l a t i n g r e c o r d s

There are many uses for these events. For example, you might write a handler for the
OnDblClick event that pops up a list from which a user can choose a value to enter in
a column. Such a handler would use the SelectedField property to determine to
current row and column.

Navigating and manipulating records
TDBNavigator provides users a simple control for navigating through records in a
dataset, and for manipulating records. The navigator consists of a series of buttons
that enable a user to scroll forward or backward through records one at a time, go to
the first record, go to the last record, insert a new record, update an existing record,
post data changes, cancel data changes, delete a record, and refresh record display.

Figure 15.2 shows the navigator that appears by default when you place it on a form
at design time. The navigator consists of a series of buttons that let a user navigate
from one record to another in a dataset, and edit, delete, insert, and post records. The
VisibleButtons property of the navigator lets you hide or show a subset of these
buttons dynamically.

Figure 15.2 Buttons on the TDBNavigator control

The following table describes the buttons on the navigator.

OnMouseDown Occurs when the user clicks the mouse in the grid.

OnMouseMove Occurs when the user moves the mouse over the grid.

OnMouseUp Occurs when the user releases the mouse button over the grid.

OnStartDrag Occurs when a user starts dragging on the grid.

OnTitleClick Occurs when a user clicks the title for a column.

Table 15.6 Grid control events (continued)

Event Purpose

Table 15.7 TDBNavigator buttons

Button Purpose

First Calls the dataset’s First method to set the current record to the first record.

Prior Calls the dataset’s Prior method to set the current record to the previous record.

Next Calls the dataset’s Next method to set the current record to the next record.

Last Calls the dataset’s Last method to set the current record to the last record.

Insert Calls the dataset’s Insert method to insert a new record before the current record, and
set the dataset in Insert state.

First record

Insert record Delete current record

Post record edits

Refresh records

Cancel record edits

Edit current recordLast record

Prior record

Next record

15-26 D e v e l o p e r ’ s G u i d e

N a v i g a t i n g a n d m a n i p u l a t i n g r e c o r d s

Choosing navigator buttons to display

When you first place a TDBNavigator on a form at design time, all its buttons are
visible. You can use the VisibleButtons property to turn off buttons you do not want to
use on a form. For example, when working with a unidirectional dataset, only the
First, Next, and Refresh buttons are meaningful, and you probably want to hide the
others. On a form that is intended for browsing rather than editing, you might want
to disable the Edit, Insert, Delete, Post, and Cancel buttons.

Hiding and showing navigator buttons at design time
The VisibleButtons property in the Object Inspector is displayed with a + sign to
indicate that it can be expanded to display a Boolean value for each button on the
navigator. To view and set these values, click on the + sign. The list of buttons that
can be turned on or off appears in the Object Inspector below the VisibleButtons
property. The + sign changes to a – (minus) sign, which you can click to collapse the
list of properties.

Button visibility is indicated by the Boolean state of the button value. If a value is set
to True, the button appears in the TDBNavigator. If False, the button is removed from
the navigator at design time and runtime.

Note As button values are set to False, they are removed from the TDBNavigator on the
form, and the remaining buttons are expanded in width to fill the control. You can
drag the control’s handles to resize the buttons.

Hiding and showing navigator buttons at runtime
At runtime you can hide or show navigator buttons in response to user actions or
application states. For example, suppose you provide a single navigator for
navigating through two different datasets, one of which permits users to edit records,
and the other of which is read-only. When you switch between datasets, you want to
hide the navigator’s Insert, Delete, Edit, Post, Cancel, and Refresh buttons for the read-
only dataset, and show them for the other dataset.

For example, suppose you want to prevent edits to the OrdersTable by hiding the
Insert, Delete, Edit, Post, Cancel, and Refresh buttons on the navigator, but that you also
want to allow editing for the CustomersTable. The VisibleButtons property controls
which buttons are displayed in the navigator. Here’s one way you might code the
OnEnter event handler:

Delete Deletes the current record. If the ConfirmDelete property is True it prompts for
confirmation before deleting.

Edit Puts the dataset in Edit state so that the current record can be modified.

Post Writes changes in the current record to the database.

Cancel Cancels edits to the current record, and returns the dataset to Browse state.

Refresh Clears data control display buffers, then refreshes its buffers from the physical table or
query. Useful if the underlying data may have been changed by another application.

Table 15.7 TDBNavigator buttons (continued)

Button Purpose

U s i n g d a t a c o n t r o l s 15-27

N a v i g a t i n g a n d m a n i p u l a t i n g r e c o r d s

procedure TForm1.CustomerCompanyEnter(Sender :TObject);
begin

if Sender = CustomerCompany then
begin

DBNavigatorAll.DataSource := CustomerCompany.DataSource;
DBNavigatorAll.VisibleButtons := [nbFirst,nbPrior,nbNext,nbLast];

end
else
begin

DBNavigatorAll.DataSource := OrderNum.DataSource;
DBNavigatorAll.VisibleButtons := DBNavigatorAll.VisibleButtons + [nbInsert,
nbDelete,nbEdit,nbPost,nbCancel,nbRefresh];

end;
end;

Displaying fly-over help

To display fly-over help for each navigator button at runtime, set the navigator
ShowHint property to True. When ShowHint is True, the navigator displays fly-by
Help Hints whenever you pass the mouse cursor over the navigator buttons.
ShowHint is False by default.

The Hints property controls the fly-over help text for each button. By default Hints is
an empty string list. When Hints is empty, each navigator button displays default
help text. To provide customized fly-over help for the navigator buttons, use the
String list editor to enter a separate line of hint text for each button in the Hints
property. When present, the strings you provide override the default hints provided
by the navigator control.

Using a single navigator for multiple datasets

As with other data-aware controls, a navigator’s DataSource property specifies the
data source that links the control to a dataset. By changing a navigator’s DataSource
property at runtime, a single navigator can provide record navigation and
manipulation for multiple datasets.

Suppose a form contains two edit controls linked to the CustomersTable and
OrdersTable datasets through the CustomersSource and OrdersSource data sources
respectively. When a user enters the edit control connected to CustomersSource, the
navigator should also use CustomersSource, and when the user enters the edit control
connected to OrdersSource, the navigator should switch to OrdersSource as well. You
can code an OnEnter event handler for one of the edit controls, and then share that
event with the other edit control. For example:

procedure TForm1.CustomerCompanyEnter(Sender :TObject);
begin

if Sender = CustomerCompany then
DBNavigatorAll.DataSource := CustomerCompany.DataSource

else
DBNavigatorAll.DataSource := OrderNum.DataSource;

end;

15-28 D e v e l o p e r ’ s G u i d e

U n d e r s t a n d i n g d a t a s e t s 16-1

C h a p t e r

16
Chapter16Understanding datasets

The fundamental unit for accessing data is the dataset family of objects. Your
application uses datasets for all database access. A dataset object represents a set of
records from a database organized into a logical table. These records may come from
a query or stored procedure that accesses a database, or from another dataset.

All dataset objects that you use in your database applications descend from the
virtualized dataset object, TDataSet, and they inherit data fields, properties, events,
and methods from TDataSet. This chapter describes the functionality of TDataSet that
is inherited by the dataset objects you will use in your database applications. You
need to understand this shared functionality to use any dataset object.

TDataSet is a virtualized dataset, meaning that many of its properties and methods
are virtual or abstract. A virtual method is a function or procedure declaration where
the implementation of that method can be (and usually is) overridden in descendant
objects. An abstract method is a function or procedure declaration without an actual
implementation. The declaration is a prototype that describes the method (and its
parameters and return type, if any) that must be implemented in all descendant
dataset objects, but that might be implemented differently by each of them.

Because TDataSet contains abstract methods, you cannot use it directly in an
application without generating a runtime error. Instead, you either create instances
of TDataSet’s descendants, such as TClientDataSet, TSQLClientDataSet, TSQLDataSet,
TSQLQuery, TSQLTable, and TSQLStoredProc, or you derive your own dataset object
from TDataSet or its descendants and write implementations for all its abstract
methods.

TDataSet defines much that is common to all dataset objects. For example, TDataSet
defines the basic structure of all datasets: an array of TField components that
correspond to actual columns in one or more database tables, lookup fields provided
by your application, or calculated fields provided by your application. For more
information about TField components, see Chapter 17, “Working with field
components.”

16-2 D e v e l o p e r ’ s G u i d e

T y p e s o f d a t a s e t s

This chapter describes how to use the common database functionality introduced by
TDataSet. Bear in mind, however, that although TDataSet introduces the methods for
this functionality, not all TDataSet dependants implement them in a meaningful way.

Types of datasets
TDataSet has two immediate descendants, TCustomClientDataset and
TCustomSQLDataSet. In addition you can create your own custom TDataSet
descendants — for example to supply data from a process other than a database
server.

TCustomClientDataSet is the base class for all client datasets. It is not used directly in
an application because many crucial properties are protected. Client datasets buffer
data and updates in memory, and can be used when you need to navigate through a
dataset or edit values and apply them back to the database server. Client datasets
implement most of the features introduced by TDataSet, as well as introducing
additional features such as maintained aggregates. For information about the
features introduced by client datasets, see Chapter 20, “Using client datasets.”

TCustomSQLDataSet is the base class for all unidirectional datasets. This class can’t be
used directly in an application because the properties that specify what data to access
are all protected. Unidirectional datasets raise exceptions when you attempt any
navigation other than moving to the next record. They do not provide support for
any data buffering, or the functions that require data buffering (such as updating
data, filters, and lookup fields). For information about the TCustomSQLDataSet
descendants that you can use in your applications, see Chapter 18, “Using
unidirectional datasets.”

Each of these TDataset descendants has advantages and disadvantages. For an
overview of how these types of datasets can be built into your database application,
see “Database architecture” on page 14-4.

Opening and closing datasets
To read or edit the data in a dataset, an application must first open it. You can open a
dataset in two ways,

• Set the Active property of the dataset to True, either at design time in the Object
Inspector, or in code at runtime:

CustTable.Active := True;

• Call the Open method for the dataset at runtime,

CustQuery.Open;

You can close a dataset in two ways,

• Set the Active property of the dataset to False, either at design time in the Object
Inspector, or in code at runtime,

CustQuery.Active := False;

U n d e r s t a n d i n g d a t a s e t s 16-3

D e t e r m i n i n g a n d s e t t i n g d a t a s e t s t a t e s

• Call the Close method for the dataset at runtime,

CustTable.Close;

You may need to close a dataset when you change certain of its properties, such as
CommandText on a TSQLDataSet component. When you reopen the dataset, the new
property value takes effect.

Determining and setting dataset states
The state—or mode—of a dataset determines what can be done to its data. For
example, when a dataset is closed, its state is dsInactive, meaning that nothing can be
done to its data. At runtime, you can examine a dataset’s read-only State property to
determine its current state. The following table summarizes possible values for the
State property and what they mean:

When an application opens a dataset, it appears by default in dsBrowse mode. The
state of a dataset changes as an application processes data. An open dataset changes
from one state to another based on either the

• code in your application, or

• built-in behavior of data-related components.

Table 16.1 Values for the dataset State property

Value State Meaning

dsInactive Inactive DataSet closed. Its data is unavailable.

dsBrowse Browse DataSet open. Its data can be viewed, but not changed. This is
the default state of an open dataset.

dsEdit Edit DataSet open. The current row can be modified. (not supported
on unidirectional datasets)

dsInsert Insert DataSet open. A new row is inserted or appended. (not
supported on unidirectional datasets)

dsSetKey SetKey TClientDataSet only. DataSet open. Enables setting of ranges and
key values used for ranges and GotoKey operations.

dsCalcFields CalcFields DataSet open. Indicates that an OnCalcFields event is under way.
Prevents changes to fields that are not calculated.

dsCurValue CurValue Internal use only.

dsNewValue NewValue Internal use only.

dsOldValue OldValue Internal use only.

dsFilter Filter DataSet open. Indicates that a filter operation is under way. A
restricted set of data can be viewed, and no data can be changed.
(not supported on unidirectional datasets)

dsBlockRead Block Read DataSet open. Data-aware controls are not updated and events
are not triggered when the current record changes.

dsInternalCalc Internal Calc DataSet open. An OnCalcFields event is underway for calculated
values that are stored with the record. (client datasets only)

16-4 D e v e l o p e r ’ s G u i d e

D e t e r m i n i n g a n d s e t t i n g d a t a s e t s t a t e s

To put a dataset into dsBrowse, dsEdit, dsInsert, dsSetKey, or dsBlockRead states, call the
method or set the property that corresponds to the name of the state. For example,
the following code puts CustTable into dsInsert state, accepts user input for a new
record, and writes the new record to the change log:

CustTable.Insert; { Your application explicitly sets dataset state to Insert }
AddressPromptDialog.ShowModal;
if (AddressPromptDialog.ModalResult = mrOK) then

CustTable.Post { Kylix sets dataset state to Browse on successful completion }
else

CustTable.Cancel; {Kylix sets dataset state to Browse on cancel }

This example also illustrates that the state of a dataset automatically changes to
dsBrowse when

• The Post method successfully writes a record to the change log. (If Post fails, the
dataset state remains unchanged.)

• The Cancel method is called.

Some states cannot be set directly. For example, to put a dataset into dsInactive state,
set its Active property to False, or call the Close method for the dataset. The following
statements are equivalent:

CustTable.Active := False;

CustTable.Close;

The remaining states (dsCalcFields, dsCurValue, dsNewValue, dsOldValue, dsFilter, and
dsInternalCalc) cannot be set by your application. Instead, the state of the dataset
changes automatically to these values as necessary. For example, dsCalcFields is set
when a dataset’s OnCalcFields event occurs. When the OnCalcFields event finishes, the
dataset is restored to its previous state.

Note Whenever a dataset’s state changes, the OnStateChange event is called for any data
source components associated with the dataset. For more information about data
source components and OnStateChange, see “Responding to changes mediated by the
data source” on page 15-4.

The following sections provide overviews of the most common states, how and when
they are set, how states relate to one another, and where to go for related
information, if applicable.

Inactivating a dataset

A dataset is inactive when it is closed. You cannot access records in a closed dataset.
At design time, a dataset is closed until you set its Active property to True. At
runtime, a dataset is initially closed until an application opens it by calling the Open
method, or by setting the Active property to True.

When you open an inactive dataset, its state automatically changes to the dsBrowse
state. The following diagram illustrates the relationship between these states and the
methods that set them.

U n d e r s t a n d i n g d a t a s e t s 16-5

D e t e r m i n i n g a n d s e t t i n g d a t a s e t s t a t e s

Figure 16.1 Relationship of Inactive and Browse states

To make a dataset inactive, call its Close method. You can write BeforeClose and
AfterClose event handlers that respond to the Close method for a dataset. For example,
if a dataset is in dsEdit or dsInsert modes when an application calls Close, you can
prompt the user to post pending changes or cancel them before closing the dataset.
The following code illustrates such a handler:

procedure TForm1.CustTableVerifyBeforeClose(DataSet: TDataSet);
begin

if (CustTable.State in [dsEdit, dsInsert]) then begin
case MessageDlg('Post changes before closing?', mtConfirmation,
mbYesNoCancel, 0) of
mrYes: CustTable.Post; { save the changes }
mrNo: CustTable.Cancel; { abandon the changes}
mrCancel: Abort; { abort closing the dataset }

end;
end;

end;

To associate a procedure with the BeforeClose event for a dataset at design time:

1 Select the table in the data module (or form).

2 Click the Events page in the Object Inspector.

3 Enter the name of the procedure for the BeforeClose event (or choose it from the
drop-down list).

Browsing a dataset

When an application opens a dataset, the dataset automatically enters dsBrowse state.
Browsing enables you to view records in a dataset, but you cannot edit records or
insert new records. You mainly use dsBrowse to scroll from record to record in a
dataset. For more information about scrolling from record to record, see “Navigating
datasets” on page 16-8.

From dsBrowse all other dataset states can be set, as long as the dataset supports them.
For example, calling the Insert or Append methods for a dataset changes its state from
dsBrowse to dsInsert (unless other factors and dataset properties, such as CanModify
prevent this change). Calling SetKey to search for records puts a client dataset in
dsSetKey mode. For more information about inserting and appending records in a
dataset, see “Modifying data” on page 16-20.

Two methods associated with all datasets can return a dataset to dsBrowse state.
Cancel ends the current edit, insert, or search task, and always returns a dataset to
dsBrowse state. Post attempts to write changes to the database, and if successful, also
returns a dataset to dsBrowse state. If Post fails, the current state remains unchanged.

Inactive Browse
Open

Close

16-6 D e v e l o p e r ’ s G u i d e

D e t e r m i n i n g a n d s e t t i n g d a t a s e t s t a t e s

The following diagram illustrates the relationship of dsBrowse both to the other
dataset modes you can set in your applications, and the methods that set those
modes.

Figure 16.2 Relationship of Browse to other dataset states

Enabling dataset editing

A dataset must be in dsEdit mode before an application can modify records. In your
code you can use the Edit method to put a dataset into dsEdit mode if the read-only
CanModify property for the dataset is True. CanModify is True unless the dataset is
unidirectional, the database underlying the dataset does not permit read and write
privileges, or some other factor (such as a client dataset’s ReadOnly property or a
dataset provider’s poReadOnly option) intervenes.

On forms in your application, some data-aware controls can automatically put a
dataset into dsEdit state if all of the following conditions apply:

• The control’s ReadOnly property is False (the default)
• The AutoEdit property of the data source for the control is True
• CanModify is True for the dataset.

Note Even if a dataset is in dsEdit state, editing records may not succeed if your application
user does not have proper SQL access privileges.

You can return a dataset from dsEdit state to dsBrowse state in code by calling the
Cancel, Post, or Delete methods. Cancel discards edits to the current field or record.
Post attempts to write a modified record to the change log, and if it succeeds, returns
the dataset to dsBrowse. If Post cannot write changes, the dataset remains in dsEdit
state. Delete tries to remove the current record from the dataset, and if it succeeds,
returns the dataset to dsBrowse state. If Delete fails, the dataset remains in dsEdit state.

dsBrowse

Open Close

dsInactive

dsSetKey

dsEditdsInsert

Insert
Append Edit

Post (success)
Cancel
Delete

Post (success)
Cancel
Delete

Post
(unsuccessful)

Post
(unsuccessful)

SetKey, EditKey
SetRange

Post, Cancel,
GotoKey, FindKey
ApplyRange, CancelRange

U n d e r s t a n d i n g d a t a s e t s 16-7

D e t e r m i n i n g a n d s e t t i n g d a t a s e t s t a t e s

Data-aware controls for which editing is enabled automatically call Post when a user
executes any action that changes the current record (such as moving to a different
record in a grid) or that causes the control to lose focus (such as moving to a different
control on the form).

For a complete discussion of editing fields and records in a dataset, see “Modifying
data” on page 16-20.

Enabling insertion of new records

A dataset must be in dsInsert mode before an application can add new records. In
your code you can use the Insert or Append methods to put a dataset into dsInsert
mode if the read-only CanModify property for the dataset is True. CanModify is True
unless the dataset is unidirectional, the database underlying the dataset does not
permit read and write privileges, or some other factor (such as a client dataset’s
ReadOnly property or a dataset provider’s poReadOnly option) intervenes.

On forms in your application, the data-aware grid and navigator controls can put a
dataset into dsInsert state if all of the following conditions apply:

• The control’s ReadOnly property is False (the default)
• The AutoEdit property of the data source for the control is True
• CanModify is True for the dataset.

Note Even if a dataset is in dsInsert state, inserting records may not succeed if your
application user does not have proper SQL access privileges.

You can return a dataset from dsInsert state to dsBrowse state in code by calling the
Cancel, Post, or Delete methods. Delete and Cancel discard the new record. Post
attempts to write the new record to the change log, and if it succeeds, returns the
dataset to dsBrowse. If Post cannot write the record, the dataset remains in dsInsert
state.

Data-aware controls for which inserting is enabled automatically call Post when a
user executes any action that changes the current record (such as moving to a
different record in a grid).

For more discussion of inserting and appending records in a dataset, see “Modifying
data” on page 16-20.

Enabling index-based operations

There are no methods defined in TDataSet that put the dataset into the dsSetKey state.
This state exists for client datasets, which uses it when setting up information for
index-based operations such as indexed-based searches or limiting records to a
specified range. You can put a client dataset into dsSetKey mode with the SetKey or
EditKey method at runtime.

While the dataset is in the dsSetKey state, assigning values to its fields changes an
internal buffer containing the criteria for the indexed-based operation, rather than
the values of the fields on the current record.

16-8 D e v e l o p e r ’ s G u i d e

N a v i g a t i n g d a t a s e t s

The dataset remains in the dsSetKey state until you call a method to perform the
index-based operation, or call the Post method.

For more information about indexed-based operations in client datasets, see
“Navigating data in client datasets” on page 20-2 and “Limiting what records
appear” on page 20-5.

Calculating fields

A dataset enters dsCalcFields or dsInternalCalc mode whenever its OnCalcFields event
occurs. These states prevent modifications or additions to the records in a dataset
except for the calculated fields the handler is designed to modify. The reason all other
modifications are prevented is because OnCalcFields uses the values in other fields to
derive values for calculated fields. Changes to those other fields might otherwise
invalidate the values assigned to calculated fields.

When the OnCalcFields handler finishes, the dataset is returned to dsBrowse state.

For more information about creating calculated fields and OnCalcFields event
handlers, see “Using OnCalcFields” on page 16-26.

Filtering records

If a dataset is not unidirectional, it enters dsFilter mode whenever an application calls
the dataset’s OnFilterRecord event handler. (Unidirectional datasets do not support
filters). This state prevents modifications or additions to the records in a dataset
during the filtering process so that the filter request is not invalidated.

When the OnFilterRecord handler finishes, the dataset is returned to dsBrowse state.

For more information about filtering, see “Displaying and editing a subset of data
using filters” on page 16-15.

Applying updates

When applying the updates in its change log back to the database table, client
datasets may enter the dsNewValue, dsOldValue, or dsCurValue states temporarily.
These states indicate that the corresponding properties of a field component
(NewValue, OldValue, and CurValue, respectively) are being accessed, usually in an
OnReconcileError event handler. Your applications cannot see or set these states.

Navigating datasets
Each active dataset has a cursor, or pointer, to the current row in the dataset. The
current row in a dataset is the one whose field values currently show in single-field,
data-aware controls on a form, such as TDBEdit, TDBLabel, and TDBMemo. If the
dataset supports editing, the current record contains the values that can be
manipulated by edit, insert, and delete methods.

U n d e r s t a n d i n g d a t a s e t s 16-9

N a v i g a t i n g d a t a s e t s

You can change the current row by moving the cursor to point at a different row. The
following table lists methods you can use in application code to move to different
records:

The data-aware, visual component TDBNavigator encapsulates these methods as
buttons that users can click to move among records at runtime. For more information
about the navigator component, see “Navigating and manipulating records” on
page 15-25.

In addition to these methods, TDataSet defines two Boolean properties that provide
useful information when iterating through the records in a dataset:.

Using the First and Last methods

The First method moves the cursor to the first row in a dataset and sets the Bof
property to True. If the cursor is already at the first row in the dataset, First does
nothing.

For example, the following code moves to the first record in CustTable:

CustTable.First;

The Last method moves the cursor to the last row in a dataset and sets the Eof
property to True. If the cursor is already at the last row in the dataset, Last does
nothing.

The following code moves to the last record in CustTable:

CustTable.Last;

Note The Last method raises an exception in unidirectional datasets.

Tip While there may be programmatic reasons to move to the first or last rows in a
dataset without user intervention, you can also enable your users to navigate from

Table 16.2 Navigational methods of datasets

Method Moves the cursor to

First The first row in a dataset. (all datasets)

Last The last row in a dataset. (not available for unidirectional datasets).

Next The next row in a dataset. (all datasets)

Prior The previous row in a dataset. (not available for unidirectional datasets).

MoveBy A specified number of rows forward or back in a dataset. (unidirectional datasets
raise an exception if you try to move backward)

Table 16.3 Navigational properties of datasets

Property Description

Bof (Beginning-of-file) True: the cursor is at the first row in the dataset.
False: the cursor is not known to be at the first row in the dataset.

Eof (End-of-file) True: the cursor is at the last row in the dataset.
False: the cursor is not known to be at the last row in the dataset.

16-10 D e v e l o p e r ’ s G u i d e

N a v i g a t i n g d a t a s e t s

record to record using the TDBNavigator component. The navigator component
contains buttons that, when active and visible, enable a user to move to the first and
last rows of an active dataset. The OnClick events for these buttons occur
immediately after the navigator calls the First and Last methods of the dataset. For
more information about making effective use of the navigator component, see
“Navigating and manipulating records” on page 15-25.

Using the Next and Prior methods

The Next method moves the cursor forward one row in the dataset and sets the Bof
property to False if the dataset is not empty. If the cursor is already at the last row in
the dataset when you call Next, nothing happens.

For example, the following code moves to the next record in CustTable:

CustTable.Next;

The Prior method moves the cursor back one row in the dataset, and sets Eof to False if
the dataset is not empty. If the cursor is already at the first row in the dataset when
you call Prior, Prior does nothing.

For example, the following code moves to the previous record in CustTable:

CustTable.Prior;

Note The Prior method raises an exception in unidirectional datasets.

Using the MoveBy method

MoveBy lets you specify how many rows forward or back to move the cursor in a
dataset. Movement is relative to the current record at the time that MoveBy is called.
MoveBy also sets the Bof and Eof properties for the dataset as appropriate.

This function takes an integer parameter, the number of records to move. Positive
integers indicate a forward move and negative integers indicate a backward move.

Note MoveBy raises an exception in unidirectional datasets if you use a negative argument.

MoveBy returns the number of rows it moves. If you attempt to move past the
beginning or end of the dataset, the number of rows returned by MoveBy differs from
the number of rows you requested to move. This is because MoveBy stops when it
reaches the first or last record in the dataset.

The following code moves two records backward in CustTable:

CustTable.MoveBy(-2);

Using the Eof and Bof properties

Two read-only, runtime properties, Eof (End-of-file) and Bof (Beginning-of-file), are
useful for controlling dataset navigation, particularly when you want to iterate
through all records in a dataset.

U n d e r s t a n d i n g d a t a s e t s 16-11

N a v i g a t i n g d a t a s e t s

Eof
When Eof is True, it indicates that the cursor is unequivocally at the last row in a
dataset. Eof is set to True when an application

• Opens an empty dataset.

• Successfully calls a dataset’s Last method.

• Calls a dataset’s Next method, and the method fails (because the cursor is
currently at the last row in the dataset.

• Calls SetRange on an empty range or dataset. (client datasets only)

Eof is set to False in all other cases; you should assume Eof is False unless one of the
conditions above is met and you test the property directly.

Eof is commonly tested in a loop condition to control iterative processing of all
records in a dataset. If you open a dataset containing records (or you call First), Eof is
False. To iterate through the dataset a record at a time, create a loop that terminates
when Eof is True. Inside the loop, call Next for each record in the dataset. Eof remains
False until you call Next when the cursor is already on the last record.

The following code illustrates one way you might code a record-processing loop for a
dataset called CustTable:

CustTable.DisableControls;
try

CustTable.First; { Go to first record, which sets EOF False }
while not CustTable.EOF do { Cycle until EOF is True }
begin

{ Process each record here }
ƒ
CustTable.Next; { EOF False on success; EOF True when Next fails on last record }

end;
finally

CustTable.EnableControls;
end;

Tip This example also demonstrates how to disable and enable data-aware visual
controls tied to a dataset. If you disable visual controls during dataset iteration, it
speeds processing because your application does not need to update the contents of
the controls as the current record changes. After iteration is complete, controls
should be enabled again to update them with values for the new current row. Note
that enabling of the visual controls takes place in the finally clause of a try...finally
statement. This guarantees that even if an exception terminates loop processing
prematurely, controls are not left disabled.

Bof
When Bof is True, it indicates that the cursor is unequivocally at the first row in a
dataset. Bof is set to True when an application

• Opens a dataset.

• Calls a dataset’s First method.

16-12 D e v e l o p e r ’ s G u i d e

N a v i g a t i n g d a t a s e t s

• Calls a dataset’s Prior method, and the method fails because the cursor is currently
at the first row in the dataset. (Note that this condition does not apply to
unidirectional datasets.)

• Calls SetRange on an empty range or dataset. (client datasets only)

Bof is set to False in all other cases; you should assume Bof is False unless one of the
conditions above is met and you test the property directly.

Like Eof, Bof can be in a loop condition to control iterative processing of records in a
dataset. The following code illustrates one way you might code a record-processing
loop for a dataset called CustTable:

CustTable.DisableControls; { Speed up processing; prevent screen flicker }
try

while not CustTable.BOF do { Cycle until BOF is True }
begin

{ Process each record here }
ƒ
CustTable.Prior; { BOF False on success; BOF True when Prior fails on first record }

end;
finally

CustTable.EnableControls; { Display new current row in controls }
end;

Marking and returning to records

In addition to moving from record to record in a dataset (or moving from one record
to another by a specific number of records), it is often also useful to mark a particular
location in a dataset so that you can return to it quickly when desired. TDataSet
introduces a bookmarking feature that lets you tag records and return to them later.
The bookmarking feature consists of a Bookmark property and five bookmark
methods.

The Bookmark property indicates which bookmark among any number of bookmarks
in your application is current. Bookmark is a string that identifies the current
bookmark. Each time you add another bookmark, it becomes the current bookmark.

TDataSet implements virtual bookmark methods. While these methods ensure that
any dataset object derived from TDataSet returns a value if a bookmark method is
called, the return values are merely defaults that do not keep track of the current
location. Unidirectional datasets do not add support for bookmarks.
TCustomClientDataSet, however, reimplements the bookmark methods to return
meaningful values as described in the following list:

• BookmarkValid, for determining if a specified bookmark is in use.

• CompareBookmarks, to test two bookmarks to see if they are the same.

• GetBookmark, to allocate a bookmark for your current position in the dataset.

• GotoBookmark, to return to a bookmark previously created by GetBookmark.

• FreeBookmark, to free a bookmark previously allocated by GetBookmark.

U n d e r s t a n d i n g d a t a s e t s 16-13

N a v i g a t i n g d a t a s e t s

To create a bookmark, you must declare a variable of type TBookmark in your
application. The TBookmark type is a pointer. When you call GetBookmark, the dataset
allocates storage for the bookmark and sets your variable to point to that storage. The
bookmark contains information that identifies a particular location in the dataset.

Before calling GotoBookmark to move to a specific record, you can call BookmarkValid
to determine if the bookmark points to a record. BookmarkValid returns True if a
specified bookmark points to a record. In TDataSet, BookmarkValid is a virtual method
that always returns False, indicating that the bookmark is not valid. Descendants that
support bookmarks reimplement this method to provide a meaningful return value.

You can also call CompareBookmarks to see if a bookmark to which you want to move
is different from another (or the current) bookmark. TDataSet.CompareBookmarks
always returns 0, indicating that the bookmarks are identical. Descendants that
support bookmarks reimplement this method to provide a meaningful return value.

When passed a bookmark, GotoBookmark moves the cursor for the dataset to the
location specified in the bookmark. TDataSet generates an error when you call
GotoBookmark. Unidirectional datasets do nothing. Descendants that support
bookmarks reimplement this method to provide a meaningful return value.

FreeBookmark frees the memory allocated for a specified bookmark when you no
longer need it. You should also call FreeBookmark before reusing an existing
bookmark.

The following code illustrates one use of bookmarking:

procedure DoSomething (const MyDS: TSQLClientDataSet)
var

Bookmark: TBookmark;
begin

Bookmark := MyDS.GetBookmark; { Allocate memory and assign a value }
MyDS.DisableControls; { Turn off display of records in data controls }
try

MyDS.First; { Go to first record in table }
while not MyDS.Eof do {Iterate through each record in table }
begin
{ Do your processing here }
ƒ
MyDs.Next;

end;
finally

MyDs.GotoBookmark(Bookmark);
MyDs.EnableControls; { Turn on display of records in data controls, if necessary }
MyDs.FreeBookmark(Bookmark); {Deallocate memory for the bookmark }

end;
end;

Before iterating through records, controls are disabled. Should an error occur during
iteration through records, the finally clause ensures that controls are always enabled
and that the bookmark is always freed even if the loop terminates prematurely.

16-14 D e v e l o p e r ’ s G u i d e

S e a r c h i n g d a t a s e t s

Searching datasets
If a dataset is not unidirectional, you can search against it using the Locate and Lookup
methods of TDataSet. These methods enable you to search on any type of columns in
any dataset.

Note Client datasets introduce an additional family of methods that let you search for
records based on an index. For information about searching a client dataset based on
its index, see “Navigating data in client datasets” on page 20-2.

Using Locate

Locate moves the cursor to the first row matching a specified set of search criteria. In
its simplest form, you pass Locate the name of a column to search, a field value to
match, and an options flag specifying whether the search is case-insensitive or if it
can use partial-key matching. (Partial-key matching is when the criterion string need
only be a prefix of the field value.) For example, the following code moves the cursor
to the first row in the CustTable where the value in the Company column is
“Professional Divers, Ltd.”:

var
LocateSuccess: Boolean;
SearchOptions: TLocateOptions;

begin
SearchOptions := [loPartialKey];
LocateSuccess := CustTable.Locate('Company', 'Professional Divers, Ltd.',

SearchOptions);
end;

If Locate finds a match, the first record containing the match becomes the current
record. Locate returns True if it finds a matching record, False if it does not. If a search
fails, the current record does not change.

The real power of Locate comes into play when you want to search on multiple
columns and specify multiple values to search for. Search values are Variants, which
means you can specify different data types in your search criteria. To specify
multiple columns in a search string, separate individual items in the string with
semicolons.

Because search values are Variants, if you pass multiple values, you must either pass
a Variant array type as an argument (for example, the return values from the Lookup
method), or you must construct the Variant array on the fly using the VarArrayOf
function. The following code illustrates a search on multiple columns using multiple
search values and partial-key matching:

with CustTable do
Locate('Company;Contact;Phone', VarArrayOf(['Sight Diver','P']), loPartialKey);

Locate uses the fastest possible method to locate matching records. If the columns to
search are indexed and the index is compatible with the search options you specify,
Locate uses the index.

U n d e r s t a n d i n g d a t a s e t s 16-15

D i s p l a y i n g a n d e d i t i n g a s u b s e t o f d a t a u s i n g f i l t e r s

Using Lookup

Lookup searches for the first row that matches specified search criteria. If it finds a
matching row, it forces the recalculation of any calculated fields and lookup fields
associated with the dataset, then returns one or more fields from the matching row.
Lookup does not move the cursor to the matching row; it only returns values from it.

In its simplest form, you pass Lookup the name of field to search, the field value to
match, and the field or fields to return. For example, the following code looks for the
first record in the CustTable where the value of the Company field is “Professional
Divers, Ltd.”, and returns the company name, a contact person, and a phone number
for the company:

var
LookupResults: Variant;

begin
with CustTable do

LookupResults := Lookup('Company', 'Professional Divers, Ltd.', 'Company;
Contact; Phone');

end;

Lookup returns values for the specified fields from the first matching record it finds.
Values are returned as Variants. If more than one return value is requested, Lookup
returns a Variant array. If there are no matching records, Lookup returns a Null
Variant. For more information about Variant arrays, see the online help.

The real power of Lookup comes into play when you want to search on multiple
columns and specify multiple values to search for. To specify strings containing
multiple columns or result fields, separate individual fields in the string items with
semicolons.

Because search values are Variants, if you pass multiple values, you must either pass
a Variant array type as an argument (for example, the return values from the Lookup
method), or you must construct the Variant array on the fly using the VarArrayOf
function. The following code illustrates a lookup search on multiple columns:

var
LookupResults: Variant;

begin
with CustTable do

LookupResults := Lookup('Company; City', VarArrayOf(['Sight Diver', 'Christiansted']),
'Company; Addr1; Addr2; State; Zip');

end;

Lookup uses the fastest possible method to locate matching records. If the columns to
search are indexed, Lookup uses the index.

Displaying and editing a subset of data using filters
An application is frequently interested in only a subset of records within a dataset.
For example, you may be interested in retrieving or viewing only those records for

16-16 D e v e l o p e r ’ s G u i d e

D i s p l a y i n g a n d e d i t i n g a s u b s e t o f d a t a u s i n g f i l t e r s

companies based in California in your customer database, or you may want to find a
record that contains a particular set of field values.

With unidirectional datasets, you can only limit the records in the dataset when you
specify the SQL command that fetches the records. With other TDataSet descendants,
however, you can define a subset of the data that has already been fetched. To restrict
an application’s access to a subset of all records in the dataset, you can use filters.

A filter specifies conditions a record must meet to be displayed. Filter conditions can
be stipulated in a dataset’s Filter property or coded into its OnFilterRecord event
handler. Filter conditions are based on the values in any specified number of fields in
a dataset whether or not those fields are indexed. For example, to view only those
records for companies based in California, a simple filter might require that records
contain a value in the State field of “CA”.

Note Filters are applied to every record retrieved in a dataset. When you want to filter
large volumes of data, it may be more efficient to restrict record retrieval using the
SQL command that fetches the data, or to set a range on an indexed client dataset
rather than using filters.

Enabling and disabling filtering

Enabling filters on a dataset is a three-step process:

1 Create a filter.
2 Set filter options for string-based filter tests, if necessary.
3 Set the Filtered property to True.

When filtering is enabled, only those records that meet the filter criteria are available
to an application. Filtering is always a temporary condition. You can turn off filtering
by setting the Filtered property to False.

Creating filters
There are two ways to create a filter for a dataset:

• Specify simple filter conditions in the Filter property. Filter is especially useful for
creating and applying filters at runtime.

• Write an OnFilterRecord event handler for simple or complex filter conditions.
With OnFilterRecord, you specify filter conditions at design time. Unlike the Filter
property, which is restricted to a single string containing filter logic, an
OnFilterRecord event can take advantage of branching and looping logic to create
complex, multi-level filter conditions.

The main advantage to creating filters using the Filter property is that your
application can create, change, and apply filters dynamically, (for example, in
response to user input). Its main disadvantages are that filter conditions must be
expressible in a single text string, cannot make use of branching and looping
constructs, and cannot test or compare its values against values not already in the
dataset.

U n d e r s t a n d i n g d a t a s e t s 16-17

D i s p l a y i n g a n d e d i t i n g a s u b s e t o f d a t a u s i n g f i l t e r s

The strengths of the OnFilterRecord event are that a filter can be complex and
variable, can be based on multiple lines of code that use branching and looping
constructs, and can test dataset values against values outside the dataset, such as the
text in an edit box. The main weakness of using OnFilterRecord is that you set the
filter at design time and it cannot be modified in response to user input. (You can,
however, create several filter handlers and switch among them in response to general
application conditions.)

The following sections describe how to create filters using the Filter property and the
OnFilterRecord event handler.

Setting the Filter property
To create a filter using the Filter property, set the value of the property to a string that
contains the filter conditions. The string contains the filter’s test condition. For
example, the following statement creates a filter that tests a dataset’s State field to see
if it contains a value for the state of California:

Dataset1.Filter := 'State = ' + QuotedStr('CA');

You can also supply a value for Filter based on the text entered in a control. For
example, the following statement assigns the text in an edit box to Filter:

Dataset1.Filter := Edit1.Text;

You can, of course, create a string based on both hard-coded text and data entered by
a user in a control:

Dataset1.Filter := 'State = ' + QuotedStr(Edit1.Text);

Blank records do not appear unless they are explicitly included in the filter:

Dataset1.Filter := 'State <> ‘’CA’’ or State = BLANK';

After you specify a value for Filter, to apply the filter to the dataset, set the Filtered
property to True.

You can also compare field values to literals and to constants or calculate values
using the following operators:

Table 16.4 Operators that can appear in a filter

Operator Meaning

< Less than

> Greater than

>= Greater than or equal to

<= Less than or equal to

= Equal to

<> Not equal to

AND Tests two statements are both True

NOT Tests that the following statement is not True

OR Tests that at least one of two statements is True

IS NULL Tests that a field value is null.

IS NOT NULL Tests that a field value is not null.

16-18 D e v e l o p e r ’ s G u i d e

D i s p l a y i n g a n d e d i t i n g a s u b s e t o f d a t a u s i n g f i l t e r s

By using combinations of these operators, you can create fairly sophisticated filters.
For example, the following statement checks to make sure that two test conditions
are met before accepting a record for display:

(Custno > 1400) AND (Custno < 1500);

Note When filtering is on, user edits to a record may mean that the record no longer meets
a filter’s test conditions. The next time the record is retrieved from the dataset, it may
therefore “disappear.” If that happens, the next record that passes the filter condition
becomes the current record.

Writing an OnFilterRecord event handler
A filter for a dataset is an event handler that responds to OnFilterRecord events
generated by the dataset for each record it retrieves. At the heart of every filter
handler is a test that determines if a record should be included in those that are
visible to the application.

To indicate whether a record passes the filter condition, your filter handler must set
an Accept parameter to True to include a record, or False to exclude it. For example,
the following filter displays only those records with the State field set to “CA”:

+ Adds numbers, concatenates strings, adds numbers to date/time values

- Subtracts numbers, subtracts dates, or subtracts a number from a date

* Multiplies two numbers

/ Divides two numbers

Upper Upper-cases a string

Lower Lower-cases a string

Substring Returns the substring starting at a specified position.

Trim Trims spaces or a specified character from front and back of a string.

TrimLeft Trims spaces or a specified character from front of a string.

TrimRight Trims spaces or a specified character from back of a string.

Year Returns the year from a date/time value

Month Returns the month from a date/time value

Day Returns the day from a date/time value

Hour Returns the hour from a time value

Minute Returns the minute from a time value

Second Returns the seconds from a time value

GetDate Returns the current date

Date Returns the date part of a date/time value

Time Returns the time part of a date/time value

Like Provides pattern matching in string comparisons.

In Tests for set inclusion.

* Wildcard for partial comparisons.

Table 16.4 Operators that can appear in a filter (continued)

Operator Meaning

U n d e r s t a n d i n g d a t a s e t s 16-19

D i s p l a y i n g a n d e d i t i n g a s u b s e t o f d a t a u s i n g f i l t e r s

procedure TForm1.Table1FilterRecord(DataSet: TDataSet; var Accept: Boolean);
begin

Accept := DataSet['State'].AsString = 'CA';
end;

When filtering is enabled, an OnFilterRecord event is generated for each record
retrieved. The event handler tests each record, and only those that meet the filter’s
conditions are displayed. Because the OnFilterRecord event is generated for every
record in a dataset, you should keep the event handler as tightly-coded as possible to
avoid adversely affecting the performance of your application.

Switching filter event handlers at runtime
You can code any number of filter event handlers and switch among them at
runtime. To switch to a different filter event handler at runtime, assign the new event
handler to the dataset’s OnFilterRecord property.

For example, the following statements switch to an OnFilterRecord event handler
called NewYorkFilter:

DataSet1.OnFilterRecord := NewYorkFilter;
Refresh;

Setting filter options
The FilterOptions property lets you specify whether a filter that compares string-
based fields accepts records based on partial comparisons and whether string
comparisons are case-sensitive. FilterOptions is a set property that can be an empty set
(the default), or that can contain either or both of the following values:

For example, the following statements set up a filter that ignores case when
comparing values in the State field:

FilterOptions := [foCaseInsensitive];
Filter := 'State = ' + QuotedStr('CA');

Table 16.5 FilterOptions values

Value Meaning

foCaseInsensitive Ignore case when comparing strings.

foNoPartialCompare Disable partial string matching (i.e., do not match strings ending with an
asterisk (*)).

16-20 D e v e l o p e r ’ s G u i d e

M o d i f y i n g d a t a

Navigating records in a filtered dataset

There are four dataset methods that enable you to navigate among records in a
filtered dataset. The following table lists these methods and describes what they do:

For example, the following statement finds the first filtered record in a dataset:

DataSet1.FindFirst;

Provided that you set the Filter property or create an OnFilterRecord event handler for
your application, these methods position the cursor on the specified record
regardless of whether filtering is currently enabled. If you call these methods when
filtering is not enabled, then they

• Temporarily enable filtering.
• Position the cursor on a matching record if one is found.
• Disable filtering.

Note If filtering is disabled and you do not set the Filter property or create an
OnFilterRecord event handler, these methods do the same thing as First, Last, Next,
and Prior.

All navigational filter methods position the cursor on a matching record (if one is
found), make that record the current one, and return True. If a matching record is not
found, the cursor position is unchanged, and these methods return False. You can
check the status of the Found property to wrap these calls, and only take action when
Found is True. For example, if the cursor is already on the last matching record in the
dataset, and you call FindNext, the method returns False, and the current record is
unchanged.

Modifying data
You can use the dataset methods listed below to insert, update, and delete data if the
read-only CanModify property for the dataset is True. CanModify is True unless the
dataset is unidirectional, the database underlying the dataset does not permit read

Table 16.6 Filtered dataset navigational methods

Method Purpose

FindFirst Move to the first record in the dataset that matches the current filter criteria. The
search for the first matching record always begins at the first record in the
unfiltered dataset.

FindLast Move to the last record in the dataset that matches the current filter criteria.

FindNext Moves from the current record in the filtered dataset to the next one.

FindPrior Move from the current record in the filtered dataset to the previous one.

U n d e r s t a n d i n g d a t a s e t s 16-21

M o d i f y i n g d a t a

and write privileges, or some other factor (such as a client dataset’s ReadOnly
property or a dataset provider’s poReadOnly option) intervenes:

Editing records

A dataset must be in dsEdit mode before an application can modify records. In your
code you can use the Edit method to put a dataset into dsEdit mode if the read-only
CanModify property for the dataset is True.

On forms in your application, some data-aware controls can automatically put a
dataset into dsEdit state if

• The control’s ReadOnly property is False (the default),
• The AutoEdit property of the data source for the control is True, and
• CanModify is True for the dataset.

Note Even if a dataset is in dsEdit state, editing records may not succeed if your
application’s user does not have proper SQL access privileges.

Once a dataset is in dsEdit mode, a user can modify the field values for the current
record that appears in any data-aware controls on a form. Data-aware controls for
which editing is enabled automatically call Post when a user executes any action that
changes the current record (such as moving to a different record in a grid).

If you provide a navigator component on your forms, users can cancel edits by
clicking the navigator’s Cancel button. Canceling edits returns a dataset to dsBrowse
state.

In code, you must write or cancel edits by calling the appropriate methods. You write
changes by calling Post. You cancel them by calling Cancel. In code, Edit and Post are
often used together. For example,

with CustTable do
begin

Edit;
FieldValues['CustNo'] := 1234;
Post;

end;

Table 16.7 Dataset methods for inserting, updating, and deleting data

Method Description

Edit Puts the dataset into dsEdit state if it is not already in dsEdit or dsInsert states.

Append Posts any pending data, moves current record to the end of the dataset, and puts the
dataset in dsInsert state.

Insert Posts any pending data, and puts the dataset in dsInsert state.

Post Attempts to post the new or altered record to the database. If successful, the dataset
is put in dsBrowse state; if unsuccessful, the dataset remains in its current state.

Cancel Cancels the current operation and puts the dataset in dsBrowse state.

Delete Deletes the current record and puts the dataset in dsBrowse state.

16-22 D e v e l o p e r ’ s G u i d e

M o d i f y i n g d a t a

In the previous example, the first line of code places the dataset in dsEdit mode. The
next line of code assigns the number 1234 to the CustNo field of the current record.
Finally, the last line writes, or posts, the modified record to the change log.

Note When you want to write the edits in the change log back to the database, you must
call the ApplyUpdates method of a client dataset. For more information about editing
in client datasets, see “Editing data” on page 20-14.

Adding new records

A dataset must be in dsInsert mode before an application can add new records. In
code, you can use the Insert or Append methods to put a dataset into dsInsert mode if
the read-only CanModify property for the dataset is True.

On forms in your application, the data-aware grid and navigator controls can put a
dataset into dsInsert state if

• The control’s ReadOnly property is False (the default), and

• CanModify is True for the dataset.

Once a dataset is in dsInsert mode, a user or application can enter values into the
fields associated with the new record. Except for the grid and navigational controls,
there is no visible difference to a user between Insert and Append. On a call to Insert,
an empty row appears in a grid above what was the current record. On a call to
Append, the grid is scrolled to the last record in the dataset, an empty row appears at
the bottom of the grid, and the Next and Last buttons are dimmed on any navigator
component associated with the dataset.

Data-aware controls for which inserting is enabled automatically call Post when a
user executes any action that changes which record is current (such as moving to a
different record in a grid). Otherwise you must call Post in your code.

Post writes the new record to the change log. To write inserts and appends from the
change log to the database, call the ApplyUpdates method of a client dataset.

Inserting records
Insert opens a new, empty record before the current record, and makes the empty
record the current record so that field values for the record can be entered either by a
user or by your application code.

When an application calls Post, a newly inserted record is written to the change log as
follows:

• For indexed datasets, the record is inserted into the dataset in a position based on
its index.

• For unindexed tables, the record is inserted into the dataset at its current position.

U n d e r s t a n d i n g d a t a s e t s 16-23

M o d i f y i n g d a t a

Appending records
Append opens a new, empty record at the end of the dataset, and makes the empty
record the current one so that field values for the record can be entered either by a
user or by your application code.

When an application calls Post, a newly appended record is written to the change log
as follows:

• For indexed datasets, the record is inserted into the dataset in a position based on
its index.

• For unindexed tables, the record is added to the end of the dataset.

Note When the dataset applies the updates in the change log, the physical location of
inserted and appended records in the underlying SQL database is implementation-
specific. If the table is indexed, the index is updated with the new record information.

Deleting records

A dataset must be active before an application can delete records. Delete removes the
current record from the dataset into the change log and puts the dataset in dsBrowse
mode. The record that followed the deleted record becomes the current record. A
deleted record is not removed from the change log until you call ApplyUpdates.

If you provide a navigator component on your forms, users can delete the current
record by clicking the navigator’s Delete button. In code, you must call Delete
explicitly to remove the current record.

Posting data to the database

The Post method is central to a database application’s ability to edit. Post writes
changes to the current record to the change log, but it behaves differently depending
on a dataset’s state.

• In dsEdit state, Post writes a modified record to the change log.

• In dsInsert state, Post writes a new record to the change log.

• In dsSetKey state, Post returns the dataset to dsBrowse state.

Posting can be done explicitly, or implicitly as part of another procedure. When an
application moves off the current record, Post is called implicitly. Calls to the First,
Next, Prior, and Last methods perform a Post if the table is in dsEdit or dsInsert modes.
The Append and Insert methods also implicitly post any pending data.

Warning The Close method does not call Post implicitly. Use the BeforeClose event to post any
pending edits explicitly.

16-24 D e v e l o p e r ’ s G u i d e

M o d i f y i n g d a t a

Canceling changes

An application can undo changes made to the current record at any time, if it has not
yet directly or indirectly called Post. For example, if a dataset is in dsEdit mode, and a
user has changed the data in one or more fields, the application can return the record
back to its original values by calling the Cancel method for the dataset. A call to Cancel
always returns a dataset to dsBrowse state.

On forms, you can allow users to cancel edit, insert, or append operations by
including the Cancel button on a navigator component associated with the dataset, or
you can provide code for your own Cancel button on the form.

Client datasets introduce additional methods to cancel edits on non-current records.
See “Undoing changes” on page 20-15 for details.

Modifying entire records

On forms, all data-aware controls except for grids and the navigator provide access
to a single field in a record.

In code, however, you can use the following methods that work with entire record
structures provided that the structure of the database tables underlying the dataset is
stable and does not change. The following table summarizes the methods available
for working with entire records rather than individual fields in those records:

These methods each take an array of values as an argument, where each value
corresponds to a column in the underlying dataset. The values can be literals,
variables, or NULL. If the number of values in an argument is less than the number
of columns in a dataset, then the remaining values are assumed to be NULL.

For unindexed datasets, AppendRecord adds a record to the end of the dataset and
InsertRecord inserts a record after the current cursor position. For indexed tables, both
methods place the record in the correct position in the table, based on the index. In
both cases, the methods move the cursor to the record’s position.

SetFields assigns the values specified in the array of parameters to fields in the
dataset. To use SetFields, an application must first call Edit to put the dataset in dsEdit
mode. To write out the changes to the current record, it must perform a Post.

Table 16.8 Methods that work with entire records

Method Description

AppendRecord([array of values]) Appends a record with the specified column values at the end
of a table; analogous to Append. Performs an implicit Post.

InsertRecord([array of values]) Inserts the specified values as a record before the current
cursor position of a table; analogous to Insert. Performs an
implicit Post.

SetFields([array of values]) Sets the values of the corresponding fields; analogous to
assigning values to TFields. Application must perform an
explicit Post.

U n d e r s t a n d i n g d a t a s e t s 16-25

U s i n g d a t a s e t e v e n t s

If you use SetFields to modify some, but not all fields in an existing record, you can
pass NULL values for fields you do not want to change. If you do not supply enough
values for all fields in a record, SetFields assigns NULL values to them. NULL values
overwrite any existing values already in those fields.

For example, consider a client dataset called CountryTable with columns for Name,
Capital, Continent, Area, and Population. The following statement would insert a
record into the client dataset:

CountryTable.InsertRecord(['Japan', 'Tokyo', 'Asia']);

This statement does not specify values for Area and Population, so NULL values are
inserted for them. The dataset is indexed on Name, so the statement would insert the
record based on the alphabetic collation of “Japan”.

To update the record, an application could use the following code:

with CountryTable do
begin

if Locate('Name', 'Japan', loCaseInsensitive) then;
begin

Edit;
SetFields(nil, nil, nil, 344567, 164700000);
Post;

end;
end;

This code assigns values to the Area and Population fields and then posts them to the
change log. The three nil arguments act as place holders for the first three columns to
preserve their current contents.

Using dataset events
TDataSet defines a number of events that enable an application to perform validation,
compute totals, and perform other tasks. The events are listed in the following table.

Table 16.9 Dataset events

Event Description

BeforeOpen, AfterOpen Called before/after a dataset is opened.

BeforeClose, AfterClose Called before/after a dataset is closed.

BeforeInsert, AfterInsert Called before/after a dataset enters Insert state.

BeforeEdit, AfterEdit Called before/after a dataset enters Edit state.

BeforePost, AfterPost Called before/after changes to a table are posted.

BeforeCancel, AfterCancel Called before/after the previous state is canceled.

BeforeDelete, AfterDelete Called before/after a record is deleted.

OnNewRecord Called when a new record is created; used to set default values.

OnCalcFields Called when calculated fields are calculated.

16-26 D e v e l o p e r ’ s G u i d e

U s i n g d a t a s e t e v e n t s

Aborting a method

To abort a method such as an Open or Insert, call the Abort procedure in any of the
Before event handlers (BeforeOpen, BeforeInsert, and so on). For example, the following
code requests a user to confirm a delete operation or else it aborts the call to Delete:

procedure TForm1.TableBeforeDelete (Dataset: TDataset)begin
if MessageDlg('Delete This Record?', mtConfirmation, mbYesNoCancel, 0) <> mrYes then
Abort;

end;

Using OnCalcFields

The OnCalcFields event is used to set the values of calculated fields. The
AutoCalcFields property determines when OnCalcFields is called. If AutoCalcFields is
True, OnCalcFields is called when

• A dataset is opened.

• Focus moves from one visual component to another, or from one column to
another in a data-aware grid control and the current record has been modified.

• A record is retrieved from the database.

OnCalcFields is always called whenever a value in a non-calculated field changes,
regardless of the setting of AutoCalcFields.

Caution OnCalcFields is called frequently, so the code you write for it should be kept short.
Also, if AutoCalcFields is True, OnCalcFields should not perform any actions that
modify the dataset (or the linked dataset if it is part of a master-detail relationship),
because this can lead to recursion. For example, if OnCalcFields performs a Post, and
AutoCalcFields is True, then OnCalcFields is called again, leading to another Post, and
so on.

If AutoCalcFields is False, then OnCalcFields is not called when individual fields within
a single record are modified.

When OnCalcFields executes, a dataset is in dsCalcFields mode, so you cannot set the
values of any fields other than calculated fields. After OnCalcFields is completed, the
dataset returns to dsBrowse state.

W o r k i n g w i t h f i e l d c o m p o n e n t s 17-1

C h a p t e r

17
Chapter17Working with field components

This chapter describes the properties, events, and methods common to the TField
object and its descendants. Field components represent individual fields (columns) in
datasets. This chapter also describes how to use field components to control the
display and editing of data in your applications.

Field components are always associated with a dataset. You never use a TField object
directly in your applications. Instead, each field component in your application is a
TField descendant specific to the datatype of a column in a dataset. Field components
provide data-aware controls such as TDBEdit and TDBGrid access to the data in a
particular column of the associated dataset.

Generally speaking, a single field component represents the characteristics of a single
column, or field, in a dataset, such as its data type and size. It also represents the
field’s display characteristics, such as alignment, display format, and edit format. For
example, a TFloatField component has four properties that directly affect the
appearance of its data:

As you scroll from record to record in a dataset, a field component lets you view and
change the value for that field in the current record.

Field components have many properties in common with one another (such as
DisplayWidth and Alignment), and they have properties specific to their data types
(such as Precision for TFloatField). Each of these properties affect how data appears to
an application’s users on a form. Some properties, such as Precision, can also affect
what data values the user can enter in a control when modifying or entering data.

Table 17.1 TFloatField properties that affect data display

Property Purpose

Alignment Specifies whether data is displayed left-aligned, centered, or right-aligned.

DisplayWidth Specifies the number of digits to display in a control at one time.

DisplayFormat Specifies data formatting for display (such as how many decimal places to show).

EditFormat Specifies how to display a value during editing.

17-2 D e v e l o p e r ’ s G u i d e

D y n a m i c f i e l d c o m p o n e n t s

All field components for a dataset are either dynamic (automatically generated for
you based on the underlying structure of database tables), or persistent (generated
based on specific field names and properties you set in the Fields editor). Dynamic
and persistent fields have different strengths and are appropriate for different types
of applications. The following sections describe dynamic and persistent fields in
more detail and offer advice on choosing between them.

Dynamic field components
Dynamically generated field components are the default. In fact, all field components
for any dataset start out as dynamic fields the first time you place a dataset on a data
module, specify how that dataset fetches its data, and open it. A field component is
dynamic if it is created automatically based on the underlying physical characteristics
of the data represented by a dataset. Datasets generate one field component for each
column in the underlying data. The exact TField descendant created for each column
is determined by field type information received from the database or (for client
datasets) from a provider component.

Dynamic fields are temporary. They exist only as long as a dataset is open. Each time
you reopen a dataset that uses dynamic fields, it rebuilds a completely new set of
dynamic field components based on the current structure of the data underlying the
dataset. If the columns in the underlying data change, then the next time you open a
dataset that uses dynamic field components, the automatically generated field
components are also changed to match.

Use dynamic fields in applications that must be flexible about data display and
editing. For example, to create a database browsing tool, you must use dynamic
fields because every database table has different numbers and types of columns. You
might also want to use dynamic fields in applications where user interaction with
data mostly takes place inside grid components and you know that the datasets used
by the application change frequently.

To use dynamic fields in an application:

1 Place datasets and data sources in a data module.

2 Associate the datasets with data. This involves using a connection component or
provider to connect to the source of the data and setting any properties that
specify what data the dataset represents.

3 Associate the data sources with the datasets.

4 Place data-aware controls in the application’s forms, add the data module to each
uses clause for each form’s unit, and associate each data-aware control with a data
source in the module. In addition, associate a field with each data-aware control
that requires one. Note that because you are using dynamic field components,
there is no guarantee that any fieldname you specify will exist when the dataset is
opened.

5 Open the datasets.

W o r k i n g w i t h f i e l d c o m p o n e n t s 17-3

P e r s i s t e n t f i e l d c o m p o n e n t s

Aside from ease of use, dynamic fields can be limiting. Without writing code, you
cannot change the display and editing defaults for dynamic fields, you cannot safely
change the order in which dynamic fields are displayed, and you cannot prevent
access to any fields in the dataset. You cannot create additional fields for the dataset,
such as calculated fields or lookup fields, and you cannot override a dynamic field’s
default data type. To gain control and flexibility over fields in your database
applications, you need to invoke the Fields editor to create persistent field
components for your datasets.

Persistent field components
By default, dataset fields are dynamic. Their properties and availability are
automatically set and cannot be changed in any way. To gain control over a field’s
properties and events you must create persistent fields for the dataset. Persistent
fields let you

• Set or change the field’s display or edit characteristics at design time or runtime.

• Create new fields, such as lookup fields, calculated fields, and aggregated fields,
that base their values on existing fields in a dataset.

• Validate data entry.

• Remove field components from the list of persistent components to prevent your
application from accessing particular columns in an underlying database.

• Define new fields to replace existing fields, based on columns in the table or query
underlying a dataset.

At design time, you can—and should—use the Fields editor to create persistent lists
of the field components used by the datasets in your application. Persistent field
component lists are stored in your application, and do not change even if the
structure of a database underlying a dataset is changed. Once you create persistent
fields with the Fields editor, you can also create event handlers for them that respond
to changes in data values and that validate data entries.

Note When you create persistent fields for a dataset, only those fields you select are
available to your application at design time and runtime. At design time, you can
always use the Fields editor to add or remove persistent fields for a dataset.

All fields used by a single dataset are either persistent or dynamic. You cannot mix
field types in a single dataset. If you create persistent fields for a dataset, and then
want to revert to dynamic fields, you must remove all persistent fields from the
dataset. For more information about dynamic fields, see “Dynamic field
components” on page 17-2.

Note One of the primary uses of persistent fields is to gain control over the appearance and
display of data. You can also control the appearance of columns in data-aware grids.
To learn about controlling column appearance in grids, see “Creating a customized
grid” on page 15-15.

17-4 D e v e l o p e r ’ s G u i d e

P e r s i s t e n t f i e l d c o m p o n e n t s

Creating persistent fields

Persistent field components created with the Fields editor provide efficient, readable,
and type-safe programmatic access to underlying data. Using persistent field
components guarantees that each time your application runs, it always uses and
displays the same columns, in the same order even if the physical structure of the
underlying data changes. Data-aware components and program code that rely on
specific fields always work as expected. If a column on which a persistent field
component is based is deleted or changed, your application raises an exception rather
than running the application against a nonexistent column or mismatched data.

To create persistent fields for a dataset:

1 Place a dataset in a data module.

2 Bind the dataset to its underlying data. This typically involves associating the
dataset with a connection component or provider and specifying any properties to
describe the data. For example, If you are using TSQLDataSet, you can set the
SQLConnection property to a properly configured TSQLConnection component and
set the CommandText property to a valid query.

3 Double-click the dataset component in the data module to invoke the Fields editor.
The Fields editor contains a title bar, navigator buttons, and a list box.

The title bar of the Fields editor displays both the name of the data module or form
containing the dataset, and the name of the dataset itself. For example, if you open
the Customers dataset in the CustomerData data module, the title bar displays
‘CustomerData.Customers,’ or as much of the name as fits.

Below the title bar is a set of navigation buttons that let you scroll one-by-one
through the records in an active dataset at design time, and to jump to the first or
last record. The navigation buttons are dimmed if the dataset is not active or if the
dataset is empty. If the dataset is unidirectional, the buttons for moving to the last
record and the previous record are always dimmed.

The list box displays the names of persistent field components for the dataset. The
first time you invoke the Fields editor for a new dataset, the list is empty because
the field components for the dataset are dynamic, not persistent. If you invoke the
Fields editor for a dataset that already has persistent field components, you see the
field component names in the list box.

4 Choose Add Fields from the Fields editor context menu.

5 Select the fields to make persistent in the Add Fields dialog box. By default, all
fields are selected when the dialog box opens. Any fields you select become
persistent fields.

The Add Fields dialog box closes, and the fields you selected appear in the Fields
editor list box. Fields in the Fields editor list box are persistent. If the dataset is active,
note, too, that the Next and (if the dataset is not unidirectional) Last navigation
buttons above the list box are enabled.

W o r k i n g w i t h f i e l d c o m p o n e n t s 17-5

P e r s i s t e n t f i e l d c o m p o n e n t s

From now on, each time you open the dataset, it no longer creates dynamic field
components for every column in the underlying database. Instead it only creates
persistent components for the fields you specified.

Each time you open the dataset, it verifies that each non-calculated persistent field
exists or can be created from data in the database. If it cannot, the dataset raises an
exception warning you that the field is not valid, and does not open.

Arranging persistent fields

The order in which persistent field components are listed in the Fields editor list box
is the default order in which the fields appear in a data-aware grid component. You
can change field order by dragging and dropping fields in the list box.

To change the order of fields:

1 Select the fields. You can select and order one or more fields at a time.

2 Drag the fields to a new location.

If you select a noncontiguous set of fields and drag them to a new location, they are
inserted as a contiguous block. Within the block, the order of fields does not change.

Alternatively, you can select the field, and use Ctrl+Up and Ctrl+Dn to change an
individual field’s order in the list.

Defining new persistent fields

Besides making existing dataset fields into persistent fields, you can also create
special persistent fields as additions to or replacements for the other persistent fields
in a dataset.

New persistent fields that you create are only for display purposes. The data they
contain at runtime are not retained either because they already exist elsewhere in the
database, or because they are temporary. The physical structure of the data
underlying the dataset is not changed in any way.

To create a new persistent field component, invoke the context menu for the Fields
editor and choose New field. The New Field dialog box appears.

The New Field dialog box contains three group boxes: Field properties, Field type,
and Lookup definition.

• The Field properties group box lets you enter general field component
information. Enter the field name in the Name edit box. The name you enter here
corresponds to the field component’s FieldName property. The New Field dialog
uses this name to build a component name in the Component edit box. The name
that appears in the Component edit box corresponds to the field component’s
Name property and is only provided for informational purposes (Name is the
identifier by which you refer to the field component in your source code). The
dialog discards anything you enter directly in the Component edit box.

17-6 D e v e l o p e r ’ s G u i d e

P e r s i s t e n t f i e l d c o m p o n e n t s

• The Type combo box in the Field properties group lets you specify the field
component’s data type. You must supply a data type for any new field component
you create. For example, to display floating-point currency values in a field, select
Currency from the drop-down list. Use the Size edit box to specify the maximum
number of characters that can be displayed or entered in a string-based field, or
the size of Bytes and VarBytes fields. For all other data types, Size is meaningless.

• The Field type radio group lets you specify the type of new field component to
create. The default type is Data. If you choose Lookup, the Dataset and Source
Fields edit boxes in the Lookup definition group box are enabled. You can also
create Calculated fields, and if you are working with a client dataset, you can
create InternalCalc fields or Aggregate fields. The following table describes these
types of fields you can create:

The Lookup definition group box is only used to create lookup fields. This is described
more fully in “Defining a lookup field” on page 17-8.

Defining a data field
A data field replaces an existing field in a dataset. For example, for programmatic
reasons you might want to replace a TSmallIntField with a TIntegerField. Because you
cannot change a field’s data type directly, you must define a new field to replace it.

Important Even though you define a new field to replace an existing field, the field you define
must derive its data values from an existing column in a table underlying a dataset.

To create a replacement data field for a field in a table underlying a dataset, follow
these steps:

1 Remove the field from the list of persistent fields assigned for the dataset, and then
choose New Field from the context menu.

2 In the New Field dialog box, enter the name of an existing field in the database
table in the Name edit box. Do not enter a new field name. You are actually
specifying the name of the field from which your new field will derive its data.

3 Choose a new data type for the field from the Type combo box. The data type you
choose should be different from the data type of the field you are replacing. You
cannot replace a string field of one size with a string field of another size. Note that
while the data type should be different, it must be compatible with the actual data
type of the field in the underlying table.

Table 17.2 Special persistent field kinds

Field kind Purpose

Data Replaces an existing field (for example to change its data type)

Calculated Displays values calculated at runtime by a dataset’s OnCalcFields event handler.

Lookup Retrieve values from a specified dataset at runtime based on search criteria you
specify. (not supported by unidirectional datasets)

InternalCalc Displays values calculated at runtime by a client dataset and stored with its data.

Aggregate Displays a value summarizing the data in a set of records from a client dataset.

W o r k i n g w i t h f i e l d c o m p o n e n t s 17-7

P e r s i s t e n t f i e l d c o m p o n e n t s

4 Enter the size of the field in the Size edit box, if appropriate. Size is only relevant
for fields of type TStringField, TBytesField, and TVarBytesField.

5 Select Data in the Field type radio group if it is not already selected.

6 Choose OK. The New Field dialog box closes, the newly defined data field
replaces the existing field you specified in Step 1, and the component declaration
in the data module or form’s type declaration is updated.

To edit the properties or events associated with the field component, select the
component name in the Field editor list box, then edit its properties or events with
the Object Inspector. For more information about editing field component properties
and events, see “Setting persistent field properties and events” on page 17-10.

Defining a calculated field
A calculated field displays values calculated at runtime by a dataset’s OnCalcFields
event handler. For example, you might create a string field that displays
concatenated values from other fields.

To create a calculated field in the New Field dialog box:

1 Enter a name for the calculated field in the Name edit box. Do not enter the name
of an existing field.

2 Choose a data type for the field from the Type combo box.

3 Enter the size of the field in the Size edit box, if appropriate. Size is only relevant
for fields of type TStringField, TBytesField, and TVarBytesField.

4 Select Calculated or InternalCalc in the Field type radio group. InternalCalc is only
available if you are working with a client dataset. The significant difference
between these types of calculated fields is that the values calculated for an
InternalCalc field are stored and retrieved as part of the client dataset’s data.

5 Choose OK. The newly defined calculated field is automatically added to the end
of the list of persistent fields in the Field editor list box, and the component
declaration is automatically added to the form’s or data module’s type
declaration.

6 Place code that calculates values for the field in the OnCalcFields event handler for
the dataset. For more information about writing code to calculate field values, see
“Programming a calculated field” on page 17-7.

Note To edit the properties or events associated with the field component, select the
component name in the Field editor list box, then edit its properties or events with
the Object Inspector. For more information about editing field component properties
and events, see “Setting persistent field properties and events” on page 17-10.

Programming a calculated field
After you define a calculated field, you must write code to calculate its value.
Otherwise, it always has a null value. Code for a calculated field is placed in the
OnCalcFields event for its dataset.

17-8 D e v e l o p e r ’ s G u i d e

P e r s i s t e n t f i e l d c o m p o n e n t s

To program a value for a calculated field:

1 Select the dataset component from the Object Inspector drop-down list.

2 Choose the Object Inspector Events page.

3 Double-click the OnCalcFields property to bring up or create a CalcFields event
handler for the dataset component.

4 Write the code that sets the values and other properties of the calculated field as
desired.

For example, suppose you have created a CityStateZip calculated field for the
Customers table on the CustomerData data module. CityStateZip should display a
company’s city, state, and zip code on a single line in a data-aware control.

To add code to the CalcFields procedure for the Customers table, select the Customers
table from the Object Inspector drop-down list, switch to the Events page, and
double-click the OnCalcFields property.

The TCustomerData.CustomersCalcFields procedure appears in the unit’s source code
window. Add the following code to the procedure to calculate the field:

CustomersCityStateZip.Value := CustomersCity.Value + ', ' + CustomersState.Value
+ ' ' + CustomersZip.Value;

Note When writing the OnCalcFields event handler for an internally calculated field, you
can improve performance by checking the client dataset’s State property and only
recomputing the value when State is dsInternalCalc. See “Using internally calculated
fields in client datasets” on page 20-19 for details.

Defining a lookup field
A lookup field is a read-only field that displays values at runtime based on search
criteria you specify. In its simplest form, a lookup field is passed the name of an
existing field to search on, a field value to search for, and a different field in a lookup
dataset whose value it should display.

For example, consider a mail-order application that enables an operator to use a
lookup field to determine automatically the city and state that correspond to the zip
code a customer provides. The column to search on might be called ZipTable.Zip, the
value to search for is the customer’s zip code as entered in Order.CustZip, and the
values to return would be those for the ZipTable.City and ZipTable.State columns of
the record where the value of ZipTable.Zip matches the current value in the
Order.CustZip field.

Note Unidirectional datasets do not support lookup fields.

To create a lookup field in the New Field dialog box:

1 Enter a name for the lookup field in the Name edit box. Do not enter the name of
an existing field.

2 Choose a data type for the field from the Type combo box.

3 Enter the size of the field in the Size edit box, if appropriate. Size is only relevant
for fields of type TStringField, TBytesField, and TVarBytesField.

W o r k i n g w i t h f i e l d c o m p o n e n t s 17-9

P e r s i s t e n t f i e l d c o m p o n e n t s

4 Select Lookup in the Field type radio group. Selecting Lookup enables the Dataset
and Key Fields combo boxes.

5 Choose from the Dataset combo box drop-down list the dataset in which to look
up field values. The lookup dataset must be different from the dataset for the field
component itself, or a circular reference exception is raised at runtime. Specifying
a lookup dataset enables the Lookup Keys and Result Field combo boxes.

6 Choose from the Key Fields drop-down list a field in the current dataset for which
to match values. To match more than one field, enter field names directly instead
of choosing from the drop-down list. Separate multiple field names with
semicolons. If you are using more than one field, you must use persistent field
components.

7 Choose from the Lookup Keys drop-down list a field in the lookup dataset to
match against the Source Fields field you specified in step 6. If you specified more
than one key field, you must specify the same number of lookup keys. To specify
more than one field, enter field names directly, separating multiple field names
with semicolons.

8 Choose from the Result Field drop-down list a field in the lookup dataset to return
as the value of the lookup field you are creating.

When you design and run your application, lookup field values are determined
before calculated field values are calculated. You can base calculated fields on lookup
fields, but you cannot base lookup fields on calculated fields.

You can use the LookupCache property to hone the way lookup fields are determined.
LookupCache determines whether the values of a lookup field are cached in memory
when a dataset is first opened, or looked up dynamically every time the current
record in the dataset changes. Set LookupCache to True to cache the values of a lookup
field when the LookupDataSet is unlikely to change and the number of distinct lookup
values is small. Caching lookup values can speed performance, because the lookup
values for every set of LookupKeyFields values are preloaded when the DataSet is
opened. When the current record in the DataSet changes, the field object can locate its
Value in the cache, rather than accessing the LookupDataSet. This performance
improvement is especially dramatic if the LookupDataSet is on a network where
access is slow.

Tip You can use a lookup cache to provide lookup values programmatically rather than
from a secondary dataset. Be sure that the LookupDataSet property is nil. Then, use the
LookupList property’s Add method to fill it with lookup values. Set the LookupCache
property to True. The field will use the supplied lookup list without overwriting it
with values from a lookup dataset.

If every record of DataSet has different values for KeyFields, the overhead of locating
values in the cache can be greater than any performance benefit provided by the
cache. The overhead of locating values in the cache increases with the number of
distinct values that can be taken by KeyFields.

If LookupDataSet is volatile, caching lookup values can lead to inaccurate results. Call
RefreshLookupList to update the values in the lookup cache. RefreshLookupList
regenerates the LookupList property, which contains the value of the LookupResultField
for every set of LookupKeyFields values.

When setting LookupCache at runtime, call RefreshLookupList to initialize the cache.

17-10 D e v e l o p e r ’ s G u i d e

P e r s i s t e n t f i e l d c o m p o n e n t s

Defining an aggregate field
An aggregate field displays values from a maintained aggregate in a client dataset.
An aggregate is a calculation that summarizes the data in a set of records. See “Using
maintained aggregates” on page 20-20 for details about maintained aggregates.

To create an aggregate field in the New Field dialog box:

1 Enter a name for the aggregate field in the Name edit box. Do not enter the name
of an existing field.

2 Choose aggregate data type for the field from the Type combo box.

3 Select Aggregate in the Field type radio group.

4 Choose OK. The newly defined aggregate field is automatically added and the
client dataset’s Aggregates property is automatically updated to include the
appropriate aggregate specification.

5 Place the calculation for the aggregate in the ExprText property of the newly
created aggregate field. For more information about defining an aggregate, see
“Specifying aggregates” on page 20-20.

Once a persistent TAggregateField is created, a TDBText control can be bound to the
aggregate field. The TDBText control will then display the value of the aggregate
field that is relevant to the current record of the client data set.

Deleting persistent field components

Deleting a persistent field component is useful for accessing a subset of available
columns in a table, and for defining your own persistent fields to replace a column in
a table. To remove one or more persistent field components for a dataset:

1 Select the field(s) to remove in the Fields editor list box.

2 Press Del.

Note You can also delete selected fields by invoking the context menu and choosing
Delete.

Fields you remove are no longer available to the dataset and cannot be displayed by
data-aware controls. You can always recreate a persistent field component that you
delete by accident, but any changes previously made to its properties or events is
lost. For more information, see “Creating persistent fields” on page 17-4.

Note If you remove all persistent field components for a dataset, the dataset reverts to
using dynamic field components for every column in the underlying database table.

Setting persistent field properties and events

You can set properties and customize events for persistent field components at
design time. Properties control the way a field is displayed by a data-aware
component, for example, whether it can appear in a TDBGrid, or whether its value

W o r k i n g w i t h f i e l d c o m p o n e n t s 17-11

P e r s i s t e n t f i e l d c o m p o n e n t s

can be modified. Events control what happens when data in a field is fetched,
changed, set, or validated.

To set the properties of a field component or write customized event handlers for it,
select the component in the Fields editor, or select it from the component list in the
Object Inspector.

Setting display and edit properties at design time
To edit the display properties of a selected field component, switch to the Properties
page on the Object Inspector window. The following table summarizes display
properties that can be edited.

Table 17.3 Field component properties

Property Purpose

Alignment Left justifies, right justifies, or centers a field contents within a data-aware
component.

ConstraintErrorMessage Specifies the text to display when edits clash with a constraint condition.

CustomConstraint Specifies a local constraint to apply to data during editing.

Currency Numeric fields only. True: displays monetary values.
False (default): does not display monetary values.

DisplayFormat Specifies the format of data displayed in a data-aware control.

DisplayLabel Specifies the column name for a field in a data-aware grid.

DisplayWidth Specifies the width, in characters, of a grid column that displays this field.

EditFormat Specifies the edit format of data in a data-aware control.

EditMask Limits data-entry in an editable field to specified types and ranges of
characters, and specifies any special, non-editable characters that appear
within the field (hyphens, parentheses, and so on).

FieldKind Specifies the type of field (data, lookup, calculated, or aggregate).

FieldName Specifies the name of a column in the table from which the field derives
its value and data type.

HasConstraints Indicates whether there are constraint conditions imposed on a field.

ImportedConstraint Specifies an SQL constraint imported from the database server. This is
only used when the field gets its value from an application server
running on another platform.

Index Specifies the order of the field in a dataset.

LookupDataSet Specifies the dataset used to look up field values when Lookup is True.

LookupKeyFields Specifies the field(s) in the lookup dataset to match when doing a lookup.

LookupResultField Specifies the field in the lookup dataset from which to copy values into
this field.

MaxValue Numeric fields only. Specifies the maximum value a user can enter for the
field.

MinValue Numeric fields only. Specifies the minimum value a user can enter for the
field.

Name Specifies the name used to refer to the field component in code.

Origin Specifies the name of the field as it appears in the underlying database.

Precision Numeric fields only. Specifies the number of significant digits.

17-12 D e v e l o p e r ’ s G u i d e

P e r s i s t e n t f i e l d c o m p o n e n t s

Not all properties are available for all field components. For example, a field
component of type TStringField does not have Currency, MaxValue, or DisplayFormat
properties, and a component of type TFloatField does not have a Size property.

While the purpose of most properties is straightforward, some properties, such as
Calculated, require additional programming steps to be useful. Others, such as
DisplayFormat, EditFormat, and EditMask, are interrelated; their settings must be
coordinated. For more information about using DisplayFormat, EditFormat, and
EditMask, see “Controlling and masking user input” on page 17-12.

Setting field component properties at runtime
You can use and manipulate the properties of field component at runtime. For
example, the following code sets the ReadOnly property for the CityStateZip field in
the Customers table to True:

CustomersCityStateZip.ReadOnly := True;

And this statement changes field ordering by setting the Index property of the
CityStateZip field in the Customers table to 3:

CustomersCityStateZip.Index := 3;

Controlling and masking user input
The EditMask property provides a way to control the type and range of values a user
can enter into a data-aware component associated with TStringField, TDateField,
TTimeField, TDateTimeField, and TSQLTimeStampField components. You can use
existing masks, or create your own. The easiest way to use and create edit masks is
with the Input Mask editor. You can, however, enter masks directly into the EditMask
field in the Object Inspector.

Note For TStringField components, the EditMask property is also its display format.

To invoke the Input Mask editor for a field component:

ReadOnly True: Displays field values in data-aware components, but prevents
editing.
False (the default): Permits display and editing of field values.

Size Specifies the maximum number of characters that can be displayed or
entered in a string-based field, or the size, in bytes, of TBytesField and
TVarBytesField fields.

Tag Long integer available for programmer use in every component as
needed.

Transliterate True (default): specifies that translation to and from the respective locales
will occur as data is transferred between a dataset and a database.
False: Locale translation does not occur.

Visible True (the default): Permits display of field in a data-aware grid.
False: Prevents display of field in a data-aware grid component.
User-defined components can make display decisions based on this
property.

Table 17.3 Field component properties (continued)

Property Purpose

W o r k i n g w i t h f i e l d c o m p o n e n t s 17-13

P e r s i s t e n t f i e l d c o m p o n e n t s

1 Select the component in the Fields editor or Object Inspector.

2 Click the Properties page in the Object Inspector.

3 Double-click the values column for the EditMask field in the Object Inspector, or
click the ellipsis button. The Input Mask editor opens.

The Input Mask edit box lets you create and edit a mask format. The Sample Masks
grid lets you select from predefined masks. If you select a sample mask, the mask
format appears in the Input Mask edit box where you can modify it or use it as is.
You can test the allowable user input for a mask in the Test Input edit box.

The Masks button lets you load a custom set of masks—if you have created one—into
the Sample Masks grid for easy selection.

Using default formatting for numeric, date, and time fields
Kylix provides built-in display and edit format routines and intelligent default
formatting for TFloatField, TCurrencyField, TBCDField, TFMTBCDField, TIntegerField,
TSmallIntField, TWordField, TDateField, TDateTimeField, TTimeField, and
TSQLTimeStampField components. To use these routines, you need do nothing.

Default formatting is performed by the following routines:

Only format properties appropriate to the data type of a field component are
available for a given component.

Default formatting conventions for date, time, currency, and numeric values are
based on the system locale. For example, using the default settings for the United
States, a TFloatField column with the Currency property set to True sets the
DisplayFormat property for the value 1234.56 to $1234.56, while the EditFormat is
1234.56.

At design time or runtime, you can edit the DisplayFormat and EditFormat properties
of a field component to override the default display settings for that field. You can
also write OnGetText and OnSetText event handlers to do custom formatting for field
components at runtime.

Handling events
Like most components, field components have events associated with them. Methods
can be assigned as handlers for these events. By writing these handlers you can react
to the occurrence of events that affect data entered in fields through data-aware

Table 17.4 Field component formatting routines

Routine Used by . . .

FormatFloat TFloatField, TCurrencyField

FormatDateTime TDateField, TTimeField, TDateTimeField, TSQLTimeStampField

SQLTimeStampToString TSQLTimeStampField

FormatCurr TCurrencyField, TBCDField

BcdToStrF TFMTBcdField

17-14 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h f i e l d c o m p o n e n t m e t h o d s a t r u n t i m e

controls and perform actions of your own design. The following table lists the events
associated with field components:

OnGetText and OnSetText events are primarily useful to programmers who want to
do custom formatting that goes beyond the built-in formatting functions. OnChange
is useful for performing application-specific tasks associated with data change, such
as enabling or disabling menus or visual controls. OnValidate is useful when you
want to control data-entry validation in your application before returning values to a
database server.

To write an event handler for a field component:

1 Select the component.

2 Select the Events page in the Object Inspector.

3 Double-click the Value field for the event handler to display its source code
window.

4 Create or edit the handler code.

Working with field component methods at runtime
Field components methods available at runtime let you convert field values from one
data type to another, and enable you to set focus to the first data-aware control in a
form that is associated with a field component.

Controlling the focus of data-aware components associated with a field is important
when your application performs record-oriented data validation in a dataset event
handler (such as BeforePost). Validation may be performed on the fields in a record
whether or not its associated data-aware control has focus. Should validation fail for
a particular field in the record, you want the data-aware control containing the faulty
data to have focus so that the user can enter corrections.

You control focus for a field’s data-aware components with a field’s FocusControl
method. FocusControl sets focus to the first data-aware control in a form that is
associated with a field. An event handler can call a field’s FocusControl method before
validating the field. The following code illustrates how to call the FocusControl
method for the Company field in the Customers table:

CustomersCompany.FocusControl;

Table 17.5 Field component events

Event Purpose

OnChange Called when the value for a field changes.

OnGetText Called when the value for a field component is retrieved for display or editing.

OnSetText Called when the value for a field component is set.

OnValidate Called to validate the value for a field component whenever the value is
changed because of an edit or insert operation.

W o r k i n g w i t h f i e l d c o m p o n e n t s 17-15

D i s p l a y i n g , c o n v e r t i n g , a n d a c c e s s i n g f i e l d v a l u e s

The following table lists some other field component methods and their uses. For a
complete list and detailed information about using each method, see the entries for
TField and its descendants in the online VCL Reference.

Displaying, converting, and accessing field values
Data-aware controls such as TDBEdit and TDBGrid automatically display the values
associated with field components. If editing is enabled for the dataset and the
controls, data-aware controls can also send new and changed values to the database.
In general, the built-in properties and methods of data-aware controls enable them to
connect to datasets, display values, and make updates without requiring extra
programming on your part. Use them whenever possible in your database
applications. For more information about data-aware control, see Chapter 15, “Using
data controls.”

Standard controls can also display and edit database values associated with field
components. Using standard controls, however, may require additional
programming on your part. For example, when using standard controls, your
application is responsible for tracking when to update controls because field values
change. If the dataset has a datasource component, you can use its events to help you
do this. In particular, the OnDataChange event lets you know when you may need to
update a control’s value and the OnStateChange event can help you determine when
to enable or disable controls. For more information on these events, see “Responding
to changes mediated by the data source” on page 15-4.

The following topics discuss how to work with field values so that you can display
them in standard controls.

Displaying field component values in standard controls

An application can access the value of a dataset column through the Value property
of a field component. For example, the following OnDataChange event handler
updates the text in a TEdit control because the value of the CustomersCompany field
may have changed:

procedure TForm1.CustomersDataChange(Sender: TObject, Field: TField);
begin

Edit3.Text := CustomersCompany.Value;
end;

Table 17.6 Selected field component methods

Method Purpose

AssignValue Sets a field value to a specified value using an automatic conversion function
based on the field’s type.

Clear Clears the field and sets its value to NULL.

GetData Retrieves unformatted data from the field.

IsValidChar Determines if a character entered by a user in a data-aware control to set a
value is allowed for this field.

SetData Assigns unformatted data to this field.

17-16 D e v e l o p e r ’ s G u i d e

D i s p l a y i n g , c o n v e r t i n g , a n d a c c e s s i n g f i e l d v a l u e s

This method works well for string values, but may require additional programming
to handle conversions for other data types. Fortunately, field components have built-
in functions for handling conversions.

Note You can also use Variants to access and set field values. For more information about
using variants to access and set field values, see “Accessing field values with the
default dataset property” on page 17-17.

Converting field values

Conversion properties attempt to convert one data type to another. For example, the
AsString property converts numeric and Boolean values to string representations.
The following table lists field component conversion properties, and which
properties are recommended for field components by field-component class:

Note that some columns in the table refer to more than one conversion property
(such as AsFloat, AsCurrency, and AsBCD). This is because all field data types that
support one of those properties always support the others as well.

AsVariant AsString AsInteger

AsFloat
AsCurrency
AsBCD

AsDateTime
AsSQLTimeStamp AsBoolean

TStringField yes NA yes yes yes yes

TWideStringField yes yes yes yes yes yes

TIntegerField yes yes NA yes

TSmallIntField yes yes yes yes

TWordField yes yes yes yes

TLargeintField yes yes yes yes

TFloatField yes yes yes yes

TCurrencyField yes yes yes yes

TBCDField yes yes yes yes

TFMTBCDField yes yes yes yes

TDateTimeField yes yes yes yes

TDateField yes yes yes yes

TTimeField yes yes yes yes

TSQLTimeStampField yes yes yes yes

TBooleanField yes yes

TBytesField yes yes

TVarBytesField yes yes

TBlobField yes yes

TMemoField yes yes

TGraphicField yes yes

TVariantField NA yes yes yes yes yes

TAggregateField yes yes

W o r k i n g w i t h f i e l d c o m p o n e n t s 17-17

D i s p l a y i n g , c o n v e r t i n g , a n d a c c e s s i n g f i e l d v a l u e s

Note also that the AsVariant property can translate among all data types. For any
datatypes not listed above, AsVariant is also available (and is, in fact, the only option).
When in doubt, use AsVariant.

In some cases, conversions are not always possible. For example, AsDateTime can be
used to convert a string to a date, time, or datetime format only if the string value is
in a recognizable datetime format. A failed conversion attempt raises an exception.

In some other cases, conversion is possible, but the results of the conversion are not
always intuitive. For example, what does it mean to convert a TDateTimeField value
into a float format? AsFloat converts the date portion of the field to the number of
days since 12/31/1899, and it converts the time portion of the field to a fraction of 24
hours. Table 17.7 lists permissible conversions that produce special results:

In other cases, conversions are not possible at all. In these cases, attempting a
conversion also raises an exception.

Conversion always occurs before an actual assignment is made. For example, the
following statement converts the value of CustomersCustNo to a string and assigns the
string to the text of an edit control:

Edit1.Text := CustomersCustNo.AsString;

Conversely, the next statement assigns the text of an edit control to the
CustomersCustNo field as an integer:

MyTableMyField.AsInteger := StrToInt(Edit1.Text);

Accessing field values with the default dataset property

The most general method for accessing a field’s value is to use Variants with the
FieldValues property. For example, the following statement puts the value of an edit
box into the CustNo field in the Customers table:

Customers.FieldValues['CustNo'] := Edit2.Text;

Because the FieldValues property is of type Variant, it automatically converts other
datatypes into a Variant value.

For more information about Variants, see the online help.

Table 17.7 Special conversion results

Conversion Result

String to Boolean Converts “True,” “False,” “Yes,” and “No” to Boolean. Other values raise
exceptions.

Float to Integer Rounds float value to nearest integer value.

DateTime or
SQLTimeStamp
to Float

Converts date to number of days since 12/31/1899, time to a fraction of 24
hours.

Boolean to String Converts any Boolean value to “True” or “False.”

17-18 D e v e l o p e r ’ s G u i d e

D i s p l a y i n g , c o n v e r t i n g , a n d a c c e s s i n g f i e l d v a l u e s

Accessing field values with a dataset’s Fields property

You can access the value of a field with the Fields property of the dataset component
to which the field belongs. Fields maintains an indexed list of all the fields in the
dataset. Accessing field values with the Fields property is useful when you need to
iterate over a number of columns, or if your application works with tables that are
not available to you at design time.

To use the Fields property you must know the order and data types of fields in the
dataset. You use an ordinal number to specify the field to access. The first field in a
dataset is numbered 0. Field values must be converted as appropriate using each
field component’s conversion properties. For more information about field
component conversion properties, see “Converting field values” on page 17-16.

For example, the following statement assigns the current value of the seventh column
(Country) in the Customers table to an edit control:

Edit1.Text := CustTable.Fields[6].AsString;

Conversely, you can assign a value to a field by setting the Fields property of the
dataset to the desired field. For example:

begin
Customers.Edit;
Customers.Fields[6].AsString := Edit1.Text;
Customers.Post;

end;

Accessing field values with a dataset’s FieldByName method

You can also access the value of a field with a dataset’s FieldByName method. This
method is useful when you know the name of the field you want to access, but do not
have access to the underlying table at design time.

To use FieldByName, you must know the dataset and name of the field you want to
access. You pass the field’s name as an argument to the method. To access or change
the field’s value, convert the result with the appropriate field component conversion
property, such as AsString or AsInteger. For example, the following statement assigns
the value of the CustNo field in the Customers dataset to an edit control:

Edit2.Text := Customers.FieldByName('CustNo').AsString;

Conversely, you can assign a value to a field:

begin
Customers.Edit;
Customers.FieldByName('CustNo').AsString := Edit2.Text;
Customers.Post;

end;

W o r k i n g w i t h f i e l d c o m p o n e n t s 17-19

C h e c k i n g a f i e l d ’ s c u r r e n t v a l u e

Checking a field’s current value
If your application uses a client datasetto update data from a database server, and
you encounter difficulties when updating records, you can use the CurValue property
to examine the field value in the record causing problems. CurValue represents the
current value of the field on the database server, reflecting any changes made by
other users of the database.

CurValue is only available inside an OnUpdateError or OnReconcileError event
handler. In these event handlers, you can compare CurValue (the value on the server)
to NewValue (the unposted value that caused the problem) and OldValue (the value
that was originally assigned to the field before any edits were made). CurValue differs
from OldValue only if another user changed the value of the field after OldValue was
read.

Setting a default value for a field
You can specify how a default value for a field in a client dataset should be calculated
at runtime using the DefaultExpression property. DefaultExpression can be any valid
SQL value expression that does not refer to field values. If the expression contains
literals other than numeric values, they must appear in quotes. For example, a default
value of noon for a time field would be

‘12:00:00’

including the quotes around the literal value.

Note If the underlying database table defines a default value for the field, the default you
specify in DefaultExpression takes precedence. That is because DefaultExpression is
applied when the client dataset posts the record containing the field, which occurs
before the edited record is applied to the database server.

Specifying constraints
Most production SQL databases use constraints to impose conditions on the possible
values for a field. For example, a field may not permit NULL values, may require that
its value be unique for that column, or that its values be greater than 0 and less than
150. These constraints are enforced when your application applies updates to the
database server.

In addition to these server-enforced constraints, you can create and use custom
constraints that are applied locally to the fields in client datasets. Custom constraints
can duplicate the server constraints (so that you detect errors immediately when
posting edits to the change log rather than later when you attempt to apply updates),
or they can impose additional, application-defined limits. Custom constraints
provide validation of data entry, but they cannot be applied against data received
from or sent to a server application.

17-20 D e v e l o p e r ’ s G u i d e

U s i n g o b j e c t f i e l d s

To create a custom constraint, set the CustomConstraint property to specify a
constraint condition, and set ConstraintErrorMessage to the message to display when a
user violates the constraint at runtime.

CustomConstraint is an SQL string that specifies any application-specific constraints
imposed on the field’s value. Set CustomConstraint to limit the values that the user
can enter into a field. CustomConstraint can be any valid SQL search expression such
as

x > 0 and x < 100

The name used to refer to the value of the field can be any string that is not a reserved
SQL keyword, as long as it is used consistently throughout the constraint expression.

Using object fields
Object fields are fields that represent a composite of other, simpler datatypes. These
include ADT (Abstract Data Type) fields, array fields, DataSet fields, and Reference
fields. All of these field types either contain or reference child fields or other data
sets.

ADT fields and array fields are fields that contain child fields. The child fields of an
ADT field can be any scalar or object type (that is, any other field type). These child
fields may differ in type from each other. An array field contains an array of child
fields, all of the same type.

Dataset and reference fields map to fields that access other data sets. A dataset field
provides access to a nested (detail) dataset and a reference field stores a pointer
(reference) to another persistent object (ADT).

When you add fields with the Fields editor to a dataset that contains object fields,
persistent object fields of the correct type are automatically created for you. Adding
persistent object fields to a dataset automatically sets the dataset’s ObjectView
property to True, which instructs the dataset to store these fields hierarchically, rather
than flattening them out as if the constituent child fields were separate, independent
fields.

Table 17.8 Types of object field components

Component name Purpose

TADTField Represents an ADT (Abstract Data Type) field.

TArrayField Represents an array field.

TDataSetField Represents a field that contains a nested data set reference.

TReferenceField Represents a REF field, a pointer to an ADT.

W o r k i n g w i t h f i e l d c o m p o n e n t s 17-21

U s i n g o b j e c t f i e l d s

The following properties are common to all object fields and provide the
functionality to handle child fields and datasets.

Displaying ADT and array fields

Both ADT and array fields contain child fields that can be displayed through data-
aware controls.

Data-aware controls such as TDBEdit that represent a single field value display child
field values in an uneditable comma delimited string. In addition, if you set the
control’s DataField property to the child field instead of the object field itself, the child
field can be viewed an edited just like any other normal data field.

A TDBGrid control displays ADT and array field data differently, depending on the
value of the dataset’s ObjectView property. When ObjectView is False, each child field
appears in a single column. When ObjectView is True, an ADT or array field can be
expanded and collapsed by clicking on the arrow in the title bar of the column. When
the field is expanded, each child field appears in its own column and title bar, all
below the title bar of the ADT or array itself. When the ADT or array is collapsed,
only one column appears with an uneditable comma delimited string containing the
child fields.

Working with ADT fields

ADTs are user-defined types created on the server, and are similar to the record type.
An ADT can contain most scalar field types, array fields, reference fields, and nested
ADTs.

There are a variety of ways to access the data in ADT field types. These are illustrated
in the following examples, which assign a child field value to an edit box called
CityEdit, and use the following ADT structure,

Address
Street
City
State
Zip

Table 17.9 Common object field descendant properties

Property Purpose

Fields Contains the child fields belonging to the object field.

ObjectType Classifies the object field.

FieldCount Number of child fields that comprise the object field.

FieldValues Provides access to the values of the child fields.

17-22 D e v e l o p e r ’ s G u i d e

U s i n g o b j e c t f i e l d s

Using persistent field components
The easiest way to access ADT field values is to use persistent field components. For
the ADT structure above, the following persistent fields can be added to the Customer
table using the Fields editor:

CustomerAddress: TADTField;
CustomerAddrStreet: TStringField;
CustomerAddrCity: TStringField;
CustomerAddrState: TStringField;
CustomerAddrZip: TStringField;

Given these persistent fields, you can simply access the child fields of an ADT field
by name:

CityEdit.Text := CustomerAddrCity.AsString;

Although persistent fields are the easiest way to access ADT child fields, it is not
possible to use them if the structure of the dataset is not known at design time. When
accessing ADT child fields without using persistent fields, you must set the dataset’s
ObjectView property to True.

Using the dataset’s FieldByName method
You can access the children of an ADT field using the dataset’s FieldByName method
by qualifying the name of the child field with the ADT field’s name:

CityEdit.Text := Customer.FieldByName(‘Address.City’).AsString;

Using the dateset’s FieldValues property
You can also use qualified field names with a dataset’s FieldValues property:

CityEdit.Text := Customer['Address.City'];

Note that you can omit the property name (FieldValues) because FieldValues is the
dataset’s default property.

Note Unlike other runtime methods for accessing ADT child field values, the FieldValues
property works even if the dataset’s ObjectView property is False.

Using the ADT field’s FieldValues property
You can access the value of a child field with the TADTField’s FieldValues property.
FieldValues accepts and returns a Variant, so it can handle and convert fields of any
type. The index parameter is an integer value that specifies the offset of the field.

CityEdit.Text := TADTField(Customer.FieldByName('Address')).FieldValues[1];

Because FieldValues is the default property of TADTField, the property name
(FieldValues) can be omitted. Thus, the following statement is equivalent to the one
above:

CityEdit.Text := TADTField(Customer.FieldByName('Address'))[1];

W o r k i n g w i t h f i e l d c o m p o n e n t s 17-23

U s i n g o b j e c t f i e l d s

Using the ADT field’s Fields property
Each ADT field has a Fields property that is analogous to the Fields property of a
dataset. Like the Fields property of a dataset, you can use it to access child fields by
position:

CityEdit.Text := TADTField(Customer.FieldByName(‘Address’)).Fields[1].AsString;

or by name:

CityEdit.Text :=
TADTField(Customer.FieldByName(‘Address’)).Fields.FieldByName(‘City’).AsString;

Working with array fields

Array fields consist of a set of fields of the same type. The field types can be scalar
(for example, float, string), or non-scalar (an ADT), but an array field of arrays is not
permitted. The SparseArrays property of TDataSet determines whether a unique
TField object is created for each element of the array field.

There are a variety of ways to access the data in array field types. If you are not using
persistent fields, the dataset’s ObjectView property must be set to True before you can
access the elements of an array field.

Using persistent fields
You can map persistent fields to the individual array elements in an array field. For
example, consider an array field TelNos_Array, which is a six element array of strings.
The following persistent fields created for the Customer table component represent
the TelNos_Array field and its six elements:

CustomerTelNos_Array: TArrayField;
CustomerTelNos_Array0: TStringField;
CustomerTelNos_Array1: TStringField;
CustomerTelNos_Array2: TStringField;
CustomerTelNos_Array3: TStringField;
CustomerTelNos_Array4: TStringField;
CustomerTelNos_Array5: TStringField;

Given these persistent fields, the following code uses a persistent field to assign an
array element value to an edit box named TelEdit.

TelEdit.Text := CustomerTelNos_Array0.AsString;

Using the array field’s FieldValues property
You can access the value of a child field with the array field’s FieldValues property.
FieldValues accepts and returns a Variant, so it can handle and convert child fields of
any type. For example,

TelEdit.Text := TArrayField(Customer.FieldByName('TelNos_Array')).FieldValues[1];

Because FieldValues is the default property of TArrayField, this can also be written

TelEdit.Text := TArrayField(Customer.FieldByName('TelNos_Array'))[1];

17-24 D e v e l o p e r ’ s G u i d e

U s i n g o b j e c t f i e l d s

Using the array field’s Fields property
TArrayField has a Fields property that you can use to access individual sub-fields. This
is illustrated below, where an array field (OrderDates) is used to populate a list box
with all non-null array elements:

for I := 0 to OrderDates.Size - 1 do
begin

if not OrderDates.Fields[I].IsNull then
OrderDateListBox.Items.Add(OrderDates[I]);

end;

Working with dataset fields

Dataset fields provide access to data stored in a nested dataset. The NestedDataSet
property references the nested dataset. The data in the nested dataset is then accessed
through the fields of the nested dataset.

Displaying dataset fields
TDBGrid controls enable the display of data stored in data set fields. In a TDBGrid
control, a dataset field is indicated in each cell of a dataset column with a “(DataSet)”,
and at runtime an ellipsis button also exists to the right. Clicking on the ellipsis
brings up a new form with a grid displaying the dataset associated with the current
record’s dataset field. This form can also be brought up programmatically with the
DB grid’s ShowPopupEditor method. For example, if the seventh column in the grid
represents a dataset field, the following code displays the dataset associated with that
field for the current record.

DBGrid1.ShowPopupEditor(DBGrid1.Columns[7]);

Accessing data in a nested dataset
A dataset field is not normally bound directly to a data aware control. Rather, since a
nested dataset is another dataset, you use another dataset component to access its
data. The type of dataset you use is determined by the parent dataset (the one with
the dataset field.) For example, a dataset field in a TClientDataSet object must use
another TClientDataSet to represent its value.

To access the data in a dataset field,

1 Create a persistent TDataSetField object by invoking the Fields editor for the parent
dataset.

2 Create a dataset to represent the values in that dataset field.

3 Set that DataSetField property of the dataset created in step 2 to the persistent
dataset field you created in step 1.

If the nested dataset field for the current record has a value, the detail dataset
component will contain records with the nested data; otherwise, the detail dataset
will be empty.

W o r k i n g w i t h f i e l d c o m p o n e n t s 17-25

U s i n g o b j e c t f i e l d s

Working with reference fields

Reference fields store a pointer or reference to another ADT object. This ADT object is
a single record of another object table. Reference fields always refer to a single record
in a dataset (object table). The data in the referenced object is returned in a nested
dataset, but can also be accessed via the Fields property on the TReferenceField.

Displaying reference fields
In a TDBGrid control a reference field is designated in each cell of the dataset column,
with (Reference) and, at runtime, an ellipsis button to the right. At runtime, clicking
on the ellipsis brings up a new form with a grid displaying the object associated with
the current record’s reference field.

This form can also be brought up programmatically with the DB grid’s
ShowPopupEditor method. For example, if the seventh column in the grid represents a
reference field, the following code will display the object associated with that field
for the current record.

DBGrid1.ShowPopupEditor(DBGrid1.Columns[7]);

Accessing data in a reference field
You can access the data in a reference field in the same way you access a nested
dataset:

1 Create a persistent TDataSetField object by invoking the Fields editor for the parent
dataset.

2 Create a dataset to represent the value of that dataset field.

3 Set that DataSetField property of the dataset created in step 2 to the persistent
dataset field you created in step 1.

If the reference is assigned, the reference dataset will contain a single record with the
referenced data. If the reference is null, the reference dataset will be empty.

You can also use the reference field’s Fields property to access the data in a reference
field. For example, the following lines are equivalent and assign data from the
reference field CustomerRefCity to an edit box called CityEdit:

CityEdit.Text := CustomerRefCity.Fields[1].AsString;
CityEdit.Text := CustomerRefCity.NestedDataSet.Fields[1].AsString;

17-26 D e v e l o p e r ’ s G u i d e

U s i n g u n i d i r e c t i o n a l d a t a s e t s 18-1

C h a p t e r

18
Chapter18Using unidirectional datasets

Unidirectional datasets provide the mechanism by which an application reads data
from an SQL database table. They are designed for quick lightweight access to database
information, with minimal overhead. Unidirectional datasets send an SQL command to
the database server, and if the command returns a set of records, obtain a unidirectional
cursor for accessing those records. They do not buffer data in memory, which makes
them faster and less resource-intensive than other types of dataset. However, because
there are no buffered records, unidirectional datasets are also less flexible than other
datasets. Many of the capabilities introduced by TDataSet are either unimplemented in
unidirectional datasets, or cause them to raise exceptions. For example:

• The only supported navigation methods are the First and Next methods. Most
others raise exceptions. Some, such as the methods involved in bookmark support,
simply do nothing.

• There is no built-in support for editing because editing requires a buffer to hold
the edits. The CanModify property is always False, so attempts to put the dataset
into edit mode always fail. You can, however, use them to update data using an
SQL UPDATE command or provide conventional editing support by connecting
them to a client dataset (as described in “Using a client dataset to buffer records”
on page 14-9).

• There is no support for filters, because they need to work with multiple records,
which requires buffering. If you try to filter a unidirectional dataset, it raises an
exception. Instead, all limits on what data appears must be imposed using the SQL
command that defines the data for the dataset.

• There is no support for lookup fields, which require buffering to hold multiple
records containing lookup values. If you define a lookup field on a unidirectional
dataset, it does not work properly.

Despite these limitations, unidirectional datasets are a powerful way to access data.
They are fast, and very simple to use and deploy.

18-2 D e v e l o p e r ’ s G u i d e

T y p e s o f u n i d i r e c t i o n a l d a t a s e t s

Types of unidirectional datasets
The dbExpress page of the component palette contains four types of unidirectional
dataset: TSQLDataSet, TSQLQuery, TSQLTable, and TSQLStoredProc.

TSQLDataSet is the most general of the four. You can use an SQL dataset to represent
any data available through dbExpress, or to send commands to a database accessed
through dbExpress. This is the recommended component to use for working with
database tables in new database applications.

You can use TSQLQuery for almost everything you can accomplish with
TSQLDataSet. TSQLQuery differs primarily in that it can’t be used for stored
procedures. (Many servers support an extension to SQL that lets you create queries to
execute stored procedures, but there is no standard syntax for this) TSQLQuery is
intended for compatibility with Windows applications, so that it is easier to port
applications that use query components to Linux.

TSQLTable is a special-purpose dataset when you want to represent all of the fields
and all of the records in a single database table. TSQLTable is intended for
compatibility with Windows applications so that it is easier to port applications that
use table components to Linux.

TSQLStoredProc is a special-purpose dataset for executing a stored procedure. You
can also use TSQLDataSet to execute stored procedures: TSQLStoredProc is intended
for compatibility with Windows applications so that it is easier to port applications
that use stored procedure components to Linux.

Connecting to the Server
The first step when working with a unidirectional dataset is to connect it to a
database server. At design time, once a dataset has an active connection to a database
server, the Object Inspector can provide drop-down lists of values for other
properties. For example, when representing a stored procedure, you must have an
active connection before the Object Inspector can list what stored procedures are
available on the server.

The connection to a database server is represented by a separate TSQLConnection
component. TSQLConnection identifies the database server and several connection
parameters (including which database to use on the server, the host name of the
machine running the server, the username, password, and so on). For information
about setting up a connection using TSQLConnection, see Chapter 19, “Connecting to
databases.”

To connect a unidirectional dataset, you must specify the TSQLConnection that forms
the connection. Do this using the SQLConnection property. At design time, you can
choose the SQL connection component from a drop-down list in the Object Inspector.
If you make this assignment at runtime, be sure that the connection is active:

SQLDataSet1.SQLConnection := SQLConnection1;
SQLConnection1.Connected := True;

U s i n g u n i d i r e c t i o n a l d a t a s e t s 18-3

S p e c i f y i n g w h a t d a t a t o d i s p l a y

Typically, all unidirectional datasets in an application share the same connection
component, unless you are working with data from multiple database servers or with
a database server such as MySQL that does not support multiple statements.

Specifying what data to display
There are a number of ways to specify what data a unidirectional dataset represents.
Which method you choose depends on the type of unidirectional dataset you are
using and whether the information comes from a single database table, the results of
a query, or from a stored procedure.

When you work with a TSQLDataSet component, use the CommandType property to
indicate where the dataset gets its data. CommandType can take any of the following
values:

• ctQuery: When CommandType is ctQuery, TSQLDataSet executes a query you
specify. If the query is a SELECT command, the dataset contains the resulting set
of records.

• ctTable: When CommandType is ctTable, TSQLDataSet retrieves all of the records
from a specified table.

• ctStoredProc: When CommandType is ctStoredProc, TSQLDataSet executes a stored
procedure. If the stored procedure returns a cursor, the dataset contains the
returned records.

Note You can also populate the unidirectional dataset with metadata about what is
available on the server. For information on how to do this, see “Accessing schema
information” on page 18-15.

Representing the results of a query

Using a query is the most general way to specify a set of records. Queries are simply
commands written in SQL. They need not return a set of records; SQL defines queries
such as UPDATE queries that perform actions on the server. Queries that do not
return records are discussed in greater detail in “Executing commands that do not
return records” on page 18-11.

Most queries that return records are SELECT commands. Typically, they define the
fields to include, the tables from which to select those fields, conditions that limit
what records to include, and the order of the resulting dataset. For example:

SELECT CustNo, OrderNo, SaleDate
FROM Orders
WHERE CustNo = 1225
ORDER BY SaleDate

You can use either TSQLDataSet or TSQLQuery to represent the result of a query.

18-4 D e v e l o p e r ’ s G u i d e

S p e c i f y i n g w h a t d a t a t o d i s p l a y

Specifying a query using TSQLDataSet
When using TSQLDataSet, assign the text of the query statement to the CommandText
property:

SQLDataSet1.CommandText := 'SELECT CustName, Address FROM Customer';

At design time, you can type the query directly into the Object Inspector, or, if the
SQL dataset already has an active connection to the database, you can click the elipsis
button by the CommandText property to display the Command Text editor. The
Command Text editor lists the available tables, and the fields in those tables, to make
it easier to compose your queries.

Specifying a query using TSQLQuery
When using TSQLQuery, assign the query to the SQL property instead. Unlike the
CommandText property of TSQLDataSet, which is a string, the SQL property is a
TStrings object. Each separate string in this TStrings object is a separate line of the
query. Using multiple lines does not affect the way the query executes on the server,
but can make it easier to assemble a query from multiple sources:

SQLQuery1.SQL.Clear;
SQLQuery1.SQL.Add('SELECT ' + Edit1.Text + ' FROM ' + Edit2.Text);
if Length(Edit3.Text) <> 0 then

SQLQuery1.SQL.Add('ORDER BY ' + Edit3.Text)

At design time, use the String List editor to specify the query. Click the elipsis button
by the SQL property in the Object Inspector to display the String List editor.

One advantage of using TSQLQuery is that, because the SQL property is a TStrings
object, you can load the text of the query from a file by calling the
TStrings.LoadFromFile method:

SQLQuery1.SQL.LoadFromFile('/usr/queries/custquery.sql');

Using parameters in queries
The previous topic showed how to build a query dynamically at runtime. However,
you can accomplish the same type of thing for queries written at design time by using
parameters.

A parameterized SQL statement contains parameters, or variables, the values of
which can be varied at design time or runtime. Parameters can replace data values
that appear in the SQL statement. For example, in the following SELECT statement, a
parameter is used to specify a selection criterion:

SELECT CustNo, OrderNo, SaleDate FROM Orders
WHERE CustNo = :CustNumber

In this SQL statement, :CustNumber is a placeholder for the actual value supplied to
the statement at runtime by your application. Note that the name, :CustNumber,
begins with a colon. Parameter names must start with a colon (:). You can also
include unnamed parameters by adding a question mark (?) to your query. Unnamed
parameters are identified by position, because they do not have unique names.

Before the dataset can execute the query, you must supply values for any parameters
in the query text. The dataset uses its Params property to store these values. Params is

U s i n g u n i d i r e c t i o n a l d a t a s e t s 18-5

S p e c i f y i n g w h a t d a t a t o d i s p l a y

a collection of TParam objects, where each TParam object represents a single
parameter. When you specify the text for the query (using the CommandText or SQL
property), the dataset generates this set of TParam objects, and initializes any of their
properties that it can deduce from the query.

Note You can suppress the automatic generation of TParam objects in response to changing
the query text by setting the ParamCheck property to False. See “Creating and
modifying server metadata” on page 18-12 for an example where this is useful.

Note You do not need to explicitly assign parameter values if the dataset uses a datasource
to obtain parameter values from another dataset. This process is described in “Setting
up master/detail relationships” on page 18-13.

Setting up parameters at design time
At design time, you can specify parameter values using the parameter collection
editor. To display the parameter collection editor, click on the ellipsis button for the
Params property in the Object Inspector. If the SQL statement does not contain any
parameters, no TParam objects are listed in the collection editor.

Note The parameter collection editor is the same collection editor that appears for other
collection properties. Because the editor is shared with other properties, its right-click
context menu contains the Add and Delete commands. However, they are never
enabled for dataset parameters. The only way to add or delete parameters is in the
SQL statement itself.

For each parameter, select it in the parameter collection editor. Then use the Object
Inspector to modify its properties:

• The DataType property lists the data type for the parameter’s value. This value
may be correctly initialized, if the dataset could deduce the value type from the
query. If the dataset could not deduce the type, DataType is ftUnknown, and you
must change it to indicate the type of the parameter value.

• The ParamType property lists the type of the selected parameter. For queries, this is
always initialized to ptInput, because queries can only contain input parameters.

• The Value property specifies a value for the selected parameter. You can leave
Value blank if your application supplies parameter values at runtime.

Setting parameters at runtime
To create parameters at runtime, you can use the

• ParamByName method to assign values to a parameter based on its name.

• Params property to assign values to a parameter based on the parameter’s ordinal
position in the SQL statement.

• Params.ParamValues property to assign values to one or more parameters in a
single command line, based on the name of each parameter set.

The following code uses ParamByName to assign the text of an edit box to the :Capital
parameter:

SQLDataSet1.ParamByName('Capital').AsString := Edit1.Text;

18-6 D e v e l o p e r ’ s G u i d e

S p e c i f y i n g w h a t d a t a t o d i s p l a y

The same code can be rewritten using the Params property, using an index of 0
(assuming the :Capital parameter is the first parameter in the SQL statement):

SQLDataSet1.Params[0].AsString := Edit1.Text;

The command line below sets three parameters at once, using the
Params.ParamValues property:

SQLDataSet1.Params.ParamValues['Name;Capital;Continent'] :=
VarArrayOf([Edit1.Text, Edit2.Text, Edit3.Text]);

Note that ParamValues uses Variants, avoiding the need to cast values.

Representing the records in a table

When you want to represent all of the fields and all of the records in a single
underlying database table, you can use either TSQLDataSet or TSQLTable to generate
the query for you rather than writing the SQL yourself.

Note If server performance is a concern, you may want to compose the query explicitly
rather than relying on an automatically-generated query. Automatically-generated
queries use wildcards rather than explicitly listing all of the fields in the table. This
results in slightly slower performance on the server. The wildcard (*) in
automatically-generated queries is more robust to changes in the fields on the server.

Representing a table using TSQLDataSet
To make TSQLDataSet generate a query to fetch all fields and all records of a single
database table, set the CommandType property to ctTable.

When CommandType is ctTable, TSQLDataSet generates a query based on the values of
two properties:

• CommandText specifies the name of the database table that the TSQLDataSet object
should represent.

• SortFieldNames lists the names of any fields to use to sort the data, in the order of
significance.

For example, if you specify the following:

SQLDataSet1.CommandType := ctTable;
SQLDataSet1.CommandText := 'Employee';
SQLDataSet1.SortFieldNames := 'HireDate,Salary'

TSQLDataSet generates the following query, which lists all the records in the
Employee table, sorted by HireDate and, within HireDate, by Salary:

select * from Employee order by HireDate, Salary

Representing a table using TSQLTable
When using TSQLTable, specify the table you want using the TableName property.

To specify the order of fields in the dataset, you must specify an index. There are two
ways to do this:

U s i n g u n i d i r e c t i o n a l d a t a s e t s 18-7

S p e c i f y i n g w h a t d a t a t o d i s p l a y

• Set the IndexName property to the name of an index defined on the server that
imposes the order you want.

• Set the IndexFieldNames property to a semicolon-delimited list of field names on
which to sort. IndexFieldNames works like the SortFieldNames property of
TSQLDataSet, except that it uses a semicolon instead of a comma as a delimiter.

Representing the results of a stored procedure

Stored procedures are sets of SQL statements that are named and stored on an SQL
server. They typically handle frequently-repeated database-related tasks. They are
especially useful for operations that act upon large numbers of rows in database
tables or that use aggregate or mathematical functions. Using stored procedures
typically improves the performance of a database application by:

• Taking advantage of the server’s usually greater processing power and speed.

• Reducing network traffic by moving processing to the server.

Stored procedures may or may not return data. Those that return data may return it
as a cursor (similar to the results of a SELECT query), as multiple cursors (effectively
returning multiple datasets), or they may return data in output parameters. These
differences depend in part on the server: Some servers do not allow stored
procedures to return data, or only allow output parameters. Some servers do not
support stored procedures at all. See your server documentation to determine what is
available.

How you indicate the stored procedure you want to execute depends on the type of
unidirectional dataset you are using.

Specifying a stored procedure using TSQLDataSet
When using TSQLDataSet, to specify a stored procedure:

• Set the CommandType property to ctStoredProc.

• Specify the name of the stored procedure as the value of the CommandText
property:

SQLDataSet1.CommandType := ctStoredProc;
SQLDataSet1.CommandText := 'MyStoredProcName';

Specifying a stored procedure using TSQLStoredProc
When using TSQLStoredProc, you need only specify the name of the stored procedure
as the value of the StoredProcName property.

SQLStoredProc1.StoredProcName := 'MyStoredProcName';

Working with stored procedure parameters
There are four types of parameters that can be associated with stored procedures:

• Input parameters, used to pass values to a stored procedure for processing.

18-8 D e v e l o p e r ’ s G u i d e

S p e c i f y i n g w h a t d a t a t o d i s p l a y

• Output parameters, used by a stored procedure to pass return values to an
application.

• Input/output parameters, used to pass values to a stored procedure for processing,
and used by the stored procedure to pass return values to the application.

• A result parameter, used by some stored procedures to return an error or status
value to an application. A stored procedure can only return one result parameter.

Whether a stored procedure uses a particular type of parameter depends both on the
general language implementation of stored procedures on your database server and
on a specific instance of a stored procedure. For any server, individual stored
procedures may or may not use input parameters. On the other hand, some uses of
parameters are server-specific. For example, the InterBase implementation of stored
procedures never returns a result parameter.

Access to stored procedure parameters is provided by TParam objects in the Params
property. As with query parameters, TSQLDataSet and TSQLStoredProc automatically
generate the TParam objects for each parameter when you set the CommandText
(TSQLDataSet) or StoredProcName (TSQLStoredProc) property.

Setting up parameters at design time
As with query parameters, you can specify stored procedure parameter values at
design time using the parameter collection editor. To display the parameter
collection editor, click on the ellipsis button for the Params property in the Object
Inspector.

Important You can assign values to input parameters by selecting them in the parameter
collection editor and using the Object Inspector to set the Value property. However,
do not change the names or data types for input parameters reported by the server.
Otherwise, when you execute the stored procedure an exception is raised.

Some servers do not report parameter names or data types. In these cases, you must
set up the parameters manually using the parameter collection editor. Right click and
choose Add to add parameters. For each parameter you add,

• Assign the name (defined by the procedure on the server) as the value of the Name
property.

• Indicate whether it is an input, output, input/output, or result parameter by
setting the ParamType property.

• Indicate the data type of the parameter’s value by setting the DataType property.

Some servers provide parameter names, but do not return all parameter information.
Check the DataType and ParamType properties for each parameter and fix any that are
set to ftUnknown or ptUnknown.

Note You can never set values for output and result parameters. These types of parameters
have values set by the execution of the stored procedure.

Using parameters at runtime
At runtime, you can access individual parameter objects to assign values to input
parameters and to retrieve values from output parameters. As with query

U s i n g u n i d i r e c t i o n a l d a t a s e t s 18-9

F e t c h i n g t h e d a t a

parameters, you can use the ParamByName method to access individual parameters
based on their names. For example, the following code sets the value of an input/
output parameter, executes the stored procedure, and retrieves the returned value:

with SQLDataSet1 do
begin

ParamByName('IN_OUTVAR').AsInteger := 103;
ExecProc;
IntegerVar := ParamByName('IN_OUTVAR').AsInteger;

end;

Because some servers do not report parameter names or data types, you may need to
set up parameters in code if you do not specify the name of the stored procedure
until runtime. To check whether this is necessary, try specifying a stored procedure
on the target database at design time, and use the parameter collection editor to
check whether the dataset automatically sets up parameters.

The following example illustrates how to set up parameters at runtime if they are not
supplied automatically:

var
P1, P2: TParam;

begin
with SQLDataSet1 do
begin
CommandType := ctStoredProc;
CommandText := 'GET_EMP_PROJ';
Params.Clear;
P1 := TParam.Create(Params, ptInput);
P2 := TParam.Create(Params, ptOutput);
try
Params[0].Name := ‘EMP_NO’;
Params[0].DataType := ftSmallint;
Params[1].Name := ‘PROJ_ID’;
Params[1].DataType := ftString;
ParamByname(‘EMP_NO’).AsSmallInt := 52;
ExecProc;
Edit1.Text := ParamByname(‘PROJ_ID’).AsString;

finally
P1.Free;
P2.Free;

end;
end;

end;

Fetching the data
Once you have specified the source of the data, you must fetch the data before your
application can access it. Once the dataset has fetched the data, data-aware controls
linked to the dataset through a data source automatically display data values and
client datasets linked to the dataset through a provider can be populated with
records.

18-10 D e v e l o p e r ’ s G u i d e

F e t c h i n g t h e d a t a

As with any dataset, there are two ways to fetch the data for a unidirectional dataset:

• Set the Active property to True, either at design time in the Object Inspector, or in
code at runtime:

CustQuery.Active := True;

• Call the Open method at runtime,

CustQuery.Open;

Use the Active property or the Open method with any unidirectional dataset that
obtains records from the server. It does not matter whether these records come from
a SELECT query (including automatically-generated queries when the CommandType
is ctTable) or a stored procedure.

Preparing the dataset

Before a query or stored procedure can execute on the server, it must first be
“prepared”. Preparing the dataset means that dbExpress and the server allocate
resources for the statement and its parameters. If CommandType is ctTable, this is
when the dataset generates its SELECT query. Any parameters that are not bound by
the server are folded into a query at this point.

Unidirectional datasets are automatically prepared when you set Active to True or call
the Open method. When you close the dataset, the resources allocated for executing
the statement are freed. If you intend to execute the query or stored procedure more
than once, you can improve performance by explicitly preparing the dataset before
you open it the first time. To explicitly prepare a dataset, set its Prepared property to
True.

CustQuery.Prepared := True;

When you explicitly prepare the dataset, the resources allocated for executing the
statement are not freed until you set Prepared to False.

Set the Prepared property to False if you want to ensure that the dataset is re-prepared
before it executes (for example, if you change a parameter value or the SortFieldNames
property).

Fetching multiple datasets

Some stored procedures return multiple sets of records. The dataset only fetches the
first set when you open it. In order to access the other sets of records, call the
NextRecordSet method:

var
DataSet2: TCustomSQLDataSet;

begin
DataSet2 := SQLStoredProc1.NextRecordSet;
...

NextRecordSet returns a newly created TCustomSQLDataSet component that provides
access to the next set of records. That is, the first time you call NextRecordSet, it

U s i n g u n i d i r e c t i o n a l d a t a s e t s 18-11

E x e c u t i n g c o m m a n d s t h a t d o n o t r e t u r n r e c o r d s

returns a dataset for the second set of records. Calling NextRecordSet again returns a
third dataset, and so on, until there are no more sets of records. When there are no
additional datasets, NextRecordSet returns nil.

Executing commands that do not return records
You can use a unidirectional dataset even if the query or stored procedure it
represents does not return any records. Such commands include statements that use
Data Definition Language (DDL) or Data Manipulation Language (DML) statements
other than SELECT statements (For example, INSERT, DELETE, UPDATE, CREATE
INDEX, and ALTER TABLE commands do not return any records). The language
used in commands is server-specific, but usually compliant with the SQL-92 standard
for the SQL language.

The SQL command you execute must be acceptable to the server you are using.
Unidirectional datasets neither evaluate the SQL nor execute it. They merely pass the
command to the server for execution.

Note If the command does not return any records, you do not need to use a unidirectional
dataset at all, because there is no need for the dataset methods that provide access to
a set of records. The SQL connection component that connects to the database server
can be used directly to execute a command on the server. See “Sending commands to
the server” on page 19-12 for details.

Specifying the command to execute

With unidirectional datasets, the way you specify the command to execute is the
same whether the command results in a dataset or not. That is:

When using TSQLDataSet, use the CommandType and CommandText properties to
specify the command:

• If CommandType is ctQuery, CommandText is the SQL statement to pass to the
server.

• If CommandType is ctStoredProc, CommandText is the name of a stored procedure to
execute.

When using TSQLQuery, use the SQL property to specify the SQL statement to pass
to the server.

When using TSQLStoredProc, use the StoredProcName property to specify the name of
the stored procedure to execute.

Just as you specify the command in the same way as when you are retrieving records,
you work with query parameters or stored procedure parameters the same way as
with queries and stored procedures that return records. See “Using parameters in
queries” on page 18-4 and “Working with stored procedure parameters” on
page 18-7 for details.

18-12 D e v e l o p e r ’ s G u i d e

E x e c u t i n g c o m m a n d s t h a t d o n o t r e t u r n r e c o r d s

Executing the command

To execute a query or stored procedure that does not return any records, you do not
use the Active property or the Open method. Instead, you must use

• The ExecSQL method if the dataset is an instance of TSQLDataSet or TSQLQuery.

FixTicket.CommandText := 'DELETE FROM TrafficViolations WHERE (TicketID = 1099)';
FixTicket.ExecSQL;

• The ExecProc method if the dataset is an instance of TSQLStoredProc.

SQLStoredProc1.StoredProcName := 'MyCommandWithNoResults';
SQLStoredProc1.ExecProc;

Tip If you are executing the query or stored procedure multiple times, it is a good idea to
set the Prepared property to True.

Creating and modifying server metadata

Most of the commands that do not return data fall into two categories: those that you
use to edit data (such as INSERT, DELETE, and UPDATE commands), and those that
you use to create or modify entities on the server such as tables, indexes, and stored
procedures.

If you don’t want to use explicit SQL commands for editing, you can link your
unidirectional dataset to a client dataset and let it handle all the generation of all SQL
commands concerned with editing (see “Using a client dataset to buffer records” on
page 14-9). In fact, this is the recommended approach because data-aware controls
are designed to perform edits through a client dataset (or custom dataset that enables
editing).

The only way your application can create or modify metadata on the server,
however, is to send a command. Not all database drivers support the same SQL
syntax. It is beyond the scope of this topic to describe the SQL syntax supported by
each database type and the differences between the database types. For a
comprehensive and up-to-date discussion of the SQL implementation for a given
database system, see the documentation that comes with that system.

In general, use the CREATE TABLE statement to create tables in a database and
CREATE INDEX to create new indexes for those tables. Where supported, use other
CREATE statements for adding various metadata objects, such as CREATE
DOMAIN, CREATE VIEW, CREATE SCHEMA, and CREATE PROCEDURE.

For each of the CREATE statements, there is a corresponding DROP statement to
delete the metadata object. These statements include DROP TABLE, DROP VIEW,
DROP DOMAIN, DROP SCHEMA, and DROP PROCEDURE.

To change the structure of a table, use the ALTER TABLE statement. ALTER TABLE
has ADD and DROP clauses to create new elements in a table and to delete them. For
example, use the ADD COLUMN clause to add a new column to the table and DROP
CONSTRAINT to delete an existing constraint from the table.

U s i n g u n i d i r e c t i o n a l d a t a s e t s 18-13

S e t t i n g u p m a s t e r / d e t a i l r e l a t i o n s h i p s

For example, the following statement creates a stored procedure called
GET_EMP_PROJ on an InterBase database:

CREATE PROCEDURE GET_EMP_PROJ (EMP_NO SMALLINT)
RETURNS (PROJ_ID CHAR(5))
AS
BEGIN

FOR SELECT PROJ_ID
FROM EMPLOYEE_PROJECT
WHERE EMP_NO = :EMP_NO
INTO :PROJ_ID
DO

SUSPEND;
END

The following code uses a TSQLDataSet to create this stored procedure. Note the use
of the ParamCheck property to prevent the dataset from confusing the parameters in
the stored procedure definition (:EMP_NO and :PROJ_ID) with a parameter of the
query that creates the stored procedure.

with SQLDataSet1 do
begin

ParamCheck := False;
CommandType := ctQuery;
CommandText := 'CREATE PROCEDURE GET_EMP_PROJ (EMP_NO SMALLINT) ' +

'RETURNS (PROJ_ID CHAR(5)) AS ' +
'BEGIN ' +

'FOR SELECT PROJ_ID FROM EMPLOYEE_PROJECT ' +
'WHERE EMP_NO = :EMP_NO ' +
'INTO :PROJ_ID ' +

'DO SUSPEND; ' +
END';

ExecSQL;
end;

Setting up master/detail relationships
There are two ways to set up a master/detail relationship that uses a unidirectional
dataset as the detail set. Which method you use depends on the type of unidirectional
dataset you are using. Once you have set up such a relationship, the unidirectional
dataset (the “many” in a one-to-many relationship) provides access only to those
records that correspond to the current record on the master set (the “one” in the one-
to-many relationship).

Setting up master/detail relationships with TSQLDataSet or TSQLQuery
To set up a master/detail relationship where the detail set is an instance of
TSQLDataSet or TSQLQuery, you must specify a query that uses parameters. These
parameters refer to current field values on the master dataset. Because the current
field values on the master dataset change dynamically at runtime, you must rebind
the detail set’s parameters every time the master record changes. Although you could

18-14 D e v e l o p e r ’ s G u i d e

S e t t i n g u p m a s t e r / d e t a i l r e l a t i o n s h i p s

write code to do this using an event handler, TSQLDataSet and TSQLQuery provide
an easier mechanism using the DataSource property.

If parameter values for a parameterized query are not bound at design time or
specified at runtime, TSQLDataSet and TSQLQuery attempt to supply values for them
based on the DataSource property. DataSource identifies a different dataset that is
searched for field names that match the names of unbound parameters. This search
dataset can be any type of dataset, it need not be another unidirectional dataset. The
search dataset must be created and populated before you create the detail dataset
that uses it. If matches are found in the search dataset, the detail dataset binds the
parameter values to the values of the fields in the current record pointed to by the
data source.

To illustrate how this works, consider two tables: a customer table and an orders
table. For every customer, the orders table contains a set of orders that the customer
made. The Customer table includes an ID field that specifies a unique customer ID.
The orders table includes a CustID field that specifies the ID of the customer who
made an order.

The first step is to set up the Customer dataset:

1 Add a TSQLDataSet component to your application. Set its CommandType property
to ctTable and its CommandText property to the name of the Customer table.

2 Add a TDataSource component named CustomerSource. Set its DataSet property to
the dataset added in step 1. This data source now represents the Customer dataset.

3 Add another TSQLDataSet component and set its CommandType property to
ctQuery. Set its CommandText property to

SELECT CustID, OrderNo, SaleDate
FROM Orders
WHERE CustID = :ID

Note that the name of the parameter is the same as the name of the field in the
master (Customer) table.

4 Set the detail dataset’s DataSource property to CustomerSource. Setting this
property makes the detail dataset a linked query.

At runtime the :ID parameter in the SQL statement for the detail dataset is not
assigned a value, so the dataset tries to match the parameter by name against a
column in the dataset identified by CustomersSource. CustomersSource gets its data
from the master dataset, which, in turn, derives its data from the Customer table.
Because the Customer table contains a column called “ID,” the value from the ID
field in the current record of the master dataset is assigned to the :ID parameter for
the detail dataset’s SQL statement. The datasets are linked in a master-detail
relationship. Each time the current record changes in the Customers dataset, the
detail dataset’s SELECT statement executes to retrieve all orders based on the current
customer id.

Setting up master/detail relationships with TSQLTable
To set up a master/detail relationship where the detail set is an instance of
TSQLTable, use the MasterSource and MasterFields properties.

U s i n g u n i d i r e c t i o n a l d a t a s e t s 18-15

A c c e s s i n g s c h e m a i n f o r m a t i o n

The MasterSource property specifies a data source bound to the master table (like the
DataSource property you use when the detail is a query). The MasterFields property
lists the fields in the master table that correspond to the fields in the TSQLTable
object’s index.

Before you set the MasterFields property, first specify the index that starts with the
corresponding fields. You can use either the IndexName or the IndexFieldNames
property.

Once you have specified the index to use, use the MasterFields property to indicate
the column(s) in the master dataset that correspond to the indexed fields in the
(detail) SQL table. To link datasets based on multiple column names, use a semicolon
delimited list:

SQLTable1.MasterFields := 'OrderNo;ItemNo';

Tip If you double click on the MasterFields property in the Object Inspector after you have
assigned a MasterSource, the Field Link editor appears to help you select link fields in
the master dataset and in TSQLTable.

Accessing schema information
You can populate a unidirectional dataset with information about what is available
on the server instead of the results of a query or stored procedure. This information,
called metadata, includes information about what tables and stored procedures are
available on the server and information about these tables and stored procedures
(such as the fields a table contains, the indexes that are defined, and the parameters a
stored procedure uses).

To fetch metadata from the database server, you must first indicate what data you
want to see, using the SetSchemaInfo method. SetSchemaInfo takes three parameters:

• The type of schema information (metadata) you want to fetch. This can be a list of
tables (stTables), a list of system tables (stSysTables), a list of stored procedures
(stProcedures), a list of fields in a table (stColumns), a list of indexes (stIndexes), or a
list of parameters used by a stored procedure (stProcedureParams). Each type of
information uses a different set of fields to describe the items in the list. For details
on the structures of these datasets, see “The structure of metadata datasets” on
page 18-16.

• If you are fetching information about fields, indexes, or stored procedure
parameters, the name of the table or stored procedure to which they apply. If you
are fetching any other type of schema information, this parameter is nil.

• A pattern that must be matched for every name returned. This pattern is an SQL
pattern such as ‘Cust%’, which uses the wildcards ‘%’ (to match a string of
arbitrary characters of any length) and ‘_’ (to match a single arbitrary character).
To use a literal percent or underscore in a pattern, the character is doubled (%% or
__). If you do not want to use a pattern, this parameter can be nil.

18-16 D e v e l o p e r ’ s G u i d e

A c c e s s i n g s c h e m a i n f o r m a t i o n

Note If you are fetching schema information about tables (stTables), the resulting schema
information can describe ordinary tables, system tables, views, and/or synonyms,
depending on the value of the SQL connection’s TableScope property.

The following call requests a table listing all system tables (server tables that contain
metadata):

SQLDataSet1.SetSchemaInfo(stSysTable, '', '');

When you open the dataset after this call to SetSchemaInfo, the resulting dataset has a
record for each table, with columns giving the table name, type, schema name, and so
on. If the server does not use system tables to store metadata (for example MySQL),
when you open the dataset it contains no records.

The previous example used only the first parameter. Suppose, Instead, you want to
obtain a list of input parameters for a stored procedure named ‘MyProc’. Suppose,
further, that the person who wrote that stored procedure named all parameters using
a prefix to indicate whether they were input or output parameters (‘inName’,
‘outValue’ and so on). You would call SetSchemaInfo as follows:

SQLDataSet1.SetSchemaInfo(stProcedureParams, 'MyProc', 'in%');

The resulting dataset is a table of input parameters with columns to describe the
properties of each parameter.

Note You can also fetch metadata from the database server into a list object rather than
using a dataset. This alternate approach, which uses TSQLConnection rather than a
dataset, provides less information and has no support for pattern matching strings.
For details, see “Accessing server metadata” on page 19-10.

Fetching data after using the dataset for metadata

There are two ways to return to executing queries or stored procedures with the
dataset after a call to SetSchemaInfo:

• Change the CommandText property, specifying the query, table, or stored
procedure from which you want to fetch data.

• Call SetSchemaInfo, setting the first parameter to stNoSchema. In this case, the
dataset reverts to fetching the data specified by the current value of CommandText.

The structure of metadata datasets

For each type of metadata you can access using TSQLDataSet, there is a predefined
set of columns (fields) that are populated with information about the items of the
requested type.

U s i n g u n i d i r e c t i o n a l d a t a s e t s 18-17

A c c e s s i n g s c h e m a i n f o r m a t i o n

Information about tables
When you request information about tables (stTables or stSysTables), the resulting
dataset includes a record for each table. It has the following columns:

Information about stored procedures
When you request information about stored procedures (stProcedures), the resulting
dataset includes a record for each stored procedure. It has following columns:

Table 18.1 Columns in tables of metadata listing tables

Column Name Field type Contents

RECNO ftInteger A record number that uniquely identifies each record.

CATALOG_NAME ftString The name of the catalog (database) that contains the table. This
is the same as the Database parameter on an SQL connection
component.

SCHEMA_NAME ftString The name of the schema that identifies the owner of the table.

TABLE_NAME ftString The name of the table. This field determines the sort order of
the dataset.

TABLE_TYPE ftInteger Identifies the type of table. It is a sum of one or more of the
following values:

1: Table
2: View
4: System table
8: Synonym
16: Temporary table
32: Local table.

Table 18.2 Columns in tables of metadata listing stored procedures

Column Name Field type Contents

RECNO ftInteger A record number that uniquely identifies each record.

CATALOG_NAME ftString The name of the catalog (database) that contains the stored
procedure. This is the same as the Database parameter on an
SQL connection component.

SCHEMA_NAME ftString The name of the schema that identifies the owner of the stored
procedure.

PROC_NAME ftString The name of the stored procedure. This field determines the
sort order of the dataset.

PROC_TYPE ftInteger Identifies the type of stored procedure. It is a sum of one or
more of the following values:

1: Procedure
2: Function
4: Package
8: System procedure

IN_PARAMS ftSmallint The number of input parameters

OUT_PARAMS ftSmallint The number of output parameters.

18-18 D e v e l o p e r ’ s G u i d e

A c c e s s i n g s c h e m a i n f o r m a t i o n

Information about fields
When you request information about the fields in a specified table (stColumns), the
resulting dataset includes a record for each field. It includes the following columns:

Table 18.3 Columns in tables of metadata listing fields

Column Name Field type Contents

RECNO ftInteger A record number that uniquely identifies each record.

CATALOG_NAME ftString The name of the catalog (database) that contains the table
whose fields you listing. This is the same as the Database
parameter on an SQL connection component.

SCHEMA_NAME ftString The name of the schema that identifies the owner of the
field.

TABLE_NAME ftString The name of the table that contains the fields.

COLUMN_NAME ftString The name of the field. This value determines the sort
order of the dataset.

COLUMN_POSITION ftSmallint The position of the column in its table.

COLUMN_TYPE ftInteger Identifies the type of value in the field. It is a sum of one
or more of the following:

1: Row ID
2: Row Version
4: Auto increment field
8: Field with a default value

COLUMN_DATATYPE ftSmallint The datatype of the column. This is one of the logical field
type constants defined in sqllinks.pas.

COLUMN_TYPENAME ftString A string describing the datatype. This is the same
information as contained in COLUMN_DATATYPE and
COLUMN_SUBTYPE, but in a form used in some DDL
statements.

COLUMN_SUBTYPE ftSmallint A subtype for the column’s datatype. This is one of the
logical subtype constants defined in sqllinks.pas.

COLUMN_PRECISION ftInteger The size of the field type (number of characters in a string,
bytes in a bytes field, significant digits in a BCD value,
members of an ADT field, and so on)

COLUMN_SCALE ftSmallint The number of digits to the right of the decimal on BCD
values, or descendants on ADT and array fields.

COLUMN_LENGTH ftInteger The number of bytes required to store field values

COLUMN_NULLABLE ftSmallint A Boolean that indicates whether the field can be left
blank. (0 means the field requires a value)

U s i n g u n i d i r e c t i o n a l d a t a s e t s 18-19

A c c e s s i n g s c h e m a i n f o r m a t i o n

Information about indexes
When you request information about the indexes on a table (stIndexes), the resulting
dataset includes a record for each field in each record. (Multi-record indexes are
described using multiple records) The dataset has the following columns:

Information about stored procedure parameters
When you request information about the parameters of a stored procedure
(stProcedureParams), the resulting dataset includes a record for each parameter. It has
the following columns:

Table 18.4 Columns in tables of metadata listing indexes

Column Name Field type Contents

RECNO ftInteger A record number that uniquely identifies each record.

CATALOG_NAME ftString The name of the catalog (database) that contains the index.
This is the same as the Database parameter on an SQL
connection component.

SCHEMA_NAME ftString The name of the schema that identifies the owner of the
index.

TABLE_NAME ftString The name of the table for which the index is defined.

INDEX_NAME ftString The name of the index. This field determines the sort order
of the dataset.

PKEY_NAME ftString Indicates the name of the primary key.

COLUMN_NAME ftString The name of the field (column) in the index.

COLUMN_POSITION ftSmallint The position of this field in the index.

INDEX_TYPE ftSmallint Identifies the type of index. It is a sum of one or more of the
following values:

1: Non-unique
2: Unique
4: Primary key

SORT_ORDER ftString Indicates that the index is ascending (a) or descending (d)
on this field.

FILTER ftString Describes a filter condition that limits the indexed records.

Table 18.5 Columns in tables of metadata listing parameters

Column Name Field type Contents

RECNO ftInteger A record number that uniquely identifies each record.

CATALOG_NAME ftString The name of the catalog (database) that contains the stored
procedure. This is the same as the Database parameter on an
SQL connection component.

SCHEMA_NAME ftString The name of the schema that identifies the owner of the
stored procedure.

PROC_NAME ftString The name of the stored procedure that contains the
parameter.

PARAM_NAME ftString The name of the parameter. This field determines the sort
order of the dataset.

18-20 D e v e l o p e r ’ s G u i d e

A c c e s s i n g s c h e m a i n f o r m a t i o n

PARAM_TYPE ftSmallint Identifies the type of parameter. This is the same as a
TParam object’s ParamType property.

PARAM_DATATYPE ftSmallint The datatype of the parameter. This is one of the logical
field type constants defined in sqllinks.pas.

PARAM_SUBTYPE ftSmallint A subtype for the parameter’s datatype. This is one of the
logical subtype constants defined in sqllinks.pas.

PARAM_TYPENAME ftString A string describing the datatype. This is the same
information as contained in PARAM_DATATYPE and
PARAM_SUBTYPE, but in a form used in some DDL
statements.

PARAM_PRECISION ftInteger The maximum number of digits in floating-point values or
bytes (for strings and Bytes fields).

PARAM_SCALE ftSmallint The number of digits to the right of the decimal on floating-
point values.

PARAM_LENGTH ftInteger The number of bytes required to store parameter values.

PARAM_NULLABLE ftSmallint A Boolean that indicates whether the parameter can be left
blank. (0 means the parameter requires a value)

Table 18.5 Columns in tables of metadata listing parameters (continued)

Column Name Field type Contents

C o n n e c t i n g t o d a t a b a s e s 19-1

C h a p t e r

19
Chapter19Connecting to databases

Kylix applications use dbExpress to connect to a database. dbExpress is a set of
lightweight database drivers that provide fast access to SQL database servers. For
each supported database, dbExpress provides a driver that adapts the server-specific
software to a set of uniform dbExpress interfaces. When you deploy your application,
you need only include a single shared object (the server-specific driver) with the
application files you build.

Each dbExpress connection is encapsulated by a TSQLConnection component.
TSQLConnection provides all the information necessary to establish a database
connection using dbExpress, and is designed to work with unidirectional dataset
components. A single SQL connection component can be shared by multiple
unidirectional datasets, or the datasets can each use their own connection.

You may want to use a separate connection component for each dataset if the server
does not support multiple statements per connection. Check whether the database
server requires a separate connection for each dataset by reading the
MaxStmtsPerConn property. By default, TSQLConnection generates connections as
needed when the server limits the number of statements that can be executed over a
connection. If you want to keep stricter track of the connections you are using, set the
AutoClone property to False.

TSQLConnection lets you perform a number of tasks concerned with how you connect
to or use the database server. These include

• Controlling connections
• Controlling server login
• Managing transactions
• Accessing server metadata
• Working with associated datasets
• Sending commands to the server
• Debugging database applications

19-2 D e v e l o p e r ’ s G u i d e

C o n t r o l l i n g c o n n e c t i o n s

Controlling connections
Before you can establish a connection to a database server, your application must
provide certain key pieces of information that describe the desired server connection.
Once you have identified the server and provided login details, TSQLConnection can
open or close a connection to the server.

Describing the server connection

In order to describe a database connection in sufficient detail for TSQLConnection to
open a connection, you must identify both the driver to use and a set of connection
parameters that are passed to that driver.

Identifying the driver
The driver is identified by the DriverName property, which is the name of an installed
dbExpress driver, such as INTERBASE, MYSQL, ORACLE, or DB2. The driver name is
associated with two files

• The dbExpress driver, which is a shared object file with a name like libsqlib.so,
libsqlmys.so, libsqlora.so, or libsqldb2.so.

• The Shared object file provided by the database vendor.

The relationship between these two shared object files and the database name is
stored in a file called “dbxdrivers,” which is updated when you install a dbExpress
driver. Typically, you do not need to worry about these files because the SQL
connection component looks them up in dbxdrivers when given the value of
DriverName. When you set the DriverName property, TSQLConnection automatically
sets the LibraryName and VendorLib properties to the names of the associated shared
objects. Once LibraryName and VendorLib have been set (along with GetDriverFunc),
your application does not need to rely on dbxdrivers. (That is, you do not need to
deploy the dbxdrivers file with your application.)

Specifying connection parameters
The Params property is a string list that lists name/value pairs. Each pair has the
form Name=Value, where Name is the name of the parameter, and Value is the value
you want to assign.

The particular parameters you need depend on the database server you are using.
However, one particular parameter, Database, is required for all servers. Its value
depends on the server you are using. For example, with InterBase, Database is the
name of the .gdb file, with Oracle, it is the entry in TNSName.ora, with DB2, it is the
client-side node, while with MySQL, it is the database name that was assigned by a
CREATE DATABASE command.

Other typical parameters include the User_Name (the name to use when logging in),
Password (the password for User_Name), HostName (the machine name or IP address
of where the server is located), and TransIsolation (the degree to which transactions
you introduce are, by default, aware of changes made by other transactions). When

C o n n e c t i n g t o d a t a b a s e s 19-3

C o n t r o l l i n g c o n n e c t i o n s

you specify a driver name, the Params property is preloaded with all the parameters
you need for that driver type, initialized to default values.

Because Params is a string list, at design time you can double-click on the Params
property in the Object Inspector to edit the parameters using the String List editor. At
runtime, use the Params.Values property to assign values to individual parameters.

Naming a connection description
Although you can always specify a connection using only the DatabaseName and
Params properties, it can be more convenient to name a specific combination and then
just identify the connection by name. dbExpress allows you to name database and
parameter combinations, which are then saved in a file called “dbxconnections”. The
name of each combination is called a connection name.

Once you have defined the connection name, you can identify a database connection
by simply setting the ConnectionName property to a valid connection name. Setting
ConnectionName automatically sets the DriverName and Params properties. Once
ConnectionName is set, you can edit the Params property to create temporary
differences from the saved set of parameter values, but changing the DriverName
property clears both Params and ConnectionName.

One advantage of using connection names arises when you develop your application
using one database (for example Local InterBase), but deploy it for use with another
(such as ORACLE). In that case, DriverName and Params will likely differ on the
system where you deploy your application from the values you use during
development. You can switch between the two connection descriptions easily by
using two versions of the dbxconnections file. At design-time, your application loads
the DriverName and Params from the design-time version of dbxconnections. Then,
when you deploy your application, it loads these values from a separate version of
dbxconnections that uses the “real” database. However, for this to work, you must
instruct your connection component to reload the DriverName and Params properties
at runtime. There are two ways to do this:

• Set the LoadParamsOnConnect property to True. This causes TSQLConnection to
automatically set DriverName and Params to the values associated with
ConnectionName in the dbxconnections file when the connection is opened.

• Call the LoadParamsFromIniFile method. This method sets DriverName and Params
to the values associated with ConnectionName in the dbxconnections file. You
might choose to use this method if you want to then override certain parameter
values before opening the connection.

Using the Connection Editor
The relationships between connection names and their associated driver and
connection parameters is stored in the dbxconnections file. You can create or modify
these associations using the Connection Editor.

To display the Connection Editor, double-click on the TSQLConnection component.
The Connection Editor appears, with a drop-down list containing all available
drivers, a list of connection names for the currently selected driver, and a table listing
the connection parameters for the currently selected connection name.

19-4 D e v e l o p e r ’ s G u i d e

C o n t r o l l i n g c o n n e c t i o n s

You can use this dialog to indicate the connection to use by selecting a driver and
connection name, and editing any parameter values you want to temporarily
override. Once you have chosen the configuration you want, click the Test
Connection button to check that you have not made any mistakes.

You can use this dialog to indicate the connection to use by selecting a driver and
connection name. Once you have chosen the configuration you want, click the Test
Connection button to check that you have chosen a valid configuration.

In addition, you can use this dialog to edit the named connections in dbxconnections:

• Edit the parameter values in the parameter table to change the currently selected
named connection. When you exit the dialog by clicking OK, the new parameter
values are saved to the dbxconnections file.

• Click the Add Connection button to define a new named connection. A dialog
appears where you specify the driver to use and the name of the new connection.
Once the connection is named, edit the parameters to specify the connection you
want and click the OK button to save the new connection to dbxconnections.

• Click the Delete Connection button to delete the currently selected named
connection from dbxconnections.

• Click the Rename Connection button to change the name of the currently selected
named connection. Note that any edits you have made to the parameters are saved
with the new name when you click the OK button.

Opening and closing server connections

TSQLConnection generates events when it opens or closes a connection to the server.
This lets you customize the behavior of your application in response to changes in
the database connection.

Opening a connection
There are two ways to connect to a database server using TSQLConnection:

• Call the Open method.

• Set the Connected property to True.

Calling the Open method sets Connected to True.

When you set Connected to True, TSQLConnection first generates a BeforeConnect event,
where you can perform any initialization. For example, you can use this event to alter
any properties that specify the server to which it will then connect. If you are altering
any parameter values, however, be sure that the LoadParamsOnConnect property is
False, otherwise, after the event handler exits, TSQLConnection replaces all the
connection parameters with the values associated with ConnectionName in the
dbxconnections file.

After the BeforeConnect event, TSQLConnection may display a default login dialog,
depending on how you choose to control server login. It then passes the user name
and password to the driver, opening a connection.

C o n n e c t i n g t o d a t a b a s e s 19-5

C o n t r o l l i n g s e r v e r l o g i n

Once the connection is open, TSQLConnection generates an AfterConnect event, where
you can perform any tasks that require an open connection, such as fetching
metadata from the server.

Once a connection is established, it is maintained as long as there is at least one active
dataset using it. When there are no more active datasets, TSQLConnection may drop
the connection, depending on the value of its KeepConnection property.

KeepConnection determines if your application maintains a connection to a database
even when all datasets associated with that database are closed. If True, a connection
is maintained. For connections to remote database servers, or for applications that
frequently open and close datasets, setting KeepConnection to True reduces network
traffic and speeds up your application. If KeepConnection is False, the connection is
dropped when there are no active datasets using the database. If a dataset that uses
the database is later opened, the connection must be reestablished and initialized.

Disconnecting from a database server
There are two ways to disconnect from a server using TSQLConnection:

• Set the Connected property to False.

• Call the Close method.

Calling Close sets Connected to False.

When Connected is set to False, TSQLConnection generates a BeforeDisconnect event,
where you can perform any cleanup before the connection closes. For example, you
can use this event to cache information about all open datasets before they are closed.

After the BeforeConnect event, TSQLConnection closes all open datasets and
disconnects from the server.

Finally, TSQLConnection generates an AfterDisconnect event, where you can respond
to the change in connection status, such as enabling a Connect button in your user
interface.

Note Calling Close or setting Connected to False disconnects from a database server even if
KeepConnection is True.

Controlling server login
Most remote database servers include security features to prohibit unauthorized
access. Generally, the server requires a user name and password login before
permitting database access.

At design time, if a server requires a login, a standard login dialog box prompts for a
user name and password when you first attempt to connect to the database.

At runtime, there are several ways you can handle a server’s request for a login:

• Let the default login dialog and processes handle the login. This is the default
approach. Set the LoginPrompt property of the TSQLConnection object to True (the
default) and add DBLogDlg to the uses clause of the unit that declares the

19-6 D e v e l o p e r ’ s G u i d e

C o n t r o l l i n g s e r v e r l o g i n

connection component. Your application displays the standard login dialog box
when the server requests a user name and password.

• Provide the values for User_Name and Password in the dbxconnections file. You
can save these parameter values from the Connection Editor under a particular
ConnectionName. Set LoginPrompt to False to prevent the default login dialog from
appearing. Typically, you only want to use this approach to avoid the need to log
in during development. It is a serious breach of security to leave an unencrypted
password in the dbxconnections file, where it is available for anyone to read.

• Use the Params property to supply login information before the attempt to log in.
You can assign values to the User_Name and Password parameters at design-time
through the Object Inspector or programmatically at runtime. Set LoginPrompt to
False to prevent the default login dialog from appearing. For example, the
following code sets the user name and password in the BeforeConnect event
handler, decrypting an encrypted password that is stored in the dbxconnections
file:

procedure TForm1.SQLConnectionBeforeConnect(Sender: TObject);
begin

with Sender as TSQLConnection do
begin

if LoginPrompt = False then
begin
Params.Values['User_Name'] := 'SYSDBA';
Params.Values['Password'] := Decrypt(Params.Values['Password']);

end;
end;

end;

Note that setting the values in the Params property at design-time or using hard-
coded strings in code causes the values to be embedded in the application’s
executable file. While not as freely available as in the dbxconnections file, this still
leaves them easy to find, compromising server security.

• Write an event handler for the OnLogin event. Set the LoginPrompt property to True
and in the OnLogin event handler, set the login parameters. A copy of the
User_Name, Password, and Database parameters is passed to the event handler in its
LoginParams parameter. Assign values to these parameters using this string list,
providing whichever values are needed. On exit, the values returned in
LoginParams are used to form the connection. The following example assigns
values for the User_Name and Password database parameters using a global
variable (UserName) and a method that returns a password given a user name
(PasswordSearch):

procedure TForm1.SQLConnection1Login(Database: TDatabase; LoginParams: TStrings);
begin

LoginParams.Values['User_Name'] := UserName;
LoginParams.Values['Password'] := PasswordSearch(UserName);

end;

As with the other methods of providing login parameters, when writing an
OnLogin event handler, avoid hard coding the password in your application code.

C o n n e c t i n g t o d a t a b a s e s 19-7

M a n a g i n g t r a n s a c t i o n s

It should appear only as an encrypted value, an entry in a secure database your
application uses to look up the value, or be dynamically obtained from the user.

Warning The OnLogin event does not occur unless the LoginPrompt property is True. Having a
LoginPrompt value of False and providing login information only in an OnLogin event
handler creates a situation where it is impossible to log in to the database: The default
dialog does not appear and the OnLogin event handler never executes.

Managing transactions
A transaction is a group of actions that must all be carried out successfully on one or
more tables in a database before they are committed (made permanent). If one of the
actions in the group fails, then all actions are rolled back (undone). By using
transactions, you ensure that the database is not left in an inconsistent state when a
problem occurs completing one of the actions that make up the transaction.

For example, in a banking application, transferring funds from one account to
another is an operation you would want to protect with a transaction. If, after
decrementing the balance in one account, an error occurred incrementing the balance
in the other, you want to roll back the transaction so that the database still reflects the
correct total balance.

It is always possible to manage transactions by sending SQL commands directly to
the database. Each database provides its own transaction management model,
although some, such as MySQL, have no transaction support at all. For servers that
support it, you may want to code your own transaction management directly, taking
advantage of advanced transaction management capabilities on a particular database
server, such as schema caching.

If you do not need to use any advanced transaction management capabilities,
TSQLConnection provides a set of methods and properties you can use to manage
transactions without explicitly sending any SQL commands. Using these properties
and methods has the advantage that you do not need to customize your application
for each type of database server you use, as long as the server supports transactions.
(Trying to use transactions on a database that does not support them — such as
MySQL— causes TSQLConnection to raise an exception.)

Warning When a client dataset edits the data accessed through a TSQLConnection component
(either directly or when it is linked, through a provider, to a unidirectional dataset
that uses the TSQLConnection component), the provider implicitly provides
transaction support for any updates. Be careful that any transactions you explicitly
start do not conflict with those generated by the provider.

Starting a transaction

Start a transaction by calling the StartTransaction method. StartTransaction takes a
single parameter, a transaction descriptor that lets you manage multiple
simultaneous transactions and specify the transaction isolation level on a per-
transaction basis. (For more information on transaction levels, see “Specifying the
transaction isolation level” on page 19-9.)

19-8 D e v e l o p e r ’ s G u i d e

M a n a g i n g t r a n s a c t i o n s

var
TD: TTransactionDesc;

begin
TD.TransactionID := 1;
TD.IsolationLevel := xilREADCOMMITTED;
SQLConnection1.StartTransaction(TD);

In order to manage multiple simultaneous transactions, set the TransactionID field of
the transaction descriptor to a unique value. TransactionID can be any value you
choose, as long as it is unique (does not conflict with any other transaction currently
underway). Depending on the server, transactions started by TSQLConnection can be
nested or they can be overlapped. Before you create multiple simultaneous
transactions, be sure they are supported by the database server.

By default, when you start a transaction, all subsequent statements that read from or
write to the database occur in the context of that transaction, until the transaction is
explicitly terminated or, in the case of overlapped transactions, until another
transaction starts. Each statement is considered part of a group. Changes must be
successfully committed to the database, or every change made in the group must be
undone.

With overlapped transactions, a first transaction becomes inactive when the second
transaction starts, although you can postpone committing or rolling back the first
transaction until later. However, if you are using an InterBase database, you can
identify each dataset in your application with a particular active transaction, by
setting its TransactionLevel property. That is, after starting a second transaction, you
can continue to work with both transactions simultaneously, simply by associating a
dataset with the transaction you want.

You can determine whether a transaction is in process by checking the InTransaction
property.

Ending a transaction

Ideally, a transaction should only last as long as necessary. The longer a transaction is
active, the more simultaneous users that access the database, and the more
concurrent, simultaneous transactions that start and end during the lifetime of your
transaction, the greater the likelihood that your transaction will conflict with another
when you attempt to commit any changes.

Ending a successful transaction
When the actions that make up the transaction have all succeeded, you can make the
database changes permanent by using the Commit method. Commit takes a single
parameter: the transaction descriptor you supplied to the StartTransaction method:

SQLConnection1.Commit(TD);

Note If you are working with nested transactions, it is possible to commit a secondary
(nested) transaction, only to have it rolled back later when the primary transaction is
rolled back.

C o n n e c t i n g t o d a t a b a s e s 19-9

M a n a g i n g t r a n s a c t i o n s

Commit is usually attempted in a try...except statement. That way, if the transaction
cannot commit successfully, you can use the except block to handle the error and
retry the operation or to roll back the transaction.

Ending an unsuccessful transaction
If an error occurs when making the changes that are part of the transaction or when
trying to commit the transaction, you will want to discard all changes that make up
the transaction. To discard these changes, use the Rollback method. Rollback takes a
single parameter: the transaction descriptor you supplied to the StartTransaction
method:

SQLConnection1.Rollback(TD);

Rollback usually occurs in

• Exception handling code when you can’t recover from a database error.

• Button or menu event code, such as when a user clicks a Cancel button.

Specifying the transaction isolation level

The transaction descriptor you provide when you start a transaction includes an
IsolationLevel field, which allows you to control how the transaction interacts with
other simultaneous transactions when they work with the same tables. In particular,
it affects how much a transaction “sees” of other transactions’ changes to a table.

Each server type supports a different set of possible values for IsolationLevel, and
some do not support different isolation levels at all. If the server supports different
isolation levels, the set of allowable values includes two or more of the following,
depending on the server:

• DirtyRead: When TransIsolation is DirtyRead, your transaction sees all changes
made by other transactions, even if they have not been committed. Uncommitted
changes are not permanent, and might be rolled back at any time. This value
provides the least isolation, and is not available for many database servers (such as
Oracle or InterBase).

• ReadCommitted: When TransIsolation is ReadCommitted, only committed changes
made by other transactions are visible. Although this setting protects your
transaction from seeing uncommitted changes that may be rolled back, you may
still receive an inconsistent view of the database state if another transaction is
committed while you are in the process of reading.

• RepeatableRead: When TransIsolation is RepeatableRead, your transaction is
guaranteed to see a consistent state of the database data. Your transaction sees a
single snapshot of the data. It cannot see any subsequent changes to data by other
simultaneous transactions, even if they are committed. This isolation level
guarantees that once your transaction reads a record, its view of that record will
not change. At this level your transaction is most isolated from changes made by
other transactions.

19-10 D e v e l o p e r ’ s G u i d e

A c c e s s i n g s e r v e r m e t a d a t a

Note In addition, the transaction descriptor allows you to specify a custom isolation level
that is defined by the database driver. None of the dbExpress drivers provided with
Kylix support custom isolation levels.

For a detailed description of how each isolation level is implemented, see your server
documentation.

Accessing server metadata
Once you have an open connection, you can use TSQLConnection to obtain
information about the entities available on the database server. This information,
called metadata, includes information about what tables and stored procedures are
available on the server and information about these tables and stored procedures
(such as the fields a table contains, the indexes that are defined, and the parameters a
stored procedure uses).

TSQLConnection has a number of methods you can call to fill a list with this metadata:

• GetTableNames fills a TStrings descendant (such a TStringList) with the names of all
available tables on the server. Which tables are returned depends on two things:
the TableScope property, and a boolean parameter that indicates whether you are
only interested in system tables. If you only want system tables, you can use the
SystemTables parameter, and the list will contain only system tables, regardless of
the value of TableScope. (Note that not all servers use system tables to store
metadata, so asking for system tables may result in an empty list.) If you do not
request only system tables, GetTableNames returns the names of any tables that
match the types specified by the TableScope property. These can include system
tables, data tables, views, and synonyms.

• GetFieldNames fills a TStrings descendant with the names of all fields (columns) in
a specified table.

• GetIndexNames fills a TStrings descendant with the names of all indexes defined on
a specified table.

• GetProcedureNames fills a TStrings descendant with the names of all available
stored procedures (if any).

• GetProcedureParams fills a TList object with pointers to parameter description
records, where each record describes a parameter of a specified stored procedure,
including its name, index, parameter type, field type, and so on. You can convert
these parameter descriptions to the more familiar TParams object by calling the
global LoadParamListItems procedure. Because GetProcedureParams dynamically
allocates the individual records, your application must free them when it is
finished with the information.

Note You can also access server metadata using TSQLDataSet. TSQLDataSet provides more
detailed information and greater control over the information returned (for example,
you can provide a pattern mask to limit the items returned. For more information on
how to access server metadata with TSQLDataSet, see “Accessing schema
information” on page 18-15.

C o n n e c t i n g t o d a t a b a s e s 19-11

W o r k i n g w i t h a s s o c i a t e d d a t a s e t s

Working with associated datasets
TSQLConnection maintains a list of all active datasets that use it to connect to a
database. It uses this list, for example, to close all of the datasets when it closes the
database connection.

You can use this list as well, to perform actions on all the datasets that use a specific
TSQLConnection to connect to a particular database.

Closing datasets without disconnecting from the server

There may be times when you want to close all datasets without disconnecting from
the database server. To close all open datasets without disconnecting from a server,
follow these steps:

1 Set the TSQLConnection component’s KeepConnection property to True.

2 Call the TSQLConnection component’s CloseDataSets method.

Iterating through the associated datasets

To perform any actions (other than closing them all) on all the datasets that use a
TSQLConnection instance, use the DataSets and DataSetCount properties. DataSets is
an indexed array of all active datasets that are linked to the SQL connection
component via their SQLConnection property. DataSetCount is the number of datasets
in this array.

Note When using an SQL client dataset (TSQLClientDataSet), the connection component’s
DataSets property does not list the client dataset itself. Rather, it lists the internal
unidirectional dataset that the client dataset uses to access the data.

DataSets lists only the active (open) datasets. If a dataset is closed, it does not appear
in the list.

You can use DataSets with DataSetCount to cycle through all currently active datasets
in code. For example, the following code cycles through all active datasets and
disables any controls that use the data they provide:

var
I: Integer;

begin
with SQLConnection1 do
begin

for I := 0 to DataSetCount - 1 do
DataSets[I].DisableControls;

end;
end;

19-12 D e v e l o p e r ’ s G u i d e

S e n d i n g c o m m a n d s t o t h e s e r v e r

Sending commands to the server
Simple Data Definition Language (DDL) SQL statements such as CREATE INDEX,
ALTER TABLE, and DROP DOMAIN statements can be executed directly from a
TSQLConnection component using its Execute method. These statements do not return
result sets and only operate on or create a database’s metadata. The Execute method
can also be used to execute Data Manipulation Language (DML) SQL statements,
such as INSERT, DELETE, and UPDATE statements.

Execute takes three parameters, a string that specifies a single SQL statement that you
want to execute, a TParams object that supplies any parameter values for that
statement, and a pointer that can receive a dynamically created TCustomSQLDataSet
object that is populated with the result set from executing the statement. Although
you can use this third parameter to receive records that are returned as a result of
executing the statement, the recommended approach is to use an SQL dataset
instead. If you do use the third parameter, your application is responsible for freeing
the dataset returned in the third parameter.

Note Execute can only execute one SQL statement at a time. It is not possible to execute
multiple SQL statements with a single call to Execute, as you can with SQL scripting
utilities. To execute more than one statement, call Execute repeatedly, each time with
new parameters.

It is relatively easy to execute a statement that does not include any parameters. For
example, the following code executes a CREATE TABLE statement (DDL) without
any parameters:

procedure TForm1.CreateTableButtonClick(Sender: TObject);
var

SQLstmt: String;
begin

SQLConnection1.Connected := True;
SQLstmt := 'CREATE TABLE NewCusts ' +

'(' +
' CustNo INTEGER, ' +
' Company CHAR(40), ' +
' State CHAR(2), ' +
' PRIMARY KEY (CustNo) ' +
')';

SQLConnection1.Execute(SQLstmt, nil, nil);
end;

To use parameters, you must create a TParams object. For each parameter value, use
the TParams.CreateParam method to add a TParam object. Then use properties of
TParam to describe the parameter and set its value.

This process is illustrated in the following example, which executes an INSERT
statement. The INSERT statement includes a single parameter named :StateParam. A
TParams object (called stmtParams) is created to supply a value of “CA” for that
parameter.

procedure TForm1.INSERT_WithParamsButtonClick(Sender: TObject);
var

SQLstmt: String;

C o n n e c t i n g t o d a t a b a s e s 19-13

D e b u g g i n g d a t a b a s e a p p l i c a t i o n s

stmtParams: TParams;
begin

stmtParams := TParams.Create;
try

SQLConnection1.Connected := True;
stmtParams.CreateParam(ftString, 'StateParam', ptInput);
stmtParams.ParamByName('StateParam').AsString := 'CA';
SQLstmt := 'INSERT INTO "Custom.db" '+
'(CustNo, Company, State) ' +
'VALUES (7777, "Robin Dabank Consulting", :StateParam)';

SQLConnection1.Execute(SQLstmt, stmtParams, nil);
finally

stmtParams.Free;
end;

end;

If the SQL statement includes a parameter but you do not supply a TParam object to
supply a value for it, the SQL statement may cause an error when executed (this
depends on the particular database back-end used). If a TParam object is provided
but there is no corresponding parameter in the SQL statement, an exception is raised
when the application attempts to use the TParam.

Debugging database applications
While you are debugging your database application, it may prove useful to monitor
the SQL messages that are sent to and from the database server through your
connection component, including those that are generated automatically for you (for
example by a provider component or by the dbExpress driver).

Using TSQLMonitor to monitor SQL commands

TSQLConnection uses a companion component, TSQLMonitor, to intercept these
messages and save them in a string list. To use TSQLMonitor,

1 Add a TSQLMonitor component to the form or data module containing the
TSQLConnection component whose SQL commands you want to monitor.

2 Set its SQLConnection property to the TSQLConnection component.

3 Set the SQL monitor’s Active property to True.

As SQL commands are sent to the server, the SQL monitor’s TraceList property is
automatically updated to list all the SQL commands that are intercepted.

You can save this list to a file by specifying a value for the FileName property and
then setting the AutoSave property to True. AutoSave causes the SQL monitor to save
the contents of the TraceList property to a file every time is logs a new message.

If you do not want the overhead of saving a file every time a message is logged, you
can use the OnLogTrace event handler to only save files after a number of messages
have been logged. For example, the following event handler saves the contents of

19-14 D e v e l o p e r ’ s G u i d e

D e b u g g i n g d a t a b a s e a p p l i c a t i o n s

TraceList every 10th message, clearing the log after saving it so that the list never gets
too long:

procedure TForm1.SQLMonitor1LogTrace(Sender: TObject; CBInfo: Pointer);
var

LogFileName: string;
begin

with Sender as TSQLMonitor do
begin

if TraceCount = 10 then
begin
LogFileName := 'c:\log' + IntToStr(Tag) + '.txt';
Tag := Tag + 1; {ensure next log file has a different name }
SaveToFile(LogFileName);
TraceList.Clear; { clear list }

end;
end;

end;

Note If you were to use the previous event handler, you would also want to save any
partial list (fewer than 10 entries) when the application shuts down.

Using a callback to monitor SQL commands

Instead of using TSQLMonitor, you can customize the way your application traces
SQL commands by using the SQL connection component’s SetTraceCallbackEvent
method. SetTraceCallbackEvent takes two parameters: a callback of type
TSQLCallbackEvent, and a user-defined value that is passed to the callback function.

The callback function takes two parameters: CallType and CBInfo:

• CallType is reserved for future use.

• CBInfo is a pointer to a record that includes the category (the same as CallType), the
text of the SQL command, and the user-defined value that is passed to the
SetTraceCallbackEvent method.

The callback returns a value of type CBRType, typically cbrUSEDEF.

The dbExpress driver calls your callback every time the SQL connection component
passes a command to the server or the server returns an error message.

Warning Do not call SetTraceCallbackEvent if the TSQLConnection object has an associated
TSQLMonitor component. TSQLMonitor uses the callback mechanism to work, and
TSQLConnection can only support one callback at a time.

U s i n g c l i e n t d a t a s e t s 20-1

C h a p t e r

20
Chapter20Using client datasets

Client datasets provide all the data access, editing, navigation, data constraint, and
filtering support introduced by TDataSet. They cache all data in memory and
manipulate the in-memory cache. The support for manipulating the data they store
in memory is provided by a shared object file, midas.so, which must be deployed
with any application that uses client datasets.

Kylix provides two types of client datasets:

• TClientDataSet, which is designed to work without a specific type of database
connectivity support (such as dbExpress).

• TSQLClientDataSet, which uses dbExpress to fetch the data for the in-memory
cache.

Both types of client dataset add to the properties and methods inherited from
TDataSet to provide an expanded set of features for working with data. They differ
primarily in how they obtain the data that is cached in memory.

Both types of client dataset support the following mechanisms for reading data and
writing updates:

• Reading from and writing to a file accessed directly from the client dataset. When
using only this mechanism, an application should use TClientDataSet, which has
less overhead. However, when using the briefcase model, this mechanism is
equally appropriate for both types of client dataset. Properties and methods
supporting this mechanism are described in “Using a client dataset with file-based
data” on page 20-37.

• Reading from another dataset. Client datasets provide a variety of mechanisms for
copying data from other datasets. These are described in “Copying data from
another dataset” on page 20-23.

In addition, TClientDataSet can also fetch data from a provider component. Provider
components link TClientDataSet to other datasets. The provider forwards data from
the source dataset to the client dataset, and sends edits from the client dataset back to
the source dataset. Optionally, the provider generates an SQL command to apply

20-2 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h d a t a u s i n g a c l i e n t d a t a s e t

updates back to the server, which the source dataset forwards to the server.
Properties and methods for working with a provider are described in “Using a client
dataset with a provider” on page 20-24.

TSQLClientDataSet can’t be linked to an external provider. Instead, it fetches data
from a database server. The client dataset still caches updates in its in-memory cache,
and includes a method to apply those cached updates back to the database server.
Properties and methods for using TSQLClientDataSet to connect to a database server
are described in “Using an SQL client dataset” on page 20-34.

Working with data using a client dataset
Like any dataset, you can use client datasets to supply the data for data-aware
controls using a data source component. See Chapter 15, “Using data controls”for
information on how to display database information in data-aware controls.

As descendants of TDataSet, client datasets inherit the power and usefulness of the
properties, methods, and events defined for all dataset components. For a complete
introduction to this generic dataset behavior, see Chapter 16, “Understanding
datasets.”

Client datasets differ from other datasets in that they hold all their data in memory.
Because of this, their support for common database functions can involve additional
capabilities or considerations.

Navigating data in client datasets

If an application uses standard data-aware controls, then a user can navigate through
a client dataset’s records using the built-in behavior of those controls. You can also
navigate programmatically through records using standard dataset methods such as
First, Last, Next, and Prior. For more information about these methods, see
“Navigating datasets” on page 16-8.

Also inherited from TDataSet are the Locate and Lookup methods, which search for a
particular record based on the values of specified fields. These methods are described
in “Searching datasets” on page 16-14.

Client datasets implement the standard bookmark capabilities introduced in
TDataSet for marking and navigating to specific records. For more information about
bookmarking, see “Marking and returning to records” on page 16-12.

In addition to these methods introduced by TDataSet, client datasets introduce a
number of additional navigation methods that take advantage of the way they store
and index in-memory records.

For example, instead of using bookmarks, with the overhead of allocating and
freeing the memory to store them, client datasets can position the cursor at any
specific record using the RecNo property. While other datasets may use RecNo to
determine the record number of the current record, client datasets can also set RecNo
to a particular record number to make that record the current one.

U s i n g c l i e n t d a t a s e t s 20-3

W o r k i n g w i t h d a t a u s i n g a c l i e n t d a t a s e t

However, the most powerful method introduced by TClientDataSet is the Goto and
Find search methods that search for a record based on indexed fields. By explicitly
using indexes that you define for the client dataset, client datasets can improve over
the searching performance provided by the Locate and Lookup methods.

The following table summarizes the six related Goto and Find methods an application
can use to search for a record:

GotoKey and FindKey are boolean functions that, if successful, move the cursor to a
matching record and return True. If the search is unsuccessful, the cursor is not
moved, and these functions return False.

GotoNearest and FindNearest always reposition the cursor either on the first exact
match found or, if no match is found, on the first record that is greater than the
specified search criteria.

Specifying the index to use for searching
Before using the Goto and Find search methods, you must define the index, or key,
that is used to speed the search. If the index has already been created for your client
dataset, you must make that index current using the IndexName property. For
example, if a client dataset has an index named “CityIndex” on which you want to
search for a value, you must set the IndexName property to “CityIndex”:

ClientDataSet1.Close;
ClientDataSet1.IndexName := 'CityIndex';
ClientDataSet1.Open;
ClientDataSet1.SetKey;
ClientDataSet1['City'] := Edit1.Text;
ClientDataSet1.GotoNearest;

Instead of specifying an index name, you can list fields to use as a key in the
IndexFieldNames property.

For more information on creating and using indexes in client datasets, see “Sorting
and indexing” on page 20-16.

Table 20.1 Index-based search methods

Method Purpose

EditKey Preserves the current contents of the search key buffer and puts the dataset into
dsSetKey state so your application can modify existing search criteria prior to
executing a search.

FindKey Combines the SetKey and GotoKey methods in a single method.

FindNearest Combines the SetKey and GotoNearest methods in a single method.

GotoKey Searches for the first record in a dataset that exactly matches the search criteria,
and moves the cursor to that record if one is found.

GotoNearest Searches on string-based fields for the closest match to a record based on partial
key values, and moves the cursor to that record.

SetKey Clears the search key buffer and puts the dataset into dsSetKey state so your
application can specify new search criteria prior to executing a search.

20-4 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h d a t a u s i n g a c l i e n t d a t a s e t

Executing a search with Goto methods
To execute a search using Goto methods, follow these general steps:

1 Specify the index to use for the search (as described above).

2 Open the client dataset.

3 Put the dataset in dsSetKey state with SetKey.

4 Specify the value(s) to search on in the Fields property. Fields is a TFields object,
which maintains an indexed list of field components you can access by specifying
ordinal numbers corresponding to columns. The first column number in a dataset
is 0.

5 Search for and move to the first matching record found with GotoKey or
GotoNearest.

For example, the following code, attached to a button’s OnClick event, moves to the
first record where the first field in the index has a value that exactly matches the text
in an edit box:

procedure TSearchDemo.SearchExactClick(Sender: TObject);
begin

ClientDataSet1.SetKey;
ClientDataSet1.Fields[0].AsString := Edit1.Text;
if not ClientDataSet1.GotoKey then

ShowMessage('Record not found');
end;

GotoNearest is similar. It searches for the nearest match to a partial field value. It can
be used only for string fields. For example,

ClientDataSet1.SetKey;
ClientDataSet1.Fields[0].AsString := 'Sm';
ClientDataSet1.GotoNearest;

If a record exists with “Sm” as the first two characters of the first indexed field’s
value, the cursor is positioned on that record. Otherwise, the position of the cursor
does not change and GotoNearest returns False.

Executing a search with Find methods
The Find methods do the same thing as the Goto methods, except that you do not
need to explicitly put the dataset in dsSetKey state to specify the key field values on
which to search. To execute a search using Find methods, follow these general steps:

1 Specify the index to use for the search (as described above).

2 Open the client dataset.

3 Search for and move to the first or nearest record with FindKey or FindNearest. Both
methods take a single parameter, a comma-delimited list of field values, where
each value corresponds to an indexed column in the underlying table.

Note FindNearest can only be used for string fields.

U s i n g c l i e n t d a t a s e t s 20-5

W o r k i n g w i t h d a t a u s i n g a c l i e n t d a t a s e t

Specifying the current record after a successful search
By default, a successful search positions the cursor on the first record that matches
the search criteria. If you prefer, you can set the KeyExclusive property to True to
position the cursor on the next record after the first matching record.

By default, KeyExclusive is False, meaning that successful searches position the cursor
on the first matching record.

Searching on partial keys
If a client dataset has more than one key column, and you want to search for values in
a subset of that key, set KeyFieldCount to the number of columns on which you are
searching. For example, if the client dataset’s current index has three columns, and
you want to search for values using just the first column, set KeyFieldCount to 1.

For client datasets with multiple-column keys, you can search only for values in
contiguous columns, beginning with the first. For example, for a three-column key
you can search for values in the first column, the first and second, or the first, second,
and third, but not just the first and third.

Repeating or extending a search
Each time you call SetKey or FindKey it clears any previous values in the Fields
property. If you want to repeat a search using previously set fields, or you want to
add to the fields used in a search, call EditKey in place of SetKey and FindKey. For
example, suppose you have already executed a search based on the City field of the
“CityIndex” index. Suppose further that “CityIndex” includes both the City and
Company fields. To find a record with a specified company name in a specified city,
use the following code:

ClientDataSet1.KeyFieldCount := 2;
ClientDataSet1.EditKey;
ClientDataSet1['Company'] := Edit2.Text;
ClientDataSet1.GotoNearest;

Limiting what records appear

To restrict users to a subset of available data on a temporary basis, applications can
use ranges and filters. When you apply a range or a filter, the client dataset does not
display all the data in its in-memory cache. Instead, it only displays the data that
meets the range or filter conditions.

Filters are introduced by TDataSet class, and so potentially apply to custom datasets
as well as client datasets. (They are not implemented for unidirectional datasets.) For
more information about using filters, see “Displaying and editing a subset of data
using filters” on page 16-15.

Ranges only apply to TClientDataSet components. Despite their similarities, ranges
and filters have different uses. The following topics discuss the differences between
ranges and filters and how to use ranges.

20-6 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h d a t a u s i n g a c l i e n t d a t a s e t

Understanding the differences between ranges and filters
Both ranges and filters restrict visible records to a subset of all available records, but
the way they do so differs. A range is a set of contiguously indexed records that fall
between specified boundary values. For example, in an employee database indexed
on last name, you might apply a range to display all employees whose last names are
greater than “Jones” and less than “Smith”. Because ranges depend on indexes, you
must set the current index to one that can be used to define the range. As with
specifying an index to use for locating records, you can assign the index on which to
define a range using either the IndexName or the IndexFieldNames property.

A filter, on the other hand, is any set of records that share specified data points,
regardless of indexing. For example, you might filter an employee database to
display all employees who live in California and who have worked for the company
for five or more years. While filters can make use of indexes if they apply, filters are
not dependent on them. Filters are applied record-by-record as an application scrolls
through a dataset.

In general, filters are more flexible than ranges. Ranges, however, can be more
efficient when datasets are large and the records of interest to an application are
already blocked in contiguously indexed groups. For very large datasets, it may be
still more efficient to use the WHERE clause of a query to select data before it ever
fills the client dataset’s in-memory cache.

Specifying ranges
There are two mutually exclusive ways to specify a range for a client dataset:

• Specify the beginning and ending separately using SetRangeStart and SetRangeEnd.

• Specify both endpoints at once using SetRange.

Setting the beginning of a range
Call the SetRangeStart procedure to put the dataset into dsSetKey state and begin
creating a list of starting values for the range. Once you call SetRangeStart,
subsequent assignments to the Fields property are treated as starting index values to
use when applying the range. Fields specified must apply to the current index.

For example, suppose your application uses a client dataset named Customers, linked
to the CUSTOMER table, and that you have created persistent field components for
each field in the Customers dataset. CUSTOMER is indexed on its first column
(CustNo). A form in the application has two edit components named StartVal and
EndVal, used to specify start and ending values for a range. The following code can
be used to create and apply a range:

with Customers do
begin

SetRangeStart;
FieldByName('CustNo').AsString := StartVal.Text;
SetRangeEnd;
if (Length(EndVal.Text) > 0) then

FieldByName('CustNo').AsString := EndVal.Text;
ApplyRange;

end;

U s i n g c l i e n t d a t a s e t s 20-7

W o r k i n g w i t h d a t a u s i n g a c l i e n t d a t a s e t

This code checks that the text entered in EndVal is not null before assigning any
values to Fields. If the text entered for StartVal is null, then all records from the
beginning of the dataset are included, since all values are greater than null. However,
if the text entered for EndVal is null, then no records are included, since none are less
than null.

For a multi-column index, you can specify a starting value for all or some fields in the
index. If you do not supply a value for a field used in the index, a null value is
assumed when you apply the range. If you try to set a value for a field that is not in
the index, the dataset raises an exception.

Tip To start at the beginning of the dataset, omit the call to SetRangeStart.

To finish specifying the start of a range, call SetRangeEnd or apply or cancel the range.
For information about applying and canceling ranges, see “Applying or canceling a
range” on page 20-9.

Setting the end of a range
Call the SetRangeEnd procedure to put the dataset into dsSetKey state and start
creating a list of ending values for the range. Once you call SetRangeEnd, subsequent
assignments to the Fields property are treated as ending index values to use when
applying the range. Fields specified must apply to the current index.

Warning Always specify the ending values for a range, even if you want a range to end on the
last record in the dataset. If you do not provide ending values, Kylix assumes the
ending value of the range is a null value. A range with null ending values is always
empty.

The easiest way to assign ending values is to call the FieldByName method. For
example,

with ClientDataSet1 do
begin

SetRangeStart;
FieldByName('LastName').AsString := Edit1.Text;
SetRangeEnd;
FieldByName('LastName').AsString := Edit2.Text;
ApplyRange;

end;

As with specifying start of range values, if you try to set a value for a field that is not
in the index, the dataset raises an exception.

To finish specifying the end of a range, apply or cancel the range. For information
about applying and canceling ranges, see “Applying or canceling a range” on
page 20-9.

Setting start- and end-range values
Instead of using separate calls to SetRangeStart and SetRangeEnd to specify range
boundaries, you can call the SetRange procedure to put the dataset into dsSetKey state
and set the starting and ending values for a range with a single call.

20-8 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h d a t a u s i n g a c l i e n t d a t a s e t

SetRange takes two constant array parameters: a set of starting values, and a set of
ending values. For example, the following statements establish a range based on a
two-column index:

SetRange([Edit1.Text, Edit2.Text], [Edit3.Text, Edit4.Text]);

For a multi-column index, you can specify starting and ending values for all or some
fields in the index. If you do not supply a value for a field used in the index, a null
value is assumed when you apply the range. To omit a value for the first field in an
index, and specify values for successive fields, pass a null value for the omitted field.

Always specify the ending values for a range, even if you want a range to end on the
last record in the dataset. If you do not provide ending values, the dataset assumes
the ending value of the range is a null value. A range with null ending values is
always empty because the starting range is greater than or equal to the ending range.

Specifying a range based on partial keys
If a key is composed of one or more string fields, the SetRange methods support
partial keys. For example, if an index is based on the LastName and FirstName
columns, the following range specifications are valid:

ClientDataSet1.SetRangeStart;
ClientDataSet1['LastName'] := 'Smith';
ClientDataSet1.SetRangeEnd;
ClientDataSet1['LastName'] := 'Zzzzzz';
ClientDataSet1.ApplyRange;

This code includes all records in a range where LastName is greater than or equal to
“Smith.” The value specification could also be:

ClientDataSet1['LastName'] := 'Sm';

This statement includes records that have LastName greater than or equal to “Sm.”

Including or excluding records that match boundary values
By default, a range includes all records that are greater than or equal to the specified
starting range, and less than or equal to the specified ending range. This behavior is
controlled by the KeyExclusive property. KeyExclusive is False by default.

If you prefer, you can set the KeyExclusive property for a client dataset to True to
exclude records equal to ending range. For example,

ClientDataSet1.KeyExclusive := True;
ClientDataSet1.SetRangeStart;
ClientDataSet1['LastName'] := 'Smith';
ClientDataSet1.SetRangeEnd;
ClientDataSet1['LastName'] := 'Tyler';
ClientDataSet1.ApplyRange;

This code includes all records in a range where LastName is greater than or equal to
“Smith” and less than “Tyler”.

U s i n g c l i e n t d a t a s e t s 20-9

W o r k i n g w i t h d a t a u s i n g a c l i e n t d a t a s e t

Modifying a range
Two functions enable you to modify the existing boundary conditions for a range:
EditRangeStart, for changing the starting values for a range; and EditRangeEnd, for
changing the ending values for the range.

The process for editing and applying a range involves these general steps:

1 Putting the dataset into dsSetKey state and modifying the starting index value for
the range.

2 Modifying the ending index value for the range.

3 Applying the range to the dataset.

You can modify either the starting or ending values of the range, or you can modify
both boundary conditions. If you modify the boundary conditions for a range that is
currently applied to the dataset, the changes you make are not applied until you call
ApplyRange again.

Editing the start of a range
Call the EditRangeStart procedure to put the dataset into dsSetKey state and begin
modifying the current list of starting values for the range. Once you call
EditRangeStart, subsequent assignments to the Fields property overwrite the current
index values to use when applying the range.

Tip If you initially created a start range based on a partial key, you can use EditRangeStart
to extend the starting value for a range. For more information about ranges based on
partial keys, see “Specifying a range based on partial keys” on page 20-8.

Editing the end of a range
Call the EditRangeEnd procedure to put the dataset into dsSetKey state and start
creating a list of ending values for the range. Once you call EditRangeEnd, subsequent
assignments to the Fields property are treated as ending index values to use when
applying the range.

Applying or canceling a range
When you call SetRangeStart or EditRangeStart to specify the start of a range, or
SetRangeEnd or EditRangeEnd to specify the end of a range, the dataset enters the
dsSetKey state. It stays in that state until you apply or cancel the range.

Applying a range
When you specify a range, the boundary conditions you define are not put into effect
until you apply the range. To make a range take effect, call the ApplyRange procedure.
ApplyRange immediately restricts a user’s view of and access to data in the specified
subset of the dataset.

Canceling a range
The CancelRange method ends application of a range and restores access to the full
dataset. Even though canceling a range restores access to all records in the dataset,
the boundary conditions for that range are still available so that you can reapply the

20-10 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h d a t a u s i n g a c l i e n t d a t a s e t

range at a later time. Range boundaries are preserved until you provide new range
boundaries or modify the existing boundaries. For example, the following code is
valid:

ƒ
ClientDataSet1.CancelRange;
ƒ
{later on, use the same range again. No need to call SetRangeStart, etc.}
ClientDataSet1.ApplyRange;
ƒ

Representing master/detail relationships

Client datasets can be linked into master/detail relationships. When you set up a
master/detail relationship, you link two datasets so that all the records of one (the
detail) always correspond to the single current record in the other (the master).

Client datasets support master/detail relationships in two very distinct ways:

• Make the client dataset the detail of another dataset by linking cursors. This
process is described in “Making the client dataset a detail of another dataset”
below.

• Make the client dataset the master in a master/detail relationship using nested
detail tables. This process is described in “Using nested detail tables” on
page 20-12.

Each of these approaches has its unique advantages. Linking cursors lets you create
master/detail relationships where the master table is not a client dataset. With nested
details both datasets must be client datasets, but they provide for more options in
how to display the data and are better suited for applying edits back to the server.

Making the client dataset a detail of another dataset
A client dataset’s MasterSource and MasterFields properties can be used to establish
one-to-many relationships between two datasets.

The MasterSource property is used to specify a data source from which the client
dataset gets data from the master table. This data source can be linked to any type of
dataset, it need not be another client dataset. For instance, you can link a client
dataset to a unidirectional dataset, so that the client dataset tracks the events
occurring in the unidirectional dataset, by specifying the unidirectional dataset’s data
source component in this property.

The client dataset is linked to the master table based on its current index. Before you
specify the fields in the master dataset that are tracked by the (detail) client dataset,
first specify the index in the client dataset that starts with the corresponding fields.
You can use either the IndexName or the IndexFieldNames property.

Once you have specified the index to use, use the MasterFields property to indicate
the column(s) in the master dataset that correspond to the indexed fields in the
(detail) client dataset. To link datasets based on multiple column names, use a
semicolon delimited list:

ClientDataSet1.MasterFields := 'OrderNo;ItemNo';

U s i n g c l i e n t d a t a s e t s 20-11

W o r k i n g w i t h d a t a u s i n g a c l i e n t d a t a s e t

To help create meaningful links between two datasets, you can use the Field Link
designer. To use the Field Link designer, double click on the MasterFields property in
the Object Inspector after you have assigned a MasterSource and an index.

The following steps create a simple form in which a user can step through customer
records and display all orders for the current customer. The master dataset is called
CustomersTable, and the detail dataset is OrdersTable.

1 Place a TSQLConnection, a TSQLDataSet component, a TSQLClientDataSet, and two
TDataSource components in a data module.

2 Set the properties of the TSQLConnection component as follows:

• DriverName: INTERBASE

• Params:
- Database: the full path name for employee.gdb. (This database should be

installed when you install interbase.)
- UserName: your user name.
- Password: your password.

3 Set the properties of the TSQLDataSet component as follows:

• SQLConnection: SQLConnection1
• CommandType: ctTable
• CommandText: CUSTOMER
• Name: CustomersTable

4 Set the properties of the first TDataSource component as follows:

• Name: CustSource
• DataSet: CustomersTable

5 Set the properties of the TSQLClientDataSet component as follows:

• DBConnection: SQLConnection1
• CommandText: 'Select * from SALES'
• Name: OrdersTable
• IndexFieldNames: 'Cust_No'
• MasterSource: CustSource.

The last two properties (IndexFieldNames and MasterSource) link the CUSTOMER
table (the master table) to the ORDERS table (the detail table) using the CUST_No
field on the orders table.

6 Double-click the MasterFields property value box in the Object Inspector to invoke
the Field Link Designer to set the following properties:

• Select Cust_No in both the Detail Fields and Master Fields field lists.

• Click the Add button to add this join condition. In the Joined Fields list,
“CustNo -> CustNo” appears.

• Choose OK to commit your selections and exit the Field Link Designer.

20-12 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h d a t a u s i n g a c l i e n t d a t a s e t

7 Set the properties of the second TDataSource component as follows:

• Name: OrdersSource
• DataSet: OrdersTable

8 Place a TDBText, a TDBGrid, and a TButton on a form.

9 Choose File|Use Unit to specify that the form should use the data module.

10 Set the DataSource property of the DB grid to “OrdersSource”.

11 Set the following properties on the DB text control:

• DataSource: CustSource
• DataField: CUSTOMER.

12 Double-click on the button, and in its OnClick event handler type

CustomersTable.Next;

13 Set the Active properties of CustomersTable and OrdersTable to True to display data
in the form.

14 Compile and run the application.

If you run the application now, you will see that the datasets are linked together, and
that when you press the button to display a new customer name in the DB text
control, you see only those records in the ORDERS table that belong to the current
customer.

Using nested detail tables
There are two ways to set up master/detail relationships in client datasets using
nested tables:

• Obtain records that contain nested details from a provider component. When a
provider component represents the master table of a master/detail relationship, it
automatically creates a nested dataset field to represent the details for each record.
This method only applies to TClientDataSet, because you do can’t set up a separate
provider component to represent a master table when using TSQLClientDataSet.

• Define nested details using the Fields Editor. At design time, right click the client
dataset and choose Fields Editor. Add a new persistent field to your client dataset
by right-clicking and choosing Add Fields. Define your new field with type
DataSet Field. In the Fields Editor, define the structure of your detail table.

Note To use nested detail sets, the ObjectView property of the client dataset must be True.

When your client dataset contains nested detail datasets, TDBGrid provides support
for displaying the nested details in a popup window. For more information on how
this works, see “Displaying dataset fields” on page 17-24.

Alternately, you can display and edit these datasets in data-aware controls by using a
separate client dataset for the detail set. At design time, create persistent fields for the
fields in your (master) client dataset, including a DataSet field for the nested detail
set.

U s i n g c l i e n t d a t a s e t s 20-13

W o r k i n g w i t h d a t a u s i n g a c l i e n t d a t a s e t

You can now create a client dataset to represent the nested detail set. Set this detail
dataset’s DataSetField property to the persistent dataSet field in the master dataset.

Using nested detail sets is necessary if you want to apply updates from master and
detail tables to a database server. In file-based database applications, using nested
detail sets lets you save the details with the master records in one file, rather than
requiring you load two datasets separately, and then recreate the indexes to re-
establish the master/detail relationship.

Constraining data values

Client datasets let you specify limits on the values a user can enter when editing the
data. There are two types of constraints you can impose on user edits: field-level
constraints and record-level constraints.

Each field component has two properties that you can use to specify constraints:

• The DefaultExpression property defines a default value that is assigned to the field if
the user does not enter a value. Note that if the database server or source dataset also
assigns a default expression for the field, the client dataset’s version takes precedence
because it is assigned before the update is returned to the provider.

• The CustomConstraint property lets you assign a constraint condition that must be
met before a field value can be posted. Custom constraints are useful for validating
data before it is sent to the server. For example, you may want to duplicate constraint
conditions that are imposed by the database server. That way, user edits that would
violate server constraints are enforced on the client side, and are never passed to
the database server where they would be rejected. This means that fewer updates
generate error conditions during the updating process. For more information about
working with custom constraints on field components, see “Specifying constraints”
on page 17-19.

At the record level, you can specify constraints using the client dataset’s Constraints
property. Constraints is a collection of TCheckConstraint objects, where each object
represents a separate condition. Use the CustomConstraint property of a
TCheckConstraint object to add your own constraints that are checked when you post
records.

When fetching data from a database server (using TSQLClientDataSet or using
TClientDataSet with provider component), there may be times when you want to turn
off enforcement of data constraints, especially when the client dataset does not
contain all of the records from the source dataset (or database server). For example, if
a server constraint is based on the current maximum value in a field, but the client
dataset fetches multiple packets of records, the current maximum value for a field in
the client dataset may differ from the maximum value on the database server, and
constraints may be invoked differently. In another case, if a client dataset applies a
filter to records when constraints are enabled, the filter may interfere in unintended
ways with constraint conditions. In each of these cases, an application may disable
constraint-checking.

20-14 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h d a t a u s i n g a c l i e n t d a t a s e t

To disable constraints temporarily, call a client dataset’s DisableConstraints method.
Each time DisableConstraints is called, a reference count is incremented. While the
reference count is greater than zero, constraints are not enforced on the client dataset.

To reenable constraints for the client dataset, call the dataset’s EnableConstraints
method. Each call to EnableConstraints decrements the reference count. When the
reference count is zero, constraints are enabled again.

Tip Always call DisableConstraints and EnableConstraints in paired blocks to ensure that
constraints are enabled when you intend them to be.

Making data read-only

TDataSet introduces the CanModify property so that applications can determine
whether the data in a dataset can be edited. Applications can’t change the CanModify
property, because some TDataSet descendants, such as unidirectional datasets,
introduce no built-in support for posting edits.

However, because client datasets represent in-memory data, your application can
always control whether users can edit that data. (It is possible, however, that the
application can’t post updates to a database server if the server table is read-only). To
prevent users from modifying data, set the ReadOnly property of the client dataset to
True. Setting ReadOnly to True sets the CanModify property to False.

You do not need to close a client dataset to change its read-only status. An
application can make a client dataset read-only or not on a temporary basis at any
time merely by changing the current setting of the ReadOnly property.

Editing data

Client datasets represent their data as an in-memory data packet. This packet is the
value of the client dataset’s Data property. By default, however, edits are not stored
in the Data property. Instead the insertions, deletions, and modifications (made by
users or programmatically) are stored in an internal change log, represented by the
Delta property. Using a change log serves two purposes:

• When working with a provider, the change log is required by the mechanism for
applying updates to the server.

• In any application, the change log provides sophisticated support for undoing
changes.

The LogChanges property lets you disable logging temporarily. When LogChanges is
True, changes are recorded in the log. When LogChanges is False, changes are made
directly to the Data property. You can disable the change log in file-based
applications when you do not need the undo support.

Edits in the change log remain there until they are removed by the application.
Applications remove edits when

• Undoing changes
• Saving changes

U s i n g c l i e n t d a t a s e t s 20-15

W o r k i n g w i t h d a t a u s i n g a c l i e n t d a t a s e t

Note Saving the client dataset to a file does not remove edits from the change log. When
you reload the dataset, the Data and Delta properties are the same as they were when
the data was saved.

Undoing changes
Even though a record’s original version remains unchanged in Data, each time a user
edits a record, leaves it, and returns to it, the user sees the last changed version of the
record. If a user or application edits a record a number of times, each changed
version of the record is stored in the change log as a separate entry.

Storing each change to a record makes it possible to support multiple levels of undo
operations should it be necessary to restore a record’s previous state:

• To remove the last change to a record, call UndoLastChange. UndoLastChange takes
a Boolean parameter, FollowChange, that indicates whether to reposition the cursor
on the restored record (True), or to leave the cursor on the current record (False). If
there are several changes to a single record, each call to UndoLastChange removes
another layer of edits. UndoLastChange returns a Boolean value indicating success
or failure to remove a change. If the removal occurs, UndoLastChange returns False.
Use the ChangeCount property to determine whether there are any more changes
to undo. ChangeCount indicates the number of changes stored in the change log.

• Instead of removing each layer of changes to a single record, you can remove them
all at once. To remove all changes to a record, select the record, and call
RevertRecord. RevertRecord removes any changes to the current record from the
change log.

• At any point during edits, you can save the current state of the change log using
the SavePoint property. Reading SavePoint returns a marker into the current
position in the change log. Later, if you want to undo all changes that occurred
since you read the save point, set SavePoint to the value you read previously. Your
application can obtain values for multiple save points. However, once you back up
the change log to a save point, the values of all save points that your application
read after that one are invalid.

• You can abandon all changes recorded in the change log by calling CancelUpdates.
CancelUpdates clears the change log, effectively discarding all edits to all records.
Be careful when you call CancelUpdates. After you call CancelUpdates, you cannot
recover any changes that were in the log.

Saving changes
Client datasets use different mechanisms for incorporating changes from the change
log, depending on whether the client dataset stores its data in a file or represents data
from a server. Whichever mechanism is used, the change log is automatically
emptied when all updates have been incorporated.

File-based applications can simply merge the changes into the local cache
represented by the Data property. They do not need to worry about resolving local
edits with changes made by other users. To merge the change log into the Data
property, call the MergeChangeLog method. “Merging changes into data” on
page 20-40 describes this process.

20-16 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h d a t a u s i n g a c l i e n t d a t a s e t

You can’t use MergeChangeLog if you are using the client dataset to represent server
data. The information in the change log is required so that the updated records can be
resolved with the data stored in the database (or source dataset). Instead, you call
ApplyUpdates, which sends the changes to the database server (or source dataset) and
updates the Data property only when the modifications have been successfully
posted. See “Applying updates” on page 20-31 for more information about this
process.

Sorting and indexing

Using indexes provides several benefits to your applications:

• They allow client datasets to locate data quickly.

• They let you apply ranges to limit the available records.

• They let your application to set up relationships between client datasets such as
lookup tables or master/detail links.

• They specify the order in which records appear.

If a client dataset uses a provider (including the internal provider used by
TSQLClientDataSet), it inherits a default index and sort order based on the data it
receives from the provider. The default index is called DEFAULT_ORDER. You can
use this ordering, but you cannot change or delete the index.

In addition to the default index, the client dataset maintains a second index, called
CHANGEINDEX, on the changed records stored in the change log (Delta property).
CHANGEINDEX orders all records in the client dataset as they would appear if the
changes specified in Delta were applied. CHANGEINDEX is based on the ordering
inherited from DEFAULT_ORDER. As with DEFAULT_ORDER, you cannot change
or delete the CHANGEINDEX index.

You can use other existing indexes for a dataset, and you can create your own
indexes. The following sections describe how to create and use indexes with client
datasets.

Adding a new index
There are three ways to add indexes to a client dataset:

• To create a temporary index at runtime that sorts the records in the client dataset,
you can use the IndexFieldNames property. Specify field names, separated by
semicolons. Ordering of field names in the list determines their order in the index.

This is the least powerful method of adding indexes. You can’t specify a
descending or case-insensitive index, and the resulting indexes do not support
grouping. These indexes do not persist when you close the dataset, and are not
saved when you save the client dataset to a file.

• To create an index at runtime that can be used for grouping, call AddIndex.
AddIndex lets you specify the properties of the index, including

• The name of the index. This can be used for switching indexes at runtime.

U s i n g c l i e n t d a t a s e t s 20-17

W o r k i n g w i t h d a t a u s i n g a c l i e n t d a t a s e t

• The fields that make up the index. The index uses these fields to sort records
and to locate records that have specific values on these fields.

• How the index sorts records. By default, indexes impose an ascending sort
order (based on the machine’s locale). This default sort order is case-sensitive.
You can specify options to make the entire index case-insensitive or to sort in
descending order. Alternately, you can provide a list of fields to be sorted case-
insensitively and a list of fields to be sorted in descending order.

• The default level of grouping support for the index.

Indexes created with AddIndex do not persist when the client dataset is closed.
(That is, they are lost when you reopen the client dataset). You can't call AddIndex
when the dataset is closed. Indexes you add using AddIndex are not saved when
you save the client dataset to a file.

• The third way to create an index is at the time the client dataset is created. Before
creating the client dataset, specify the desired indexes using the IndexDefs
property. The indexes are then created along with the underlying dataset when
you call CreateDataSet. See “Creating a dataset using field and index definitions”
on page 20-38 for details.

As with AddIndex, indexes you create with the dataset support grouping, can sort
in ascending order on some fields and descending order on others, and can be case
insensitive on some fields and case sensitive on others. Indexes created this way
always persist and are saved when you save the client dataset to a file.

Tip You can index and sort on internally calculated fields with client datasets.

Deleting and switching indexes
To remove an index you created for a client dataset, call DeleteIndex and specify the
name of the index to remove. You cannot remove the DEFAULT_ORDER and
CHANGEINDEX indexes.

To use a different index with a client dataset when more than one index is available,
use the IndexName property to select the index to use. At design time, you can select
from available indexes in IndexName property drop-down box in the Object
Inspector.

Obtaining information about indexes
At runtime, your application can ask the client dataset for information about the
available indexes.

The GetIndexNames method retrieves a list of available indexes for a table.
GetIndexNames fills a string list with valid index names. For example, the following
code fetches the list of indexes available for ClientDatSet1:

var
IndexList: TList;

begin
ƒ
IndexList := TStringList.Create;
ClientDataSet1.GetIndexNames(IndexList);

20-18 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h d a t a u s i n g a c l i e n t d a t a s e t

You can also examine a list of fields in the current index. To iterate through all the
fields in the current index, use two properties:

• IndexFieldCount property, which indicates the number of columns in the index.

• IndexFields property, which lists the fields that comprise the index.

IndexFields is an array of TField components, one for each field in the index. The
following code fragment illustrates how you can use IndexFieldCount and IndexFields
to iterate through the fields in the current index:

var
I: Integer;
ListOfIndexFields: array[0 to 20} of string;

begin
with ClientDataSet1 do

begin
for I := 0 to IndexFieldCount - 1 do

ListOfIndexFields[I] := IndexFields[I].FieldName;
end;

end;

Using indexes to group data
When you use an index in your client dataset, it automatically imposes a sort order
on the records. Because of this order, adjacent records usually contain duplicate
values on the fields that make up the index. For example, consider the following
fragment from an orders table that is indexed on the SalesRep and Customer fields:

Because of the sort order, adjacent values in the SalesRep column are duplicated.
Within the records for SalesRep 1, adjacent values in the Customer column are
duplicated. That is, the data is grouped by SalesRep, and within the SalesRep group
it is grouped by Customer. Each grouping has an associated level. In this case, the
SalesRep group has level 1 (because it is not nested in any other groups) and the
Customer group has level 2 (because it is nested in the group with level 1). Grouping
level corresponds to the order of fields in the index.

Client datasets let you determine where the current record lies within any given
grouping level. This allows your application to display records differently,
depending on whether they are the first record in the group, in the middle of a group,
or the last record in a group. For example, you might want to only display a field

SalesRep Customer OrderNo Amount

1 1 5 100

1 1 2 50

1 2 3 200

1 2 6 75

2 1 1 10

2 3 4 200

U s i n g c l i e n t d a t a s e t s 20-19

W o r k i n g w i t h d a t a u s i n g a c l i e n t d a t a s e t

value if it is on the first record of the group, eliminating the duplicate values. To do
this with the previous table results in the following:

To determine where the current record falls within any group, use the GetGroupState
method. GetGroupState takes an integer giving the level of the group and returns a
value indicating where the current record falls the group (first record, last record, or
neither).

When you create an index, you can specify the level of grouping it supports (up to
the number of fields in the index). GetGroupState can’t provide information about
groups beyond that level, even if the index sorts records on additional fields.

Representing calculated values

As with any dataset, you can add calculated fields to your client dataset. These are
fields whose values you calculate dynamically, usually based on the values of other
fields in the same record. For more information about using calculated fields, see
“Defining a calculated field” on page 17-7.

Client datasets, however, let you optimize when fields are calculated by using
internally calculated fields. For more information on internally calculated fields, see
“Using internally calculated fields in client datasets” below.

You can also tell client datasets to create calculated values that summarize the data in
several records using maintained aggregates. For more information on maintained
aggregates, see “Using maintained aggregates” on page 20-20.

Using internally calculated fields in client datasets
In other datasets, your application must compute the value of calculated fields every
time the record changes or the user edits any fields in the current record. It does this
in an OnCalcFields event handler.

While you can still do this, client datasets let you minimize the number of times
calculated fields must be recomputed by saving calculated values in the client
dataset’s data. When calculated values are saved with the client dataset, they must
still be recomputed when the user edits the current record, but your application need
not recompute values every time the current record changes. To save calculated
values in the client dataset’s data, use internally calculated fields instead of
calculated fields.

SalesRep Customer OrderNo Amount

1 1 5 100

2 50

2 3 200

6 75

2 1 1 10

3 4 200

20-20 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h d a t a u s i n g a c l i e n t d a t a s e t

Internally calculated fields, just like calculated fields, are calculated in an
OnCalcFields event handler. However, you can optimize your event handler by
checking the State property of your client dataset. When State is dsInternalCalc, you
must recompute internally calculated fields. When State is dsCalcFields, you need only
recompute regular calculated fields.

To use internally calculated fields, you must define the fields as internally calculated
before you create the client dataset. If you are creating the client dataset using
persistent fields, define fields as internally calculated by selecting InternalCalc in the
Fields editor. If you are creating the client dataset using field definitions, set the
InternalCalcField property of the relevant field definition to True.

Note Other types of datasets use internally calculated fields. However, with other datasets,
you do not calculate these values in an OnCalcFields event handler. Instead, they are
computed automatically by the remote database server.

Using maintained aggregates

Client datasets provide support for summarizing data over groups of records.
Because these summaries are automatically updated as you edit the data in the
dataset, this summarized data is called a “maintained aggregate.”

In their simplest form, maintained aggregates let you obtain information such as the
sum of all values in a column of the client dataset. They are flexible enough, however,
to support a variety of summary calculations and to provide subtotals over groups of
records defined by a field in an index that supports grouping.

Specifying aggregates
To specify that you want to calculate summaries over the records in a client dataset,
use the Aggregates property. Aggregates is a collection of aggregate specifications
(TAggregate). You can add aggregate specifications to your client dataset using the
Collection Editor at design time, or using the Add method of Aggregates at runtime. If
you want to create field components for the aggregates, create persistent fields for the
aggregated values in the Fields Editor.

Note When you create aggregated fields, the appropriate aggregate objects are added to
the client dataset’s Aggregates property automatically. Do not add them explicitly
when creating aggregated persistent fields. For details on creating aggregated
persistent fields, see “Defining an aggregate field” on page 17-10.

For each aggregate, the Expression property indicates the summary calculation it
represents. Expression can contain a simple summary expression such as

Sum(Field1)

or a complex expression that combines information from several fields, such as

Sum(Qty * Price) - Sum(AmountPaid)

Aggregate expressions include one or more of the summary operators in Table 20.2

U s i n g c l i e n t d a t a s e t s 20-21

W o r k i n g w i t h d a t a u s i n g a c l i e n t d a t a s e t

The summary operators act on field values or on expressions built from field values
using the same operators you use to create filters. (You can’t nest summary
operators, however.) You can create expressions by using operators on summarized
values with other summarized values, or on summarized values and constants.
However, you can’t combine summarized values with field values, because such
expressions are ambiguous (there is no indication of which record should supply the
field value.) These rules are illustrated in the following expressions:

Aggregating over groups of records
By default, maintained aggregates are calculated so that they summarize all the
records in a client dataset. However, you can specify that you want to summarize
over the records in a group instead. This allows you to provide intermediate
summaries such as subtotals for groups of records that share a common field value.

Before you can specify a maintained aggregate over a group of records, you must use
an index that supports the appropriate grouping. See “Using indexes to group data”
on page 20-18 for information on grouping support.

Once you have an index that groups the data in the way you want it summarized,
specify the IndexName and GroupingLevel properties of the aggregate to indicate what
index it uses, and which group or subgroup on that index defines the records it
summarizes.

For example, consider the following fragment from an orders table that is grouped by
SalesRep and, within SalesRep, by Customer:

Table 20.2 Summary operators for maintained aggregates

Operator Use

Sum Totals the values for a numeric field or expression

Avg Computes the average value for a numeric or date-time field or expression

Count Specifies the number of non-blank values for a field or expression

Min Indicates the minimum value for a string, numeric, or date-time field or expression

Max Indicates the maximum value for a string, numeric, or date-time field or expression

Sum(Qty * Price) {legal -- summary of an expression on fields}
Max(Field1) - Max(Field2) {legal -- expression on summaries}
Avg(DiscountRate) * 100 {legal -- expression of summary and constant}
Min(Sum(Field1)) {illegal -- nested summaries}
Count(Field1) - Field2 {illegal -- expression of summary and field}

SalesRep Customer OrderNo Amount

1 1 5 100

1 1 2 50

1 2 3 200

1 2 6 75

2 1 1 10

2 3 4 200

20-22 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h d a t a u s i n g a c l i e n t d a t a s e t

The following code sets up a maintained aggregate that indicates the total amount for
each sales representative:

Agg.Expression := 'Sum(Amount)';
Agg.IndexName := 'SalesCust';
Agg.GroupingLevel := 1;
Agg.AggregateName := 'Total for Rep';

To add an aggregate that summarizes for each customer within a given sales
representative, create a maintained aggregate with level 2.

Maintained aggregates that summarize over a group of records are associated with a
specific index. The Aggregates property can include aggregates that use different
indexes. However, only the aggregates that summarize over the entire dataset and
those that use the current index are valid. Changing the current index changes which
aggregates are valid. To determine which aggregates are valid at any time, use the
ActiveAggs property.

Obtaining aggregate values
To get the value of a maintained aggregate, call the Value method of the TAggregate
object that represents the aggregate. Value returns the maintained aggregate for the
group that contains the current record of the client dataset.

When you are summarizing over the entire client dataset, you can call Value at any
time to obtain the maintained aggregate. However, when you are summarizing over
grouped information, you must be careful to ensure that the current record is in the
group whose summary you want. Because of this, it is a good idea to obtain
aggregate values at clearly specified times, such as when you move to the first record
of a group or when you move to the last record of a group. Use the GetGroupState
method to determine where the current record falls within a group.

To display maintained aggregates in data-aware controls, use the Fields editor to
create a persistent aggregate field component. When you specify an aggregate field
in the Fields editor, the client dataset’s Aggregates is automatically updated to include
the appropriate aggregate specification. The AggFields property contains the new
aggregated field component, and the FindField method returns it.

Adding application-specific information to the data

Application developers can add custom information to the client dataset’s Data
property. Because this information is bundled with the data packet, it is included
when you save the data to a file or stream. It is copied when you copy the data to
another dataset. Optionally, it can be included with the Delta property so that a
provider can read this information when it receives updates from the client dataset.

To save application-specific information with the Data property, use the
SetOptionalParam method. This method lets you store an OleVariant that contains the
data under a specific name.

To retrieve this application-specific information, use the GetOptionalParam method,
passing in the name that was used when the information was stored.

U s i n g c l i e n t d a t a s e t s 20-23

C o p y i n g d a t a f r o m a n o t h e r d a t a s e t

Copying data from another dataset
To copy the data from another dataset at design time, right click the dataset and
choose Assign Local Data. A dialog appears listing all the datasets available in your
project. Select the one from which you want to copy and choose OK. When you copy
the source dataset, your client dataset is automatically activated.

To copy from another dataset at runtime, you can assign its data directly or, if the
source is another client dataset, you can clone the cursor.

Assigning data directly

You can use the client dataset’s Data property to assign data to a client dataset from
another dataset. Data is a data packet in the form of an OleVariant. A data packet can
come from another client dataset or from any other dataset by using a provider. Once
a data packet is assigned to Data, its contents are displayed automatically in data-
aware controls connected to the client dataset by a data source component.

When you open a TSQLClientDataSet object or a TClientDataSet object that is linked to
a provider, data packets are automatically assigned to Data. See “Using an SQL client
dataset” on page 20-34 for information on using TSQLClientDataSet. See “Using a
client dataset with a provider” on page 20-24 for information on using TClientDataSet
with a provider component.

When you are not using the data from the database or provider, you can copy the
data from another client dataset as follows:

ClientDataSet1.Data := ClientDataSet2.Data;

Note When you copy the Data property of another client dataset, you copy the change log
as well, but the copy does not reflect any filters or ranges that have been applied. To
include filters or ranges, you must clone the source dataset’s cursor instead.

You can copy data to TClientDataSet from a dataset that is not a client dataset by
creating a dataset provider component, linking it to the source dataset, and then
copying its data:

TempProvider := TDataSetProvider.Create(Form1);
TempProvider.DataSet := SourceDataSet;
ClientDataSet1.Data := TempProvider.Data;
TempProvider.Free;

Note When you assign directly to the Data property, the new data packet is not merged
into the existing data. Instead, all previous data is replaced.

With any client dataset, you can use a provider component to merge changes from
another client dataset. Create a dataset provider as in the previous example, but
attach it to the destination dataset and instead of copying the data property, use the
ApplyUpdates method:

TempProvider := TDataSetProvider.Create(Form1);
TempProvider.DataSet := SQLClientDataSet1;
TempProvider.ApplyUpdates(SourceDataSet.Delta, -1, ErrCount);
TempProvider.Free;

20-24 D e v e l o p e r ’ s G u i d e

U s i n g a c l i e n t d a t a s e t w i t h a p r o v i d e r

Note When you merge data this way, it is merged into the destination client dataset’s in-
memory cache. You must still call that client dataset’s ApplyUpdates method to then
apply those changes back to the database server.

Cloning a client dataset cursor

Client datasets use the CloneCursor method to let you work with a second view of the
data at runtime. CloneCursor lets a second client dataset share the original client
dataset’s data. This is less expensive than copying all the original data, but, because
the data is shared, the second client dataset can’t modify the data without affecting
the original client dataset.

CloneCursor takes three parameters: Source specifies the client dataset to clone. The
last two parameters (Reset and KeepSettings) indicate whether to copy information
other than the data. This information includes any filters, the current index, links to a
master table (when the source dataset is a detail set), the ReadOnly property, and any
links to a connection component or provider interface.

When Reset and KeepSettings are False, a cloned client dataset is opened, and the
settings of the source client dataset are used to set the properties of the destination.
When Reset is True, the destination dataset’s properties are given the default values
(no index or filters, no master table, ReadOnly is False, and no connection component
or provider is specified). When KeepSettings is True, the destination dataset’s
properties are not changed.

Using a client dataset with a provider
When using a client dataset to represent data from a database server or another
dataset, the client dataset uses a provider component. The provider component
passes data from a source dataset to the client dataset. (When using
TSQLClientDataSet, this source dataset is an internal query component for accessing
the data; with TClientDataSet, it is a dataset component you add to a form or data
module.) After editing the data in memory, the client dataset applies updates,
through the provider, back to the source dataset or directly to a remote database
server.

Because with TSQLClientDataSet components the provider is internal, it can’t be
accessed directly. However, you can still use the client dataset’s properties and
methods to affect the communication between the client dataset and its internal
provider (and hence between the client dataset and the database server).

With TClientDataSet, the provider can reside in the same application as the client
dataset, or it can be part of a separate application running on another system.

For more information about provider components, see Chapter 21, “Using provider
components.”

U s i n g c l i e n t d a t a s e t s 20-25

U s i n g a c l i e n t d a t a s e t w i t h a p r o v i d e r

The following steps describe how to use a client dataset with a provider:

1 If you are using TClientDataSet, specify a data provider.

2 Optionally, Get parameters from the source dataset or pass parameters to the
source dataset.

3 Depending on the client dataset and provider, you may specify the command to
execute on the server.

4 Request data from the source dataset.

5 Update records.

6 Refresh records.

In addition, TClientDataSet lets you communicate with the provider using custom
events.

Specifying a data provider

Before TClientDataSet can receive data from another dataset and apply updates to
that dataset or its database server, it must be associated with a dataset provider. The
way you associate TClientDataSet with a provider depends on whether the provider
is in the same application as the client dataset or on a remote application server
running on another system.

• If the provider is in the same application as the client dataset, you can associate it
with a provider by choosing a provider from the drop-down list for the
ProviderName property in the Object Inspector. This works as long as the provider
has the same Owner as the client dataset. (The client dataset and the provider have
the same Owner if they are placed in the same form or data module.) To use a local
provider that has a different Owner, you must form the association at runtime
using the client dataset’s SetProvider method.

• If the provider is on a remote application server, you need to use both the
RemoteServer and ProviderName properties. RemoteServer specifies the name of a
connection component from which to get a list of providers. The connection
component resides in the same data module as the client dataset. It establishes and
maintains a connection to an application server, sometimes called a “data broker”.

At design time, after you specify RemoteServer, you can select a provider from the
drop-down list for the ProviderName property in the Object Inspector. This list
includes both local providers (in the same form or data module) and remote
providers that can be accessed through the connection component.

Note The connection component that connects TClientDataSet to a provider on a remote
application server must be purchased separately.

At runtime, you can switch among available providers (both local and remote) by
setting ProviderName in code.

20-26 D e v e l o p e r ’ s G u i d e

U s i n g a c l i e n t d a t a s e t w i t h a p r o v i d e r

Getting parameters from the source dataset

There are two circumstances when a client dataset needs to obtain parameter values
from its source dataset:

• The client needs to know the value of output parameters on a stored procedure.

• The client wants to initialize the input parameters of a query or stored procedure
to the current values on the source dataset.

A client dataset stores parameter values in its Params property. These values are
refreshed with any output parameters whenever the client dataset fetches data from
the source dataset. However, there may be times when a TClientDataSet component
in a client application needs output parameters when it is not fetching data.

To fetch output parameters when not fetching records, or to initialize input
parameters, the client dataset can request parameter values from the source dataset
by calling the FetchParams method. The parameters are returned in a data packet
from the provider and assigned to the client dataset’s Params property.

At design time, the Params property can be initialized by right-clicking the client
dataset and choosing Fetch Params.

Note There is never any need to call FetchParams when working with TSQLClientDataSet,
because the Params property always reflects the parameters on the internal source
dataset. With TClientDataSet, The FetchParams method (or the Fetch Params
command) only works if the client dataset is connected to a provider whose
associated dataset can supply parameters. For example, if the source dataset is a
TSQLDataSet object with a CommandType of ctTable, there are no parameters to fetch.

If the provider is on a separate system as part of a stateless application server, you
can’t use FetchParams to retrieve output parameters. In a stateless application server,
other clients can change and rerun the query or stored procedure, changing output
parameters before the call to FetchParams. To retrieve output parameters from a
stateless application server, use the Execute method. If the provider is associated with
a query or stored procedure, Execute tells the provider to execute the query or stored
procedure and return any output parameters. These returned parameters are then
used to automatically update the Params property.

Passing parameters to the source dataset

Client datasets can pass parameters to the source dataset to specify what data they
want provided in the data packets it sends. These parameters can specify

• Parameter values for a query or stored procedure that is run on the application
server

• Field values that limit the records sent in data packets

You can specify parameter values that your client dataset sends to the provider at
design time or at runtime. At design time, select the client dataset, and then double-
click the Params property in the Object Inspector. This brings up the collection editor,
where you can add, delete, or rearrange parameters. By selecting a parameter in the

U s i n g c l i e n t d a t a s e t s 20-27

U s i n g a c l i e n t d a t a s e t w i t h a p r o v i d e r

collection editor, you can use the Object Inspector to edit the properties of that
parameter.

At runtime, use the CreateParam method of the Params property to add parameters to
your client dataset. CreateParam returns a parameter object, given a specified name,
parameter type, and datatype. You can then use the properties of that parameter
object to assign a value to the parameter.

For example, the following code sets the value of a parameter named CustNo to 605:

with ClientDataSet1.Params.CreateParam(ftInteger, 'CustNo', ptInput) do
AsInteger := 605;

If the client dataset is not active, you can send the parameters to the provider and
retrieve a data packet that reflects those parameter values simply by setting the Active
property to True.

Sending query or stored procedure parameters
When a provider represents the results of a query or stored procedure, you can use
the Params property to specify parameter values. When the client dataset requests
data from the source dataset or uses its Execute method to run a query or stored
procedure that does not return a dataset, it passes these parameter values along with
the request for data or the execute command. When the provider receives these
parameter values, it assigns them to its associated dataset. It then instructs the
dataset to execute its query or stored procedure using these parameter values, and, if
the client dataset requested data, begins providing data, starting with the first record
in the result set.

Note Parameter names should match the names of the corresponding parameters on the
source dataset.

Limiting records with parameters
When a provider represents a TSQLTable component, you can use Params property to
limit the records that are provided to the Data property.

Each parameter name must match the name of a field in the TSQLTable component
associated with the provider. The provider then sends only those records whose
values on the corresponding fields match the values assigned to the parameters.

For example, consider an application that displays the orders for a single customer.
When the user identifies the customer, the client dataset sets its Params property to
include a single parameter named CustID (or whatever field in the source table is
called) whose value identifies the customer whose orders should be displayed. When
the client dataset requests data from the source dataset, it passes this parameter
value. The provider then sends only the records for the identified customer. This is
more efficient than letting the provider send all the orders records to the client
application and then filtering the records using the client dataset.

20-28 D e v e l o p e r ’ s G u i d e

U s i n g a c l i e n t d a t a s e t w i t h a p r o v i d e r

Specifying the command to execute on the server

When using TSQLClientDataSet, the application does not have direct access to the
source dataset. Instead, the client dataset must specify an SQL statement it executes
to produce data packets. It does this using the CommandText property. The
CommandType property indicates whether CommandText represents an SQL statement
for the server to execute, the name of a table, or the name of a stored procedure.

When using TClientDataSet, the source dataset typically determines what data is
supplied to clients. This dataset may have a property that specifies an SQL statement
to generate the data, or it may represent a specific database table or stored procedure.
For example, the CommandText property of TSQLDataSet specifies an SQL statement,
a table name, or a stored procedure name, depending on the value of the
CommandType property, while the ProcedureName property of TSQLStoredProc
specifies the stored procedure it executes.

If the provider allows, TClientDataSet can override the property that indicates what
data the dataset represents. This enables the client dataset to specify dynamically what
data it wants to see. As with TSQLClientDataSet, you can set CommandText to an SQL
statement that replaces the SQL on the provider’s dataset, the name of a table or the
name of a stored procedure. Which type of value to use is determined by the type of
dataset associated with the provider.

By default, the internal provider used by TSQLClientDataSet always allows its client
dataset to specify a CommandText value, because there is no other way to specify
what data to fetch. For external provider components, however, the default is not to
allow client datasets to specify CommandText in this way. To allow TClientDataSet to
use its CommandText property, you must add poAllowCommandText to the Options
property of the provider. Otherwise, the value of CommandText is ignored.

Warning Do not remove poAllowCommandText from the Options property of TSQLClientDataSet
before opening the dataset.

The client dataset sends its CommandText string to the provider at two times:

• When the client dataset first opens. After it has retrieved the first data packet from
the provider, the client dataset does not send CommandText when fetching
subsequent data packets.

• When the client dataset sends an Execute command to the provider.

To send an SQL command or to change a table or stored procedure name at any other
time, you must explicitly use the IAppServer interface that is available as the
AppServer property.

U s i n g c l i e n t d a t a s e t s 20-29

U s i n g a c l i e n t d a t a s e t w i t h a p r o v i d e r

Requesting data from the source dataset

The following table lists the properties and methods of client datasets that determine
how data is fetched from a provider:

By default, a client dataset retrieves all records from the source dataset. You can
change this using PacketRecords and FetchOnDemand.

Incremental fetching
PacketRecords specifies either how many records to fetch at a time, or the type of
records to return. By default, PacketRecords is set to -1, which means that all available
records are fetched at once, either when the client dataset is first opened, or when the
application explicitly calls GetNextPacket. When PacketRecords is -1, then after the
client dataset first fetches data, it never needs to fetch more data because it already
has all available records.

To fetch records in small batches, set PacketRecords to the number of records to fetch.
For example, the following statement sets the size of each data packet to ten records:

ClientDataSet1.PacketRecords := 10;

This process of fetching records in batches is called “incremental fetching”. Client
datasets use incremental fetching when PacketRecords is greater than zero. By default,
the client dataset automatically calls GetNextPacket to fetch data as needed. Newly
fetched packets are appended to the end of the data already in the client dataset.

GetNextPacket returns the number of records it fetches. If the return value is the same
as PacketRecords, the end of available records was not encountered. If the return value
is greater than 0 but less than PacketRecords, the last record was reached during the
fetch operation. If GetNextPacket returns 0, then there are no more records to fetch.

Warning Incremental fetching does not work if you are fetching data from a remote provider
on a stateless application server.

You can also use PacketRecords to fetch metadata information about the source
dataset. To retrieve metadata information, set PacketRecords to 0.

Table 20.3 Client datasets properties and method for handling data requests

Property or method Purpose

FetchOnDemand property Determines whether the client dataset automatically fetches data as
needed, or relies on the application to call its GetNextPacket,
FetchBlobs, and FetchDetails functions to retrieve additional data.

PacketRecords property Specifies the type or number of records to include in each data
packet.

GetNextPacket method Fetches the next data packet from the provider.

FetchBlobs method Fetches any BLOB fields for the current record when the provider
does not include BLOB data automatically.

FetchDetails method Fetches nested detail datasets for the current record when the
provider does not include these in data packets automatically.

20-30 D e v e l o p e r ’ s G u i d e

U s i n g a c l i e n t d a t a s e t w i t h a p r o v i d e r

Fetch-on-demand
Automatic fetching of records is controlled by the FetchOnDemand property. When
FetchOnDemand is True (the default), automatic fetching is enabled. To prevent the
client dataset from automatically fetching records as needed, set FetchOnDemand to
False. When FetchOnDemand is False, the application must explicitly call GetNextPacket
to fetch records.

For example, applications that need to represent extremely large read-only datasets
can turn off FetchOnDemand to ensure that the client datasets do not try to load more
data than can fit into memory. Between fetches, the client dataset frees its cache using
the EmptyDataSet method. This approach, however, does not work well when the
client must post updates to the server.

When using TSQLClientDataSet, the Options property controls whether records in
data packets include BLOB data and nested detail datasets. When using
TClientDataSet, the external provider controls whether this information is included in
data packets. If data packets do not include this information, the FetchOnDemand
property causes the client dataset to automatically fetch BLOB data and detail
datasets on an as-needed basis. If FetchOnDemand is False, and BLOB data and detail
datasets are not included in data packets, you must explicitly call the FetchBlobs or
FetchDetails method to retrieve this information.

Updating records

Client datasets work with a local copy of data. The user sees and edits this copy in the
client application’s data-aware controls. User changes are temporarily stored by the
client dataset in an internally maintained change log. The contents of the change log
are stored as a data packet in the Delta property. To make the changes in Delta
permanent, the client dataset must apply them to the database.

When a client applies updates to the server, the following steps occur:

1 The application calls the ApplyUpdates method of a client dataset object. This
method passes the contents of the client dataset’s Delta property to the provider.
Delta is a data packet that contains a client dataset’s updated, inserted, and deleted
records.

2 The provider applies the updates to the database (or source dataset), caching any
problem records that it can’t resolve itself. See “Responding to client update
requests” on page 21-7 for details on how the provider applies updates.

3 The provider returns all unresolved records to the client dataset in a Result data
packet. The Result data packet contains all records that were not updated. It also
contains error information, such as error messages and error codes.

4 The client dataset attempts to reconcile update errors returned in the Result data
packet on a record-by-record basis.

U s i n g c l i e n t d a t a s e t s 20-31

U s i n g a c l i e n t d a t a s e t w i t h a p r o v i d e r

Applying updates
Changes made to the client dataset’s local copy of data are not sent to the database
server until the client application calls the ApplyUpdates method for the dataset.
ApplyUpdates takes the changes in the change log, and sends them as a data packet
(called Delta) to the provider.

ApplyUpdates takes a single parameter, MaxErrors, which indicates the maximum
number of errors that the provider should tolerate before aborting the update
process. If MaxErrors is 0, then as soon as an update error occurs, the entire update
process is terminated. No changes are written to the database, and the client dataset’s
change log remains intact. If MaxErrors is -1, any number of errors is tolerated, and
the change log ends up containing all records that could not be successfully applied.
If MaxErrors is a positive value, and more errors occur than are permitted by
MaxErrors, all updates are aborted. If fewer errors occur than specified by MaxErrors,
all records successfully applied are automatically cleared from the client dataset’s
change log.

ApplyUpdates returns the number of actual errors encountered, which is always less
than or equal to MaxErrors plus one. This return value indicates the number of
records that could not be written to the database.

The client dataset’s ApplyUpdates method does the following:

1 It indirectly calls the provider’s ApplyUpdates method. The provider’s
ApplyUpdates method writes the updates to the database (or source dataset) and
attempts to correct any errors it encounters. Records that it cannot apply because
of error conditions are sent back to the client dataset.

2 The client dataset ‘s ApplyUpdates method then attempts to reconcile these
problem records by calling the Reconcile method. Reconcile is an error-handling
routine that calls the OnReconcileError event handler. You must code the
OnReconcileError event handler to correct errors. For details about using
OnReconcileError, see “Reconciling update errors” on page 20-31.

3 Finally, Reconcile removes successfully applied changes from the change log and
updates Data to reflect the newly updated records. When Reconcile completes,
ApplyUpdates reports the number of errors that occurred.

Tip If the provider is on a stateless application server, you may want to communicate
with it about persistent state information before or after you apply updates. The
client dataset receives a BeforeApplyUpdates event before the updates are sent, which
lets you send persistent state information to the server. After the updates are applied
(but before the reconcile process), the client dataset receives an AfterApplyUpdates
event where you can respond to any persistent state information returned by the
application server.

Reconciling update errors
The provider returns error records and error information to the client dataset in a
result data packet. If the provider returns an error count greater than zero, then for
each record in the result data packet, the client dataset’s OnReconcileError event
occurs.

20-32 D e v e l o p e r ’ s G u i d e

U s i n g a c l i e n t d a t a s e t w i t h a p r o v i d e r

You should always code the OnReconcileError event handler, even if only to discard
the records returned by the provider. The OnReconcileError event handler is passed
four parameters:

• DataSet: A client dataset that contains the updated record which couldn’t be
applied. You can use client dataset methods to obtain information about the
problem record and to change the record in order to correct any problems. In
particular, you will want to use the CurValue, OldValue, and NewValue properties
of the fields in the current record to determine the cause of the update problem.
However, you must not call any client dataset methods that change the current
record in an OnReconcileError event handler.

• E: An EReconcileError object that represents the problem that occurred. You can
use this exception to extract an error message or to determine the cause of the
update error.

• UpdateKind: The type of update that generated the error. UpdateKind can be
ukModify (the problem occurred updating an existing record that was modified),
ukInsert (the problem occurred inserting a new record), or ukDelete (the problem
occurred deleting an existing record).

• Action: A var parameter that lets you indicate what action to take when the
OnReconcileError handler exits. On entry into the handler, Action is set to the action
taken by the resolution process on the provider. In your event handler, you set this
parameter to

• Skip this record, leaving it in the change log. (raSkip)

• Stop the entire reconcile operation. (raAbort)

• Merge the modification that failed into the corresponding record from the
server. (raMerge) This only works if the server record does not include any
changes to fields modified in the client dataset’s record.

• Replace the current update in the change log with the value of the record in the
event handler (which has presumably been corrected). (raCorrect)

• Back out the changes for this record on the client dataset, reverting to the
originally provided values. (raCancel)

• Update the current record value to match the record on the server. (raRefresh)

The following code shows an OnReconcileError event handler that uses the reconcile
error dialog from the RecError unit, which ships in the object repository directory.
(To use this dialog, add RecError to your uses clause.)

procedure TForm1.ClientDataSetReconcileError(DataSet: TCustomClientDataSet; E:
EReconcileError; UpdateKind: TUpdateKind, var Action TReconcileAction);
begin

Action := HandleReconcileError(DataSet, UpdateKind, E);
end;

U s i n g c l i e n t d a t a s e t s 20-33

U s i n g a c l i e n t d a t a s e t w i t h a p r o v i d e r

Refreshing records

Client datasets work with an in-memory snapshot of data. If that data comes from a
database server, then as time elapses other users may modify it. The data in the client
dataset becomes a less and less accurate picture of the underlying data.

Like any other dataset, client datasets have a Refresh method that updates its records
to match the current values on the server. However, calling Refresh only works if
there are no edits in the change log. Calling Refresh when there are unapplied edits
results in an exception.

Client applications can also update the data while leaving the change log intact. To
do this, call the client dataset’s RefreshRecord method. Unlike the Refresh method,
RefreshRecord updates only the current record in the client dataset. RefreshRecord
changes the record value originally obtained from the provider but leaves any
changes in the change log.

Warning It may not always be appropriate to call RefreshRecord. If the user’s edits conflict with
changes to the underlying dataset made by other users, calling RefreshRecord will
mask this conflict. When the client application applies its updates, no reconcile error
will occur and the application can’t resolve the conflict.

In order to avoid masking update errors, you may want to check that there are no
pending updates for the current record before calling RefreshRecord. For example, the
following code raises an exception if an attempt is made to refresh a modified record:

if ClientDataSet1.UpdateStatus <> usUnModified then
raise Exception.Create('You must apply updates before refreshing the current record.');

ClientDataSet1.RefreshRecord;

Communicating with providers using custom events

Client datasets communicate with a provider component through a special interface
called IAppServer. If the provider is local, IAppServer is the interface to an
automatically-generated object that handles all communication between the client
dataset and its provider. If the provider is remote, IAppServer is the interface to a
remote data module on the application server

TClientDataSet provides many opportunities for customizing the communication that
uses the IAppServer interface. Before and after every IAppServer method call that is
directed at the client dataset’s provider, TClientDataSet receives special events that
allow it to communicate arbitrary information with its provider. These events are
matched with similar events on the provider. Thus for example, when the client
dataset calls its ApplyUpdates method, the following events occur:

1 The client dataset receives a BeforeApplyUpdates event, where it specifies arbitrary
custom information in an OleVariant called OwnerData.

2 The provider receives a BeforeApplyUpdates event, where it can respond to the
OwnerData from the client dataset and update the value of OwnerData to new
information.

20-34 D e v e l o p e r ’ s G u i d e

U s i n g a n S Q L c l i e n t d a t a s e t

3 The provider goes through its normal process of assembling a data packet
(including all the accompanying events).

4 The provider receives an AfterApplyUpdates event, where it can respond to the
current value of OwnerData and update it to a value for the client dataset.

5 The client dataset receives an AfterApplyUpdates event, where it can respond to the
returned value of OwnerData.

Every other IAppServer method call is accompanied by a similar set of BeforeXXX and
AfterXXX events that let you customize the communication between TClientDataSet
and its provider.

In addition, TClientDataSet has a special method, DataRequest, whose only purpose is
to allow application-specific communication with the provider. When the client
dataset calls DataRequest, it passes an OleVariant as a parameter that can contain any
information you want. This, in turn, generates an OnDataRequest event on the
provider, where you can respond in any application-defined way and return a value
to the client dataset.

Using an SQL client dataset
TSQLClientDataSet is a special type of client dataset designed for simple two-tiered
applications. Like a unidirectional dataset, it can use an SQL connection component
to connect to a database server and specify an SQL statement to execute on that
server. Like other client datasets, it buffers data in memory to allow full navigation
and editing support.

TSQLClientDataSet works the same way as a generic client dataset (TClientDataSet)
that is linked to a unidirectional dataset by a dataset provider. In fact,
TSQLClientDataSet has its own, internal provider, which it uses to communicate with
an internally created unidirectional dataset.

Using an SQL client dataset can simplify the process of two-tiered application
development because you don’t need to work with as many components. Although
you can’t access the internal provider directly, the SQL client dataset publishes
properties that let you configure how it applies updates. Typically, however, the
defaults provided by TSQLClientDataSet are sufficient.

When to use TSQLClientDataSet

TSQLClientDataSet is intended for use in a simple two-tiered database applications
and briefcase model applications. It provides an easy-to-set up component for
linking to the database server, fetching data, caching updates, and applying them
back to the server. It can be used in most two-tiered applications.

There are times, however, when it is more appropriate to use TClientDataSet:

• If you are not using data from a database server (for example, if you are using a
dedicated file on disk), then TClientDataSet has the advantage of less overhead.

U s i n g c l i e n t d a t a s e t s 20-35

U s i n g a n S Q L c l i e n t d a t a s e t

• Only TClientDataSet can be used in a multi-tiered database application. Thus, if
you are writing a multi-tiered application, or if you intend to scale up to a multi-
tiered application eventually, you should use TClientDataSet with an external
provider and source dataset.

• Because the source dataset is internal to the SQL client dataset component, you
can’t link two source datasets in a master/detail relationship to obtain nested
detail sets. (You can, however, link two SQL client datasets into a master/detail
relationship.)

• The SQL client dataset does not surface many of the events that occur on its
internal dataset provider. However, in most cases, these events are used in multi-
tiered applications, and are not needed for two-tiered applications.

Setting up an SQL client dataset

To use TSQLClientDataSet,

1 Place the TSQLClientDataSet component in a data module or on a form, and set its
Name property to a unique value appropriate to your application.

2 Identify the database server that contains the data. There are two ways to do this:

• If you have defined a named connection in the connections file, you can simply
specify the name of that connection as the value of the ConnectionName
property. For details on named connections, see “Naming a connection
description” on page 19-3.

• For greater control over connection properties, transaction support, login
support, and the ability to use a single connection for more than one dataset,
use a separate TSQLConnection component instead. Specify the TSQLConnection
component as the value of the DBConnection property. For details on
TSQLConnection, see Chapter 19, “Connecting to databases”.

3 Indicate what data you want to fetch from the server. There are three ways to do
this:

• Set CommandType to ctQuery and set CommandText to an SQL statement you
want to execute on the server. This statement is typically a SELECT statement.
Supply the values for any parameters using the Params property.

• Set CommandType to ctStoredProc and set CommandText to the name of the stored
procedure you want to execute. Supply the values for any input parameters
using the Params property.

• Set CommandType to ctTable and set CommandText to the name of the database
tables whose records you want to use.

4 If the data is to be used with visual data controls, add a data source component to
the form or data module, and set its DataSet property to the TSQLClientDataSet
object. The data source component forwards the data in the client dataset’s in-
memory cache to data-aware components for display. Connect data-aware
components to the data source using their DataSource and DataField properties.

20-36 D e v e l o p e r ’ s G u i d e

U s i n g a n S Q L c l i e n t d a t a s e t

5 If desired, configure the way the internal provider applies updates. The properties
and events that allow this are described in “Configuring the internal provider”
below.

6 Activate the dataset by setting the Active property to True (or, at runtime, calling
the Open method).

7 If you executed a stored procedure, use the Params property to retrieve any output
parameters.

8 When the user has edited the data in the SQL client dataset, you can apply those
edits back to the database server by calling the ApplyUpdates method. Resolve any
update errors in an OnUpdateError event handler. For more information on
applying updates, see “Updating records” on page 20-30.

Configuring the internal provider

Because TSQLClientDataSet does not use an external provider component, you have
less control over how it provides data and applies updates. Typically, this is not a
problem, because TSQLClientDataSet publishes the properties and events of its
internal provider that you are likely to need.

Because you specify the SQL statement to execute as the value of the SQL client
dataset’s CommandText property, you can control what data is included in data
packets. Field properties can be set using persistent fields on the client dataset.

TSQLClientDataSet has two published properties that influence how the internal
provider applies updates. These properties are the same as properties on the
provider, and the TSQLClientDataSet component simply forwards any values you set
on to the internal provider:

• Options controls whether nested detail sets and BLOB data are included in data
packets or fetched separately, whether specific types of edits (insertions,
modifications, or deletions) are disabled, whether a single update can affect
multiple server records, and whether the client dataset’s records are refreshed
when it applies updates. Options is identical to the provider’s Options property. As
a result, it allows you to set options that are not relevant or appropriate to
TSQLClientDataSet. For example, there is no reason to include poIncFieldProps,
because the internal source dataset does not use persistent field components.
Similarly, you do not want to exclude poAllowCommandText, which is included by
default, because that would make it impossible for the client dataset to specify a
query to execute. For information on the provider’s Options property, see “Setting
options that influence the data packets” on page 21-4.

• UpdateMode controls what fields are used to locate records in the SQL statements
the provider generates for applying updates. UpdateMode is identical to the
provider’s UpdateMode property. For information on the provider’s UpdateMode
property, see “Influencing how updates are applied” on page 21-8.

U s i n g c l i e n t d a t a s e t s 20-37

U s i n g a c l i e n t d a t a s e t w i t h f i l e - b a s e d d a t a

TSQLClientDataSet also publishes several events that correspond to events on the
internal provider. Some of the most important of these are

• OnGetTableName, which lets you supply the name of the database table to which
the dataset should apply updates. This lets the internal provider generate SQL
statements for updates when it can’t identify the database table from the query
specified by CommandText. For example, if the query executes a stored procedure
or multi-table join that only requires updates to a single table, supplying an
OnGetTableName event handler allows the internal provider to correctly apply
updates.

• BeforeUpdateRecord, which occurs for every record in the delta packet. This event
lets you make any last-minute changes before the record is inserted, deleted, or
modified. It also provides a way for you to execute your own SQL statements to
apply the update in cases where the provider can’t generate correct SQL (for
example, for multi-table joins where multiple tables must be updated.) To execute
your own SQL statements, use the Execute method of the TSQLConnection
component.

• OnUpdateError, which occurs every time the internal provider can’t apply an
update to the database server. This event lets you correct update errors during the
update process so that they do not count toward the maximum number of errors
allowed in the entire update operation.

Using a client dataset with file-based data
Client datasets can function independently of a provider, such as in file-based
database applications and “briefcase model” applications. When it does not use a
provider, however, the client dataset cannot get table definitions and data from the
server, and there is no server to which it can apply updates. Instead, the client dataset
must independently

• Define and create tables
• Load saved data
• Merge edits into its data
• Save data

Creating a new dataset

There are three ways to define and create client datasets that do not represent server
data:

• You can define and create a new client dataset by creating persistent fields for the
dataset and then choosing Create Dataset from its context menu.

• You can define and create a new client dataset based on field definitions and index
definitions.

• You can copy an existing dataset.

20-38 D e v e l o p e r ’ s G u i d e

U s i n g a c l i e n t d a t a s e t w i t h f i l e - b a s e d d a t a

Creating a new dataset using persistent fields
The following steps describe how to create a new client dataset using the Fields
Editor:

1 From the Component palette, add a TClientDataSet component to your application.

2 Right-click the client dataset and select Fields Editor. In the Fields editor, right-
click and choose the New Field command. Describe the basic properties of your
field definition. Once the field is created, you can alter its properties in the Object
Inspector by selecting the field in the Fields editor.

Continue adding fields in the fields editor until you have described your client
dataset.

3 Right-click the client dataset and choose Create DataSet. This creates an empty
client dataset from the persistent fields you added in the Fields Editor.

4 Right-click the client dataset and choose Save To File. (This command is not
available unless the client dataset contains a dataset.)

5 In the File Save dialog, choose a file name and save a copy of your client dataset to
that file.

Note You can also create the client dataset at runtime using persistent fields that are saved
with the client dataset. Simply call the CreateDataSet method.

Creating a dataset using field and index definitions
If you want to create persistent indexes for your client dataset as well as fields, you
must use field and index definitions. Use the FieldDefs property to specify the fields
in your dataset and the IndexDefs property to specify any indexes. Once the dataset is
specified, right-click the client dataset and choose Create DataSet at design time, or
call the CreateDataSet method at runtime.

When defining the index definitions for your client dataset, two properties of the
index definition apply uniquely to client datasets. These are TIndexDef.DescFields and
TIndexDef.CaseInsFields.

DescFields lets you define indexes that sort records in ascending order on some fields
and descending order on other fields. Instead of using the ixDescending option to sort
in descending order on all the fields in the index, list only those fields that should
sort in descending order as the value of DescFields. For example, when defining an
index that sorts on Field1, then Field2, then Field3, setting DescFields to

Field1;Field3

results in an index that sorts Field2 in ascending order and Field1 and Field3 in
descending order.

CaseInsFields lets you define indexes that sort records case-sensitively on some fields
and case-insensitively on other fields. Instead of using the isCaseInsensitive option to
sort case-insensitively on all the fields in the index, list only those fields that should
sort case-insensitively as the value of CaseInsFields. Like DescFields, CaseInsFields takes
a semicolon-delimited list of field names.

U s i n g c l i e n t d a t a s e t s 20-39

U s i n g a c l i e n t d a t a s e t w i t h f i l e - b a s e d d a t a

You can specify the field and index definitions at design time using the Collection
editor. Just choose the appropriate property in the Object Inspector (FieldDefs or
IndexDefs), and double-click to display the Collection editor. Use the Collection editor
to add, delete, and rearrange definitions. By selecting definitions in the Collection
editor you can edit their properties in the Object Inspector.

You can also specify the field and index definitions in code at runtime. For example,
the following code creates and activates a client dataset in the form’s OnCreate event
handler:

procedure TForm1.FormCreate(Sender: TObject);
begin
with ClientDataSet1 do
begin

with FieldDefs.AddFieldDef do
begin

DataType := ftInteger;
Name := 'Field1';

end;
with FieldDefs.AddFieldDef do
begin

DataType := ftString;
Size := 10;
Name := 'Field2';

end;
with IndexDefs.AddIndexDef do
begin

Fields := 'Field1';
Name := 'IntIndex';

end;
CreateDataSet;

end;
end;

Creating a dataset based on an existing table
If you are converting a server-based database application into a file-based
application, you can copy existing tables and save them to a file from the IDE. The
following steps indicate how to copy an existing table:

1 From the dbExpress page of the Component palette, add a TSQLDataSet
component and a TSQLConnection component to your application. Set the
CommandType and CommandText properties of the SQL dataset to identify the
existing database table. Set its SQLConnection property to the TSQLConnection
component. Set properties on the TSQLConnection component to attach to the
database server. Set the SQL dataset’s Active property to True.

2 From the Component palette, add a TClientDataSet component.

3 Right-click the client dataset and select Assign Local Data. In the dialog that
appears, choose the SQL dataset component that you added in step 1. Choose OK.

4 Right-click the client dataset and choose Save To File. (This command is not
available unless the client dataset contains data.)

20-40 D e v e l o p e r ’ s G u i d e

U s i n g a c l i e n t d a t a s e t w i t h f i l e - b a s e d d a t a

5 In the File Save dialog, choose a file name and save a copy of your database table.

To copy from another dataset at runtime, you can assign its data directly or, if the
source is another client dataset, you can clone the cursor.

Loading data from a file or stream

To load data from a file, call a client dataset’s LoadFromFile method. LoadFromFile
takes one parameter, a string that specifies the file from which to read data. The file
name can be a fully qualified path name, if appropriate. If you always load the client
dataset’s data from the same file, you can use the FileName property instead. If
FileName names an existing file, the data is automatically loaded when the client
dataset is opened.

To load data from a stream, call the client dataset’s LoadFromStream method.
LoadFromStream takes one parameter, a stream object that supplies the data.

The data loaded by LoadFromFile (LoadFromStream) must have previously been saved
in a client dataset’s data format by this or another client dataset using the SaveToFile
(SaveToStream) method. For more information about saving data to a file or stream,
see “Saving data to a file or stream” on page 20-41.

When you call LoadFromFile or LoadFromStream, all data in the file is read into the
Data property. Any edits that were in the change log when the data was saved are
read into the Delta property.

Merging changes into data

When you edit the data in a client dataset, the changes you make are recorded in the
change log, but the changes do not affect the original version of the data.

To make your changes permanent, call MergeChangeLog. MergeChangeLog overwrites
records in Data with any changed field values in the change log.

After MergeChangeLog executes, Data contains a mix of existing data and any changes
that were in the change log. This mix becomes the new Data baseline against which
further changes can be made. MergeChangeLog clears the change log of all records and
resets the ChangeCount property to 0.

Warning Do not call MergeChangeLog for client datasets that represent the data from a database
server or source dataset. In this case, call ApplyUpdates to write changes to the
database or source dataset. For more information, see “Applying updates” on
page 20-31.

Note It is also possible to merge changes into the data of a separate client dataset if that
dataset originally provided the data in the Data property. To do this, you must use a
dataset provider. For an example of how to do this, see “Assigning data directly” on
page 20-23.

U s i n g c l i e n t d a t a s e t s 20-41

U s i n g a c l i e n t d a t a s e t w i t h f i l e - b a s e d d a t a

Saving data to a file or stream

If you use a client dataset in a file-based application, then when you edit data and
merge it, the changes you make exist only in memory. To make a permanent record
of your changes, you must write them to disk. You can save the data to disk using the
SaveToFile method.

SaveToFile takes one parameter, a string that specifies the file into which to write data.
The file name can be a fully qualified path name, if appropriate. If the file already
exists, its current contents are completely overwritten.

If you always save the data to the same file, you can use the FileName property
instead. If FileName is set, the data is automatically saved to the named file when the
client dataset is closed.

You can also save data to a stream, using the SaveToStream method. SaveToStream
takes one parameter, a stream object that receives the data.

Note If you save a client dataset while there are still edits in the change log, these are not
merged with the data. When you reload the data, using the LoadFromFile or
LoadFromStream method, the change log will still contain the unmerged edits. This is
important for applications that support the briefcase model, where those changes
will eventually have to be applied to a provider component.

Note SaveToFile does not preserve any indexes you add to the client dataset unless they are
created with the dataset using index definitions.

20-42 D e v e l o p e r ’ s G u i d e

U s i n g p r o v i d e r c o m p o n e n t s 21-1

C h a p t e r

21
Chapter21Using provider components

Provider components (TDataSetProvider) supply the mechanism by which client
datasets obtain their data unless they use dedicated files on disk. Providers

• Receive data requests from a client dataset, fetch the requested data from the
database server, package the data into a transportable data packet, and return the
data to the client dataset. This activity is called “providing.”

• Receive updated data from a client dataset, apply updates to the database or
source dataset, and log any updates that cannot be applied, returning unresolved
updates to the client dataset for further reconciliation. This activity is called
“resolving.”

Most of the work of a provider component happens automatically. You need not
write any code on the provider to create data packets from the data in another dataset
or apply updates to a dataset or database server. However, you may want to use the
properties and events of the provider component to control its interaction with
clients.

When using TSQLClientDataSet, the provider is internal to the client dataset, and the
application has no direct access to it. When using TClientDataSet, however, the
provider is a separate component that you can use to control what information is
packaged for clients and for responding to events that occur around the process of
providing and resolving. TSQLClientDataSet surfaces some of the provider’s
properties and events as its own properties and events, but for the greatest amount of
control, you may want to use TClientDataSet with a separate provider component.

When using a separate provider component, it can reside in the same application as
the client dataset, or it can reside on an application server as part of a multi-tiered
application.

Note The components that connect a client dataset to a provider on a remote application
server must be purchased separately.

This chapter describes how to use a provider component to control the interaction
with client datasets.

21-2 D e v e l o p e r ’ s G u i d e

D e t e r m i n i n g t h e s o u r c e o f d a t a

Determining the source of data
When you use a provider component, you must specify a dataset that it can use to
fetch the data it assembles into data packets. You specify this dataset by setting the
DataSet property of the provider. At design time, select from available datasets in the
DataSet property drop-down list in the Object Inspector.

TDataSetProvider interacts with the source dataset using the IProviderSupport
interface. This interface is introduced by TDataSet, so it is available for all datasets.
However, the IProviderSupport methods implemented in TDataSet are mostly stubs
that don’t do anything or that raise exceptions.

The unidirectional dataset classes that ship with Kylix override these methods to
implement the IProviderSupport interface in a more useful fashion. Client datasets use
the default implementation inherited from TDataSet, but can still be used as a source
dataset as long as the provider’s ResolveToDataSet property is True.

Component writers that create their own custom descendants from TDataSet must
override all appropriate IProviderSupport methods if their datasets are to supply data
to a provider. If the provider need only provide data packets on a read-only basis
(that is, if it does not need to apply updates), the IProviderSupport methods
implemented in TDataSet may be sufficient.

Communicating with the client dataset
All communication between a provider and a client dataset takes place through an
IAppServer interface. If the provider is in the same application as the client, this
interface is implemented by a hidden object generated automatically for you. If the
provider is part of a multi-tiered application, this is the interface for the application
server’s remote data module.

IAppServer provides the bridge between client dataset and the provider. Most
applications do not use IAppServer directly, but invoke it indirectly through the
properties and methods of the client dataset. However, when necessary, you can
make direct calls to the IAppServer interface by using the AppServer property of the
client dataset.

Table 21.1 lists the methods of the IAppServer interface, as well as the corresponding
methods and events on the provider component and the client dataset. These
IAppServer methods include a Provider parameter. In multi-tiered applications, this
parameter indicates the provider on the application server with which the client
dataset communicates. Most methods also include an OleVariant parameter called
OwnerData that allows a client application and an application server to pass custom
information back and forth. OwnerData is not used by default, but is passed to all

U s i n g p r o v i d e r c o m p o n e n t s 21-3

C h o o s i n g h o w t o a p p l y u p d a t e s

event handlers so that you can write code that allows your provider to adjust to
application-defined information before and after each call from a client dataset.

Choosing how to apply updates
By default, when TDataSetProvider components apply updates and resolve update
errors, they communicate directly with the database server using dynamically
generated SQL statements. This approach has the advantage that your application
does not need to merge updates twice (first to the source dataset, and then to the
remote database server).

However, you may not always want to take this approach. For example, you may be
using a dataset that does not get its data from an SQL server (for example if you are
providing from a TClientDataSet component). Alternately, you may be using a
custom dataset that can apply updates to an SQL server, but you want to use some of
the dataset events.

TDataSetProvider lets you decide whether to apply updates to the database server
using SQL or to the source dataset by setting the ResolveToDataSet property. When
this property is True, updates are applied to the dataset. When it is False, the provider
generates SQL statements to apply updates and the source dataset forwards them to
the database server.

Table 21.1 AppServer interface members

IAppServer TDataSetProvider TClientDataSet

AS_ApplyUpdates method ApplyUpdates method,
BeforeApplyUpdates event,
AfterApplyUpdates event

ApplyUpdates method,
BeforeApplyUpdates event,
AfterApplyUpdates event

AS_DataRequest method DataRequest method,
OnDataRequest event

DataRequest method

AS_Execute method Execute method,
BeforeExecute event,
AfterExecute event

Execute method,
BeforeExecute event,
AfterExecute event

AS_GetParams method GetParams method,
BeforeGetParams event,
AfterGetParams event

FetchParams method,
BeforeGetParams event,
AfterGetParams event

AS_GetProviderNames method Used to identify all available
providers

Used to create a design-time list
for ProviderName property

AS_GetRecords method GetRecords method,
BeforeGetRecords event,
AfterGetRecords event

GetNextPacket method,
Data property,
BeforeGetRecords event,
AfterGetRecords event

AS_RowRequest method RowRequest method,
BeforeRowRequest event,
AfterRowRequest event

FetchBlobs method,
FetchDetails method,
RefreshRecord method,
BeforeRowRequest event,
AfterRowRequest event

21-4 D e v e l o p e r ’ s G u i d e

C o n t r o l l i n g w h a t i n f o r m a t i o n i s i n c l u d e d i n d a t a p a c k e t s

Controlling what information is included in data packets
There are a number of ways to control what information is included in data packets
that are sent to and from the client. These include

• Specifying what fields appear in data packets

• Setting options that influence the data packets

• Adding custom information to data packets

Specifying what fields appear in data packets

To control what fields are included in data packets, create persistent fields on the
dataset that the provider uses to build the packets. The provider then includes only
these fields. Persistent fields whose values are generated dynamically by the source
dataset (such as calculated fields) can be included, but appear to client datasets on
the receiving end as static read-only fields. For information about persistent fields,
see “Persistent field components” on page 17-3.

If the client dataset will be editing the data and applying updates to the database
server, you must include enough fields so that there are no duplicate records in the
data packet. Otherwise, when the updates are applied, it is impossible to determine
which record to update. If you do not want the client dataset to be able to see or use
extra fields that are provided only to ensure uniqueness, set the ProviderFlags
property for those fields to include pfHidden.

Note Including enough fields to avoid duplicate records is also a consideration when
specifying a query on the source dataset. The query should include enough fields so
that records are unique, even if your application does not use all the fields.

Setting options that influence the data packets

The Options property of the provider component lets you specify when BLOBs or
nested detail tables are sent, whether field display properties are included, what type
of updates are allowed, and so on. The following table lists the possible values that
can be included in Options.

Table 21.2 Provider options

Value Meaning

poReadOnly The client dataset can’t apply updates to the provider.

poDisableEdits Client datasets can’t modify existing data values. If the user tries
to edit a field, the client dataset raises an exception. (This does
not affect the client dataset’s ability to insert or delete records.)

poDisableInserts Client datasets can’t insert new records. If the user tries to insert
a new record, the client dataset raises an exception. (This does
not affect the client dataset’s ability to delete records or modify
existing data.)

U s i n g p r o v i d e r c o m p o n e n t s 21-5

C o n t r o l l i n g w h a t i n f o r m a t i o n i s i n c l u d e d i n d a t a p a c k e t s

poDisableDeletes Client datasets can’t delete records. If the user tries to delete a
record, the client dataset raises an exception. (This does not
affect the client dataset’s ability to insert or modify records.)

poFetchBlobsOnDemand BLOB field values are not included in the data packet. Instead,
client datasets must request these values on an as-needed basis.
If the client dataset’s FetchOnDemand property is True, it requests
these values automatically. Otherwise, the application must call
the client dataset’s FetchBlobs method to retrieve BLOB data.

poFetchDetailsOnDemand When the provider represents the master of a master/detail
relationship, nested detail values are not included in the data
packet. Instead, client applications request these on an as-needed
basis. If the client dataset’s FetchOnDemand property is True, it
requests these values automatically. Otherwise, the application
must call the client dataset’s FetchDetails method to retrieve
nested details.

poIncFieldProps The data packet includes the following field properties (where
applicable): Alignment, DisplayLabel, DisplayWidth, Visible,
DisplayFormat, EditFormat, MaxValue, MinValue, Currency,
EditMask, DisplayValues.

poCascadeDeletes When the provider represents the master of a master/detail
relationship, the server deletes detail records when master
records are deleted. To use this option, the database server must
be set up to perform cascaded deletes as part of its referential
integrity.

poCascadeUpdates When the provider represents the master of a master/detail
relationship, key values on detail tables are updated
automatically when the corresponding values are changed in
master records. To use this option, the database server must be
set up to perform cascaded updates as part of its referential
integrity.

poAllowMultiRecordUpdates A single update can cause more than one record of the
underlying database table to change. This can be the result of
triggers, referential integrity, SQL statements on the source
dataset, and so on. Note that if an error occurs, the event
handlers provide access to the record that was updated, not the
other records that change in consequence.

poNoReset Client datasets can’t specify that the provider should reposition
the cursor on the first record before providing data.

poAutoRefresh The provider refreshes the client dataset with current record
values whenever it applies updates.

poPropogateChanges Changes made by the server to updated records as part of the
update process are sent back to the client and merged into the
client dataset.

poAllowCommandText The client dataset can override the associated dataset’s SQL text
or the name of the table or stored procedure it represents.

Table 21.2 Provider options (continued)

Value Meaning

21-6 D e v e l o p e r ’ s G u i d e

R e s p o n d i n g t o c l i e n t d a t a r e q u e s t s

Adding custom information to data packets

Providers can send application-defined information to the data packets using the
OnGetDataSetProperties event. This information is encoded as an OleVariant, and
stored under a name you specify. Client datasets can then retrieve the information
using their GetOptionalParam method. You can also specify that the information be
included in delta packets that the client dataset sends when updating records. In this
case, the client may never be aware of the information, but the provider can send a
round-trip message to itself.

When adding custom information in the OnGetDataSetProperties event, each
individual attribute (sometimes called an “optional parameter”) is specified using a
Variant array that contains three elements: the name (a string), the value (a Variant),
and a boolean flag indicating whether the information should be included in delta
packets when the client applies updates. Multiple attributes can be added by creating
a Variant array of Variant arrays. For example, the following OnGetDataSetProperties
event handler sends two values, the time the data was provided and the total number
of records in the source dataset. Only information about the time the data was
provided is returned when client datasets apply updates:

procedure TMyDataModule1.Provider1GetDataSetProperties(Sender: TObject; DataSet: TDataSet;
out Properties: OleVariant);
begin

Properties := VarArrayCreate([0,1], varVariant);
Properties[0] := VarArrayOf(['TimeProvided', Now, True]);
Properties[1] := VarArrayOf(['TableSize', DataSet.RecordCount, False]);

end;

When the client dataset applies updates, the time the original records were provided
can be read in the provider’s OnUpdateData event:

procedure TMyDataModule1.Provider1UpdateData(Sender: TObject; DataSet:
TCustomClientDataSet);
var

WhenProvided: TDateTime;
begin

WhenProvided := DataSet.GetOptionalParam('TimeProvided');
...

end;

Responding to client data requests
In most applications, requests for data are handled automatically. A client dataset
requests a data packet by calling GetRecords (indirectly, through the IAppServer
interface). The provider responds automatically by fetching data from the associated
dataset, creating a data packet, and returning the packet to the client dataset.

The provider has the option of editing data after it has been assembled into a data
packet but before the packet is sent to the client dataset. For example, you might
want to remove records from the packet based on some criterion (such as the user’s

U s i n g p r o v i d e r c o m p o n e n t s 21-7

R e s p o n d i n g t o c l i e n t u p d a t e r e q u e s t s

level of access), or, in a multi-tiered application, you might want to encrypt sensitive
data before it is sent on to the client.

To edit the data packet before sending it on to the client dataset, write an OnGetData
event handler. The data packet is provided as a parameter in the form of a client
dataset. Using the methods of this client dataset, data can be edited before it is sent to
the client.

As with all method calls that are made through the IAppServer interface, the provider
has an opportunity to communicate persistent state information with the client
dataset before and after the call to GetRecords. This communication takes place using
the BeforeGetRecords and AfterGetRecords event handlers.

Responding to client update requests
A provider applies updates to database records based on a Delta data packet received
from a client dataset. The client dataset requests updates by calling the ApplyUpdates
method (indirectly, through the IAppServer interface).

As with all method calls that are made through the IAppServer interface, the provider
has an opportunity to communicate persistent state information with the client
dataset before and after the call to ApplyUpdates. This communication takes place
using the BeforeApplyUpdates and AfterApplyUpdates event handlers.

When a provider receives an update request, it generates an OnUpdateData event,
where you can edit the Delta packet before it is written to the dataset or influence
how updates are applied. After the OnUpdateData event, the provider writes the
changes to the database.

The provider performs the update on a record-by-record basis. Before the provider
applies each record, it generates a BeforeUpdateRecord event, which you can use to
screen updates before they are applied. If an error occurs when updating a record,
the provider receives an OnUpdateError event where it can resolve the error. Usually
errors occur because the change violates a server constraint or the database record
was changed by a different application subsequent to its retrieval by the provider,
but prior to the client dataset’s request to apply updates.

Update errors can be processed by either the provider or the client dataset. When the
provider is part of a multi-tiered application, it should handle all update errors that
do not require user interaction to resolve. When the provider can’t resolve an error
condition, it temporarily stores a copy of the offending record. When record
processing is complete, the provider returns a count of the errors it encountered to
the client dataset, and copies the unresolved records into a results data packet that it
returns to the client dataset for further reconciliation.

The event handlers for all provider events are passed the set of updates as a client
dataset. If your event handler is only dealing with certain types of updates, you can
filter the dataset based on the update status of records. By filtering the records, your
event handler does not need to sort through records it won’t be using. To filter the
client dataset on the update status of its records, set its StatusFilter property.

21-8 D e v e l o p e r ’ s G u i d e

R e s p o n d i n g t o c l i e n t u p d a t e r e q u e s t s

Note Applications must supply extra support when the updates are directed at a dataset
that does not represent a single table. For details on how to do this, see “Applying
updates to datasets that do not represent a single table” on page 21-10.

Editing delta packets before updating the database

Before the provider applies updates to the database, it generates an OnUpdateData
event. The OnUpdateData event handler receives a copy of the Delta packet as a
parameter. This is a client dataset.

In the OnUpdateData event handler, you can use any of the properties and methods of
the client dataset to edit the Delta packet before it is written to the dataset. One
particularly useful property is the UpdateStatus property. UpdateStatus indicates what
type of modification the current record in the delta packet represents. It can have any
of the values in Table 21.3.

For example, the following OnUpdateData event handler inserts the current date into
every new record that is inserted into the database:

procedure TMyDataModule1.Provider1UpdateData(Sender: TObject; DataSet:
TCustomClientDataSet);
begin

with DataSet do
begin

First;
while not Eof do
begin
if UpdateStatus = usInserted then
begin

Edit;
FieldByName('DateCreated').AsDateTime := Date;
Post;

end;
Next;

end;
end;

Influencing how updates are applied

The OnUpdateData event also gives your provider a chance to indicate how records in
the delta packet are applied to the database.

Table 21.3 UpdateStatus values

Value Description

usUnmodified Record contents have not been changed

usModified Record contents have been changed

usInserted Record has been inserted

usDeleted Record has been deleted

U s i n g p r o v i d e r c o m p o n e n t s 21-9

R e s p o n d i n g t o c l i e n t u p d a t e r e q u e s t s

By default, changes in the delta packet are written to the database using
automatically generated SQL UPDATE, INSERT, or DELETE statements such as

UPDATE EMPLOYEES
set EMPNO = 748, NAME = 'Smith', TITLE = 'Programmer 1', DEPT = 52

WHERE
EMPNO = 748 and NAME = 'Smith' and TITLE = 'Programmer 1' and DEPT = 47

Unless you specify otherwise, all fields in the delta packet records are included in the
UPDATE clause and in the WHERE clause. However, you may want to exclude some
of these fields. One way to do this is to set the UpdateMode property of the provider.
UpdateMode can be assigned any of the following values:

You might, however, want even more control. For example, with the previous
statement, you might want to prevent the EMPNO field from being modified by
leaving it out of the UPDATE clause, and leave the TITLE and DEPT fields out of the
WHERE clause to avoid update conflicts when other applications have modified the
data. To specify the clauses where a specific field appears, use the field’s
ProviderFlags property. ProviderFlags is a set that can include any of the values in
Table 21.5

Thus, the following OnUpdateData event handler allows the TITLE field to be
updated and uses the EMPNO and DEPT fields to locate the desired record. If an
error occurs, and a second attempt is made to locate the record based only on the key,
the generated SQL looks for the EMPNO field only:

procedure TMyDataModule1.Provider1UpdateData(Sender: TObject; DataSet:
TCustomClientDataSet);
begin

with DataSet do
begin

FieldByName('TITLE').ProviderFlags := [pfInUpdate];
FieldByName('EMPNO').ProviderFlags := [pfInWhere, pfInKey];
FieldByName('DEPT').ProviderFlags := [pfInWhere];

end;
end;

Table 21.4 UpdateMode values

Value Meaning

upWhereAll All fields are used to locate fields (the WHERE clause).

upWhereChanged Only key fields and fields that are changed are used to locate records.

upWhereOnly Only key fields are used to locate records.

Table 21.5 ProviderFlags values

Value Description

pfInWhere The field appears in the WHERE clause of generated INSERT, DELETE, and
UPDATE statements when UpdateMode is upWhereAll or upWhereChanged.

pfInUpdate The field can appear in the UPDATE clause of generated UPDATE statements.

pfInKey The field is used in the WHERE clause of generated statements when
UpdateMode is upWhereKeyOnly.

pfHidden The field is included in records to ensure uniqueness, but can’t be seen or used on
the client side.

21-10 D e v e l o p e r ’ s G u i d e

R e s p o n d i n g t o c l i e n t u p d a t e r e q u e s t s

Note You can use the ProviderFlags property to influence how updates are applied even if
you are updating to a dataset and not using dynamically generated SQL. These flags
still determine which fields are used to locate records and which fields get updated.

Screening individual updates

Immediately before each update is applied, the provider receives a
BeforeUpdateRecord event. You can use this event to edit records before they are
applied, similar to the way you can use the OnUpdateData event to edit entire delta
packets. For example, the provider does not compare BLOB fields (such as memos)
when checking for update conflicts. If you want to check for update errors involving
BLOB fields, you can use the BeforeUpdateRecord event.

In addition, you can use this event to apply updates yourself or to screen and reject
updates. The BeforeUpdateRecord event handler lets you signal that an update has
been handled already and should not be applied. The provider then skips that
record, but does not count it as an update error. For example, this event provides a
mechanism for applying updates to a stored procedure (which can’t be updated
automatically), allowing the provider to skip any automatic processing once the
record is updated from within the event handler.

Resolving update errors on the provider

When an error condition arises as the provider tries to post a record in the delta
packet, an OnUpdateError event occurs. If the provider can’t resolve an update error,
it temporarily stores a copy of the offending record. When record processing is
complete, the provider returns a count of the errors it encountered, and copies the
unresolved records into a results data packet that it passes back to the client dataset
for further reconciliation.

In multi-tiered applications, this mechanism lets you handle any update errors you
can resolve mechanically on the application server, while still allowing user
interaction on the client application to correct error conditions.

The OnUpdateError handler gets a copy of the record that could not be changed, an
error code from the database, and an indication of whether the resolver was trying to
insert, delete, or update the record. The problem record is passed back in a client
dataset. You should never use the data navigation methods on this dataset. However,
for each field in the dataset, you can use the NewValue, OldValue, and CurValue
properties to determine the cause of the problem and make any modifications to
resolve the update error. If the OnUpdateError event handler can correct the problem,
it sets the Response parameter so that the corrected record is applied.

Applying updates to datasets that do not represent a single table

When a provider generates SQL statements that apply updates directly to a database
server, it needs the name of the database table that contains the records. Obtaining
this table name can be a problem if the provider is applying updates to the data

U s i n g p r o v i d e r c o m p o n e n t s 21-11

R e s p o n d i n g t o c l i e n t - g e n e r a t e d e v e n t s

underlying a stored procedure or a multi-table query. There is no easy way to
ascertain the name of the table to which updates should be applied.

You can supply the table name programmatically in an OnGetTableName event
handler. Once an event handler supplies the table name, the provider can generate
appropriate SQL statements to apply updates.

Note Supplying a table name only works if the target of the updates is a single database
table (that is, only the records in one table need to be updated). If the update requires
making changes to multiple underlying database tables, you must explicitly apply
the updates in code using the BeforeUpdateRecord event of the provider. Once this
event handler has applied an update, you can set its Applied parameter to True so that
the provider does not generate an error.

Responding to client-generated events
Provider components implement a general-purpose event that lets you create your
own calls from client datasets directly to the provider. This is the OnDataRequest
event.

OnDataRequest is not part of the normal functioning of the provider. It is simply a
hook to allow client datasets to communicate directly with providers. The event
handler takes an OleVariant as an input parameter and returns an OleVariant. By
using OleVariants, the interface is sufficiently general to accommodate almost any
information you want to pass to or from the provider.

To generate an OnDataRequest event, an application calls the DataRequest method of
the client dataset.

21-12 D e v e l o p e r ’ s G u i d e

W r i t i n g d i s t r i b u t e d a p p l i c a t i o n s

P a r t

III
PartIIIWriting distributed applications

The chapters in “Writing distributed applications” present concepts and skills
necessary for building applications that are distributed over a local area network or
over the Internet. The components discussed may not be available in all editions of
Kylix.

C r e a t i n g I n t e r n e t s e r v e r a p p l i c a t i o n s 22-1

C h a p t e r

22
Chapter22Creating Internet server applications

Kylix allows you to create Web server applications as CGI or Apache applications.
These Web server applications can contain any nonvisual component. Special
components on the Internet palette page make it easy to create event handlers that
are associated with a specific Uniform Resource Identifier (URI) and, when
processing is complete, to programmatically construct HTML documents and
transfer them to the client. These components, and the architecture that defines there
relationships, are collectively referred to as the WebBroker technology.

Frequently, the content of Web pages is drawn from databases. Internet components
can be used to automatically manage connections to databases, allowing a single
server to handle numerous simultaneous, thread-safe database connections.

This chapter describes these Internet components, and discusses the creation of
several types of Internet applications.

Terminology and standards
Many of the protocols that control activity on the Internet are defined in Request for
Comment (RFC) documents that are created, updated, and maintained by the
Internet Engineering Task Force (IETF), the protocol engineering and development
arm of the Internet. Several important RFCs are useful when writing Internet
applications:

• RFC822, “Standard for the format of ARPA Internet text messages,” describes the
structure and content of message headers.

• RFC1521, “MIME (Multipurpose Internet Mail Extensions) Part One: Mechanisms
for Specifying and Describing the Format of Internet Message Bodies,” describes
the method used to encapsulate and transport multipart and multiformat
messages.

• RFC1945, “Hypertext Transfer Protocol — HTTP/1.0,” describes a transfer
mechanism used to distribute collaborative hypermedia documents.

The IETF maintains a library of the RFCs on their Web site, www.ietf.cnri.reston.va.us

22-2 D e v e l o p e r ’ s G u i d e

T e r m i n o l o g y a n d s t a n d a r d s

Parts of a Uniform Resource Locator

The Uniform Resource Locator (URL) is a complete description of the location of a
resource that is available over the net. It is composed of several parts that may be
accessed by an application. These parts are illustrated in Figure 22.1:

Figure 22.1 Parts of a Uniform Resource Locator

The first portion (not technically part of the URL) identifies the protocol (http). This
portion can specify other protocols such as https (secure http), ftp, and so on.

The Host portion identifies the machine that runs the Web server and Web server
application. Although it is not shown in the preceding picture, this portion can
override the port that receives messages. Usually, there is no need to specify a port,
because the port number is implied by the protocol.

The ScriptName portion specifies the name of the Web server application. This is the
application to which the Web server passes messages.

Following the script name is the PathInfo. This identifies the destination of the
message within the Web server application. PathInfo values may refer to directories
on the host machine, the names of components that respond to specific messages, or
any other mechanism the Web server application uses to divide the processing of
incoming messages.

The Query portion contains a set a named values. These values and their names are
defined by the Web server application.

URI vs. URL
The URL is a subset of the Uniform Resource Identifier (URI) defined in the HTTP
standard, RFC1945. Web server applications frequently produce content from many
sources where the final result does not reside in a particular location, but is created as
necessary. URIs can describe resources that are not location-specific.

HTTP request header information

HTTP request messages contain many headers that describe information about the
client, the target of the request, the way the request should be handled, and any
content sent with the request. Each header is identified by a name, such as “Host”
followed by a string value. For example, consider the following HTTP request:

GET /art/gallery.cgi/animals?animal=dog&color=black HTTP/1.0
Connection: Keep-Alive
User-Agent: Mozilla/3.0b4Gold (Linux; I)
Host: www.TSite.com:1024
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, */*

C r e a t i n g I n t e r n e t s e r v e r a p p l i c a t i o n s 22-3

H T T P s e r v e r a c t i v i t y

The first line identifies the request as a GET. A GET request message asks the Web
server application to return the content associated with the URI that follows the word
GET (in this case /art/gallery.cgi/animals?animal=doc&color=black). The last part
of the first line indicates that the client is using the HTTP 1.0 standard.

The second line is the Connection header, and indicates that the connection should
not be closed once the request is serviced. The third line is the User-Agent header,
and provides information about the program generating the request. The next line is
the Host header, and provides the Host name and port on the server that is contacted
to form the connection. The final line is the Accept header, which lists the media
types the client can accept as valid responses.

HTTP server activity
The client/server nature of Web browsers is deceptively simple. To most users,
retrieving information on the World Wide Web is a simple procedure: click on a link,
and the information appears on the screen. More knowledgeable users have some
understanding of the nature of HTML syntax and the client/server nature of the
protocols used. This is usually sufficient for the production of simple, page-oriented
Web site content. Authors of more complex Web pages have a wide variety of
options to automate the collection and presentation of information using HTML.

Before building a Web server application, it is useful to understand how the client
issues a request and how the server responds to client requests.

Composing client requests

When an HTML hypertext link is selected (or the user otherwise specifies a URL), the
browser collects information about the protocol, the specified domain, the path to the
information, the date and time, the operating environment, the browser itself, and
other content information. It then composes a request.

For example, to display a page of images based on criteria selected by clicking
buttons on a form, the client might construct this URL:

http://www.TSite.com/art/gallery.cgi/animals?animal=dog&color=black

which specifies an HTTP server in the www.TSite.com domain. The client contacts
www.TSite.com, connects to the HTTP server, and passes it a request. The request
might look something like this:

GET /art/gallery.cgi/animals?animal=dog&color=black HTTP/1.0
Connection: Keep-Alive
User-Agent: Mozilla/3.0b4Gold (Apache; I)
Host: www.TSite.com:1024
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, */*

22-4 D e v e l o p e r ’ s G u i d e

W e b s e r v e r a p p l i c a t i o n s

Serving CGI requests

The Web server receives a client request and can perform any number of actions,
based on its configuration. If the server is configured to recognize the /gallery.cgi
portion of the request as a program, it passes information contained in the request
directly to the CGI program. The server waits while the program executes. When the
CGI program exits, it passes the HTML content back to the server via the stdout pipe.

In all cases, the program acts on the request of and performs actions specified by the
programmer: accessing databases, doing simple table lookups or calculations,
constructing or selecting HTML documents, and so on.

Serving dynamic shared object requests

When a Web server application finishes with a client request, it constructs a page of
HTML code or other MIME content, and passes it back (via the server) to the client
for display. When a dynamic shared object (DSO) finishes, it passes the HTML page
and any response information directly back to the server, which passes them back to
the client.
Creating a Web server application as a shared object reduces system load and
resource use by reducing the number of processes and disk accesses necessary to
service an individual request. For more information on DSOs, see:

http://httpd.apache.org/docs/dso.html

Web server applications
Web server applications extend the functionality and capability of existing Web
servers. The Web server application receives HTTP request messages from the Web
server, performs any actions requested in those messages, and formulates responses
that it passes back to the Web server. Any operation that you can perform with a
Kylix application can be incorporated into a Web server application.

Types of Web server applications

Using the Internet components, you can create two types of Web server applications.
Each type uses a type-specific descendant of TWebApplication, TWebRequest, and
TWebResponse:

Table 22.1 Web server application components

Application Type Application Object Request Object Response Object

Console CGI application TCGIApplication TCGIRequest TCGIResponse

Apache DSO Module TApacheApplication TApacheRequest TApacheResponse

C r e a t i n g I n t e r n e t s e r v e r a p p l i c a t i o n s 22-5

W e b s e r v e r a p p l i c a t i o n s

CGI stand-alone
A CGI stand-alone Web server application is a console application that receives client
request information on standard input and passes the results back to the server on
standard output. This data is evaluated by TCGIApplication, which creates
TCGIRequest and TCGIResponse objects. Each request message is handled by a
separate instance of the application.

Apache DSO module
Note For DSO support, you must download the source code and rebuild Apache. See

“Compiling an Apache application for DSO support” on page 22-23.

An Apache DSO module is a library application. The Apache program loads a shared
object in memory, and then reserves a memory block which is used to pass data
between the Apache program and module. This data is evaluated by
TApacheApplication, which creates TApacheRequest and TApacheResponse objects.

Creating Web server applications

All new Web server applications are created by selecting File|New from the menu of
the main window and selecting Web Server Application in the New Items dialog. A
dialog box appears, where you can select one of the Web server application types:

• CGI stand-alone: Selecting this type of application sets up your project as a console
application and adds the required entries to the uses clause of the project file.

• Apache DSO module: Selecting this type of application sets up your project as a
library application and adds the required entries to the uses clause of the project
file.

Choose the type of Web Server Application that communicates with the type of Web
Server your application will use. This creates a new project configured to use Internet
components and containing an empty Web Module.

The Web module

The Web module (TWebModule) is a descendant of TDataModule and may be used in
the same way: to provide centralized control for business rules and non-visual
components in the Web application.

Add any content producers that your application uses to generate response
messages. These can be the built-in content producers such as TPageProducer or
descendants of TCustomContentProducer that you have written yourself. If your
application generates response messages that include material drawn from
databases, you can add data access components.

In addition to storing non-visual components and business rules, the Web module
also acts as a dispatcher, matching incoming HTTP request messages to action items
that generate the responses to those requests.

22-6 D e v e l o p e r ’ s G u i d e

T h e s t r u c t u r e o f a W e b s e r v e r a p p l i c a t i o n

You may have a data module already that is set up with many of the non-visual
components and business rules that you want to use in your Web application. You
can replace the Web module with your pre-existing data module. Simply delete the
automatically generated Web module and replace it with your data module. Then,
add a TWebDispatcher component to your data module, so that it can dispatch request
messages to action items, the way a Web module can. If you want to change the way
action items are chosen to respond to incoming HTTP request messages, derive a
new dispatcher component from TCustomWebDispatcher, and add that to the data
module instead.

Your project can contain only one dispatcher. This can either be the Web module that
is automatically generated when you create the project, or the TWebDispatcher
component that you add to a data module that replaces the Web module. If a second
data module containing a dispatcher is created during execution, the Web server
application generates a runtime error.

Note The Web module that you set up at design time is actually a template.

The Web Application object

The project that is set up for your Web application contains a global variable named
Application. Application is a descendant of TWebApplication (either TApacheApplication
or TCGIApplication) that is appropriate to the type of application you are creating. It
runs in response to HTTP request messages received by the Web server.

Warning Do not include the forms unit in the project uses clause after the CGIApp or
ApacheApp unit. Forms also declares a global variable named Application, and if it
appears after the CGIApp or ApacheApp unit, Application will be initialized to an
object of the wrong type.

The structure of a Web server application
When the Web application receives an HTTP request message, it creates a
TWebRequest object to represent the HTTP request message, and a TWebResponse
object to represent the response that should be returned. The application then passes
these objects to the Web dispatcher (either the Web module or a TWebDispatcher
component).

The Web dispatcher controls the flow of the Web server application. The dispatcher
maintains a collection of action items (TWebActionItem) that know how to handle
certain types of HTTP request messages. The dispatcher identifies the appropriate
action items or auto-dispatching components to handle the HTTP request message,
and passes the request and response objects to the identified handler so that it can
perform any requested actions or formulate a response message. It is described more
fully in the section “The Web dispatcher” on page 22-7.

C r e a t i n g I n t e r n e t s e r v e r a p p l i c a t i o n s 22-7

T h e W e b d i s p a t c h e r

Figure 22.2 Structure of a Server Application

The action items are responsible for reading the request and assembling a response
message. Specialized content producer components aid the action items in
dynamically generating the content of response messages, which can include custom
HTML code or other MIME content. The content producers can make use of other
content producers or descendants of THTMLTagAttributes, to help them create the
content of the response message. For more information on content producers, see
“Generating the content of response messages” on page 22-16.

When all action items (or auto-dispatching components) have finished creating the
response by filling out the TWebResponse object, the dispatcher passes the result back
to the Web application. The application sends the response on to the client via the
Web server.

The Web dispatcher
If you are using a Web module, it acts as a Web dispatcher. If you are using a pre-
existing data module, you must add a single dispatcher component (TWebDispatcher)
to that data module. The dispatcher maintains a collection of action items that know
how to handle certain kinds of request messages. When the Web application passes a
request object and a response object to the dispatcher, it chooses one or more action
items to respond to the request.

Adding actions to the dispatcher

Open the action editor from the Object Inspector by clicking the ellipsis on the Actions
property of the dispatcher. Action items can be added to the dispatcher by clicking
the Add button in the action editor.

Add actions to the dispatcher to respond to different request methods or target URIs.
You can set up your action items in a variety of ways. You can start with action items
that preprocess requests, and end with a default action that checks whether the

Web Module (Dispatcher)

Web
Server

Action
Item

Content
Producer

Web
Application

Web
Response

Action
Item

Content
Producer

Content
Producer

Web
Request

22-8 D e v e l o p e r ’ s G u i d e

A c t i o n i t e m s

response is complete and either sends the response or returns an error code. Or, you
can add a separate action item for every type of request, where each action item
completely handles the request.

Action items are discussed in further detail in “Action items” on page 22-8.

Dispatching request messages

When the dispatcher receives the client request, it generates a BeforeDispatch event.
This provides your application with a chance to preprocess the request message
before it is seen by any of the action items.

Next, the dispatcher looks through its list of action items for one that matches the
pathinfo portion of the request message’s target URL and that can provide the service
specified as the method of the request message. It does this by comparing the PathInfo
and MethodType properties of the TWebRequest object with the properties of the same
name on the action item.

When the dispatcher finds an appropriate action item, it causes that action item to
fire. When the action item fires, it does one of the following:

• Fills in the response content and sends the response or signals that the request is
completely handled.

• Adds to the response and then allows other action items to complete the job.

• Defers the request to other action items.

If, after checking all the action items, the request message has still not been fully
handled, the dispatcher calls the default action item. The default action item does not
need to match either the target URL or the method of the request.

If the dispatcher reaches the end of the action list (including the default action, if any)
and no actions have been triggered, nothing is passed back to the server. The server
simply drops the connection to the client.

If the request is handled by the action items, the dispatcher generates an
AfterDispatch event. This provides a final opportunity for your application to check
the response that was generated, and make any last minute changes.

Action items
Each action item (TWebActionItem) performs a specific task in response to a given
type of request message.

Action items can completely respond to a request or perform part of the response and
allow other action items to complete the job. Action items can send the HTTP
response message for the request, or simply set up part of the response for other
action items to complete. If a response is completed by the action items but not sent,
the Web server application sends the response message.

C r e a t i n g I n t e r n e t s e r v e r a p p l i c a t i o n s 22-9

A c t i o n i t e m s

Determining when action items fire

Most properties of the action item determine when the dispatcher selects it to handle
an HTTP request message. To set the properties of an action item, you must first
bring up the action editor: select the Actions property of the dispatcher in the Object
Inspector and click on the ellipsis. When an action is selected in the action editor, its
properties can be modified in the Object Inspector.

The target URL
The dispatcher compares the PathInfo property of an action item to the PathInfo of the
request message. The value of this property should be the path information portion
of the URL for all requests that the action item is prepared to handle. For example,
given this URL,

http://www.TSite.com/art/gallery.cgi/mammals?animal=dog&color=black

and assuming that the /gallery.cgi part indicates the Web server application, the
path information portion is

/mammals

Use path information to indicate where your Web application should look for
information when servicing requests, or to divide you Web application into logical
subservices.

The request method type
The MethodType property of an action item indicates what type of request messages it
can process. The dispatcher compares the MethodType property of an action item to
the MethodType of the request message. MethodType can take one of the following
values:

Enabling and disabling action items
Each action item has an Enabled property that can be used to enable or disable that
action item. By setting Enabled to False, you disable the action item so that it is not
considered by the dispatcher when it looks for an action item to handle a request.

Table 22.2 MethodType values

Value Meaning

mtGet The request is asking for the information associated with the target URI to be
returned in a response message.

mtHead The request is asking for the header properties of a response, as if servicing an
mtGet request, but omitting the content of the response.

mtPost The request is providing information to be posted to the Web application.

mtPut The request asks that the resource associated with the target URI be replaced by the
content of the request message.

mtAny Matches any request method type, including mtGet, mtHead, mtPut, and mtPost.

22-10 D e v e l o p e r ’ s G u i d e

A c t i o n i t e m s

A BeforeDispatch event handler can control which action items should process a
request by changing the Enabled property of the action items before the dispatcher
begins matching them to the request message.

Caution Changing the Enabled property of an action during execution may cause unexpected
results for subsequent requests. Use the BeforeDispatch event to ensure that all action
items are correctly initialized to their appropriate starting states.

Choosing a default action item
Only one of the action items can be the default action item. The default action item is
selected by setting its Default property to True. When the Default property of an action
item is set to True, the Default property for the previous default action item (if any) is
set to False.

When the dispatcher searches its list of action items to choose one to handle a
request, it stores the name of the default action item. If the request has not been fully
handled when the dispatcher reaches the end of its list of action items, it executes the
default action item.

The dispatcher does not check the PathInfo or MethodType of the default action item.
The dispatcher does not even check the Enabled property of the default action item.
Thus, you can make sure the default action item is only called at the very end by
setting its Enabled property to False.

The default action item should be prepared to handle any request that is
encountered, even if it is only to return an error code indicating an invalid URI or
MethodType. If the default action item does not handle the request, no response is sent
to the Web client.

Caution Changing the Default property of an action during execution may cause unexpected
results for the current request. If the Default property of an action that has already
been triggered is set to True, that action will not be re-evaluated and the dispatcher
will not trigger that action when it reaches the end of the action list.

Responding to request messages with action items

The real work of the Web server application is performed by action items when they
execute. When the Web dispatcher fires an action item, that action item can respond
to the current request message in two ways:

• If the action item has an associated producer component as the value of its
Producer property, that producer automatically assigns the Content of the response
message using its Content method. The Internet page of the component palette
includes a number of content producer components that can help construct an
HTML page for the content of the response message.

• After the producer has assigned any response content (if there is an associated
producer), the action item receives an OnAction event. The OnAction event handler
is passed the TWebRequest object that represents the HTTP request message and a
TWebResponse object to fill with any response information.

C r e a t i n g I n t e r n e t s e r v e r a p p l i c a t i o n s 22-11

A c c e s s i n g c l i e n t r e q u e s t i n f o r m a t i o n

If the action item’s content can be generated by a single content producer, it is
simplest to assign the content producer as the action item’s Producer property.
However, you can always access any content producer from the OnAction event
handler as well. The OnAction event handler allows more flexibility, so that you can
use multiple content producers, assign response message properties, and so on.

Both the content-producer component and the OnAction event handler can use any
objects or runtime library methods to respond to request messages. They can access
databases, perform calculations, construct or select HTML documents, and so on. For
more information about generating response content using content-producer
components, see “Generating the content of response messages” on page 22-16.

Sending the response
An OnAction event handler can send the response back to the Web client by using the
methods of the TWebResponse object. However, if no action item sends the response to
the client, it will still get sent by the Web server application as long as the last action
item to look at the request indicates that the request was handled.

Using multiple action items
You can respond to a request from a single action item, or divide the work up among
several action items. If the action item does not completely finish setting up the
response message, it must signal this state in the OnAction event handler by setting
the Handled parameter to False.

If many action items divide up the work of responding to request messages, each
setting Handled to False so that others can continue, make sure the default action item
leaves the Handled parameter set to True. Otherwise, no response will be sent to the
Web client.

When dividing the work among several action items, either the OnAction event
handler of the default action item or the AfterDispatch event handler of the dispatcher
should check whether all the work was done and set an appropriate error code if it is
not.

Accessing client request information
When an HTTP request message is received by the Web server application, the
headers of the client request are loaded into the properties of a TWebRequest object. In
Apache DSO applications, the request message is encapsulated by a TApacheRequest
object. Console CGI applications use TCGIRequest object.

The properties of the request object are read-only. You can use them to gather all of
the information available in the client request.

Properties that contain request header information

Most properties in a request object contain information about the request that comes
from the HTTP request header. Not every request supplies a value for every one of

22-12 D e v e l o p e r ’ s G u i d e

A c c e s s i n g c l i e n t r e q u e s t i n f o r m a t i o n

these properties. Also, some requests may include header fields that are not surfaced
in a property of the request object, especially as the HTTP standard continues to
evolve. To obtain the value of a request header field that is not surfaced as one of the
properties of the request object, use the GetFieldByName method.

Properties that identify the target
The full target of the request message is given by the URL property. Usually, this is a
URL that can be broken down into the protocol (HTTP), Host (server system),
ScriptName (server application), PathInfo (location on the host), and Query.

Each of these pieces is surfaced in its own property. The protocol is always HTTP,
and the Host and ScriptName identify the Web server application. The dispatcher uses
the PathInfo portion when matching action items to request messages. The Query is
used by some requests to specify the details of the requested information. Its value is
also parsed for you as the QueryFields property.

Properties that describe the Web client
The request also includes several properties that provide information about where
the request originated. These include everything from the e-mail address of the
sender (the From property), to the URI where the message originated (the Referer or
RemoteHost property). If the request contains any content, and that content does not
arise from the same URI as the request, the source of the content is given by the
DerivedFrom property. You can also determine the IP address of the client (the
RemoteAddr property), and the name and version of the application that sent the
request (the UserAgent property).

Properties that identify the purpose of the request
The Method property is a string describing what the request message is asking the
server application to do. The HTTP 1.1 standard defines the following methods:

The Method property may indicate any other method that the Web client requests of
the server.

Value What the message requests

OPTIONS Information about available communication options.

GET Information identified by the URL property.

HEAD Header information from an equivalent GET message, without the content of the
response.

POST The server application to post the data included in the Content property, as
appropriate.

PUT The server application to replace the resource indicated by the URL property
with the data included in the Content property.

DELETE The server application to delete or hide the resource identified by the URL
property.

TRACE The server application to send a loop-back to confirm receipt of the request.

C r e a t i n g I n t e r n e t s e r v e r a p p l i c a t i o n s 22-13

C r e a t i n g H T T P r e s p o n s e m e s s a g e s

The Web server application does not need to provide a response for every possible
value of Method. The HTTP standard does require that it service both GET and HEAD
requests, however.

The MethodType property indicates whether the value of Method is GET (mtGet),
HEAD (mtHead), POST (mtPost), PUT (mtPut) or some other string (mtAny). The
dispatcher matches the value of the MethodType property with the MethodType of each
action item.

Properties that describe the expected response
The Accept property indicates the media types the Web client will accept as the
content of the response message. The IfModifiedSince property specifies whether the
client only wants information that has changed recently. The Cookie property
includes state information (usually added previously by your application) that can
modify the response.

Properties that describe the content
Most requests do not include any content, as they are requests for information.
However, some requests, such as POST requests, provide content that the Web server
application is expected to use. The media type of the content is given in the
ContentType property, and its length in the ContentLength property. If the content of
the message was encoded (for example, for data compression), this information is in
the ContentEncoding property. The name and version number of the application that
produced the content is specified by the ContentVersion property. The Title property
may also provide information about the content.

The content of HTTP request messages

In addition to the header fields, some request messages include a content portion that
the Web server application should process in some way. For example, a POST
request might include information that should be added to a database maintained by
the Web server application.

The unprocessed value of the content is given by the Content property. If the content
can be parsed into fields separated by ampersands (&), a parsed version is available
in the ContentFields property.

Creating HTTP response messages
When the Web server application creates a TWebRequest object for an incoming HTTP
request message, it also creates a corresponding TWebResponse object to represent the
response message that will be sent in return. In Apache DSO applications, the
response message is encapsulated by a TApacheResponse object. Console CGI
applications use TCGIResponse objects.

The action items that generate the response to a Web client request fill in the
properties of the response object. In some cases, this may be as simple as returning an

22-14 D e v e l o p e r ’ s G u i d e

C r e a t i n g H T T P r e s p o n s e m e s s a g e s

error code or redirecting the request to another URI. In other cases, this may involve
complicated calculations that require the action item to fetch information from other
sources and assemble it into a finished form. Most request messages require some
response, even if it is only the acknowledgment that a requested action was carried
out.

Filling in the response header

Most of the properties of the TWebResponse object represent the header information of
the HTTP response message that is sent back to the Web client. An action item sets
these properties from its OnAction event handler.

Not every response message needs to specify a value for every one of the header
properties. The properties that should be set depend on the nature of the request and
the status of the response.

Indicating the response status
Every response message must include a status code that indicates the status of the
response. You can specify the status code by setting the StatusCode property. The
HTTP standard defines a number of standard status codes with predefined
meanings. In addition, you can define your own status codes using any of the unused
possible values.

Each status code is a three-digit number where the most significant digit indicates the
class of the response, as follows:

• 1xx: Informational (The request was received but has not been fully processed).

• 2xx: Success (The request was received, understood, and accepted).

• 3xx: Redirection (Further action by the client is needed to complete the request).

• 4xx: Client Error (The request cannot be understood or cannot be serviced).

• 5xx: Server Error (The request was valid but the server could not handle it).

Associated with each status code is a string that explains the meaning of the status
code. This is given by the ReasonString property. For predefined status codes, you do
not need to set the ReasonString property. If you define your own status codes, you
should also set the ReasonString property.

Indicating the need for client action
When the status code is in the 300-399 range, the client must perform further action
before the Web server application can complete its request. If you need to redirect the
client to another URI, or indicate that a new URI was created to handle the request,
set the Location property. If the client must provide a password before you can
proceed, set the WWWAuthenticate property.

Describing the server application
Some of the response header properties describe the capabilities of the Web server
application. The Allow property indicates the methods to which the application can

C r e a t i n g I n t e r n e t s e r v e r a p p l i c a t i o n s 22-15

C r e a t i n g H T T P r e s p o n s e m e s s a g e s

respond. The Server property gives the name and version number of the application
used to generate the response. The Cookies property can hold state information about
the client’s use of the server application which is included in subsequent request
messages.

Describing the content
Several properties describe the content of the response. ContentType gives the media
type of the response, and ContentVersion is the version number for that media type.
ContentLength gives the length of the response. If the content is encoded (such as for
data compression), indicate this with the ContentEncoding property. If the content
came from another URI, this should be indicated in the DerivedFrom property. If the
value of the content is time-sensitive, the LastModified property and the Expires
property indicate whether the value is still valid. The Title property can provide
descriptive information about the content.

Setting the response content

For some requests, the response to the request message is entirely contained in the
header properties of the response. In most cases, however, action item assigns some
content to the response message. This content may be static information stored in a
file, or information that was dynamically produced by the action item or its content
producer.

You can set the content of the response message by using either the Content property
or the ContentStream property.

The Content property is a string. Kylix strings are not limited to text values, so the
value of the Content property can be a string of HTML commands, graphics content
such as a bit-stream, or any other MIME content type.

Use the ContentStream property if the content for the response message can be read
from a stream. For example, if the response message should send the contents of a
file, use a TFileStream object for the ContentStream property. As with the Content
property, ContentStream can provide a string of HTML commands or other MIME
content type. If you use the ContentStream property, do not free the stream yourself.
The Web response object automatically frees it for you.

Note If the value of the ContentStream property is not nil, the Content property is ignored.

Sending the response

If you are sure there is no more work to be done in response to a request message,
you can send a response directly from an OnAction event handler. The response
object provides two methods for sending a response: SendResponse and SendRedirect.
Call SendResponse to send the response using the specified content and all the header
properties of the TWebResponse object. If you only need to redirect the Web client to
another URI, the SendRedirect method is more efficient.

If none of the event handlers send the response, the Web application object sends it
after the dispatcher finishes. However, if none of the action items indicate that they

22-16 D e v e l o p e r ’ s G u i d e

G e n e r a t i n g t h e c o n t e n t o f r e s p o n s e m e s s a g e s

have handled the response, the application will close the connection to the Web client
without sending any response.

Generating the content of response messages
Kylix provides a number of objects to assist your action items in producing content
for HTTP response messages. You can use these objects to generate strings of HTML
commands that are saved in a file or sent directly back to the Web client. You can
write your own content producers, deriving them from TCustomContentProducer or
one of its descendants.

TCustomContentProducer provides a generic interface for creating any MIME type as
the content of an HTTP response message. Its descendants include page producers
and table producers:

• Page producers scan HTML documents for special tags that they replace with
customized HTML code. They are described in the following section.

• Table producers create HTML commands based on the information in a dataset.
They are described in “Using database information in responses” on page 22-20.

Using page producer components

Page producers (TPageProducer and its descendants) take an HTML template and
convert it by replacing special HTML-transparent tags with customized HTML code.
You can store a set of standard response templates that are filled in by page
producers when you need to generate the response to an HTTP request message. You
can chain page producers together to iteratively build up an HTML document by
successive refinement of the HTML-transparent tags.

HTML templates
An HTML template is a sequence of HTML commands and HTML-transparent tags.
An HTML-transparent tag has the form

<#TagName Param1=Value1 Param2=Value2 ...>

The angle brackets (< and >) define the entire scope of the tag. A pound sign (#)
immediately follows the opening angle bracket (<) with no spaces separating it from
the angle bracket. The pound sign identifies the string to the page producer as an
HTML-transparent tag. The tag name immediately follows the pound sign with no
spaces separating it from the pound sign. The tag name can be any valid identifier
and identifies the type of conversion the tag represents.

Following the tag name, the HTML-transparent tag can optionally include
parameters that specify details of the conversion to be performed. Each parameter is
of the form ParamName=Value, where there is no space between the parameter name,
the equals symbol (=) and the value. The parameters are separated by whitespace.

The angle brackets (< and >) make the tag transparent to HTML browsers that do not
recognize the #TagName construct.

C r e a t i n g I n t e r n e t s e r v e r a p p l i c a t i o n s 22-17

G e n e r a t i n g t h e c o n t e n t o f r e s p o n s e m e s s a g e s

While you can create your own HTML-transparent tags to represent any kind of
information processed by your page producer, there are several predefined tag
names associated with values of the TTag data type. These predefined tag names
correspond to HTML commands that are likely to vary over response messages. They
are listed in the following table:

Any other tag name is associated with tgCustom. The page producer supplies no
built-in processing of the predefined tag names. They are simply provided to help
applications organize the conversion process into many of the more common tasks.

Note The predefined tag names are case insensitive.

Specifying the HTML template
Page producers provide you with many choices in how to specify the HTML
template. You can set the HTMLFile property to the name of a file that contains the
HTML template. You can set the HTMLDoc property to a TStrings object that contains
the HTML template. If you use either the HTMLFile property or the HTMLDoc
property to specify the template, you can generate the converted HTML commands
by calling the Content method.

In addition, you can call the ContentFromString method to directly convert an HTML
template that is a single string which is passed in as a parameter. You can also call the
ContentFromStream method to read the HTML template from a stream. Thus, for
example, you could store all your HTML templates in a memo field in a database,
and use the ContentFromStream method to obtain the converted HTML commands,
reading the template directly from a TBlobStream object.

Converting HTML-transparent tags
The page producer converts the HTML template when you call one of its Content
methods. When the Content method encounters an HTML-transparent tag, it triggers
the OnHTMLTag event. You must write an event handler to determine the type of tag
encountered, and to replace it with customized content.

If you do not create an OnHTMLTag event handler for the page producer, HTML-
transparent tags are replaced with an empty string.

Tag Name TTag value What the tag should be converted to

Link tgLink A hypertext link. The result is an HTML sequence beginning
with an <A> tag and ending with an tag.

Image tgImage A graphic image. The result is an HTML tag.

Table tgTable An HTML table. The result is an HTML sequence beginning
with a <TABLE> tag and ending with a </TABLE> tag.

ImageMap tgImageMap A graphic image with associated hot zones. The result is an
HTML sequence beginning with a <MAP> tag and ending
with a </MAP> tag.

22-18 D e v e l o p e r ’ s G u i d e

G e n e r a t i n g t h e c o n t e n t o f r e s p o n s e m e s s a g e s

Using page producers from an action item
A typical use of a page producer component uses the HTMLFile property to specify a
file containing an HTML template. The OnAction event handler calls the Content
method to convert the template into a final HTML sequence:

procedure WebModule1.MyActionEventHandler(Sender: TObject; Request: TWebRequest;
Response: TWebResponse; var Handled: Boolean);

begin
PageProducer1.HTMLFile := 'Greeting.html';
Response.Content := PageProducer1.Content;

end;

Greeting.html is a file that contains this HTML template:

<HTML>
<HEAD><TITLE>Our brand new web site</TITLE></HEAD>
<BODY>
Hello <#UserName>! Welcome to our web site.
</BODY>
</HTML>

The OnHTMLTag event handler replaces the custom tag (<#UserName>) in the HTML
during execution:

procedure WebModule1.PageProducer1HTMLTag(Sender : TObject;Tag: TTag;
const TagString: string; TagParams: TStrings; var ReplaceText: string);

begin
if CompareText(TagString,'UserName') = 0 then

ReplaceText := TPageProducer(Sender).Dispatcher.Request.Content;
end;

If the content of the request message was the string Mr. Ed, the value of
Response.Content would be

<HTML>
<HEAD><TITLE>Our brand new web site</TITLE></HEAD>
<BODY>
Hello Mr. Ed! Welcome to our web site.
</BODY>
</HTML>

Note This example uses an OnAction event handler to call the content producer and assign
the content of the response message. You do not need to write an OnAction event
handler if you assign the page producer’s HTMLFile property at design time. In that
case, you can simply assign PageProducer1 as the value of the action item’s Producer
property to accomplish the same effect as the OnAction event handler above.

Chaining page producers together
The replacement text from an OnHTMLTag event handler need not be the final
HTML sequence you want to use in the HTTP response message. You may want to
use several page producers, where the output from one page producer is the input
for the next.

The simplest way is to chain the page producers together is to associate each page
producer with a separate action item, where all action items have the same PathInfo

C r e a t i n g I n t e r n e t s e r v e r a p p l i c a t i o n s 22-19

G e n e r a t i n g t h e c o n t e n t o f r e s p o n s e m e s s a g e s

and MethodType. The first action item sets the content of the Web response message
from its content producer, but its OnAction event handler makes sure the message is
not considered handled. The next action item uses the ContentFromString method of
its associated producer to manipulate the content of the Web response message, and
so on. Action items after the first one use an OnAction event handler such as the
following:

procedure WebModule1.Action2Action(Sender: TObject; Request: TWebRequest;
Response: TWebResponse; var Handled: Boolean);

begin
Response.Content := PageProducer2.ContentFromString(Response.Content);

end;

For example, consider an application that returns calendar pages in response to
request messages that specify the month and year of the desired page. Each calendar
page contains a picture, followed by the name and year of the month between small
images of the previous month and next months, followed by the actual calendar. The
resulting image looks something like this:

The general form of the calendar is stored in a template file. It looks like this:

<HTML>
<Head></HEAD>
<BODY>
<#MonthlyImage> <#TitleLine><#MainBody>
</BODY>
</HTML>

The OnHTMLTag event handler of the first page producer looks up the month and
year from the request message. Using that information and the template file, it does
the following:

• Replaces <#MonthlyImage> with <#Image Month=August Year=2001>.

• Replaces <#TitleLine> with <#Calendar Month=July Year=2001 Size=Small>
August 2001 <#Calendar Month=September Year=2000 Size=Small>.

• Replaces <#MainBody> with <#Calendar Month=August Year=2001 Size=Large>.

The OnHTMLTag event handler of the next page producer uses the content produced
by the first page producer, and replaces the <#Image Month=August Year=2001> tag
with the appropriate HTML tag. Yet another page producer resolves the
#Calendar tags with appropriate HTML tables.

22-20 D e v e l o p e r ’ s G u i d e

U s i n g d a t a b a s e i n f o r m a t i o n i n r e s p o n s e s

Using database information in responses
The response to an HTTP request message may include information taken from a
database. Specialized content producers on the Internet palette page can generate the
HTML to represent the records from a database in an HTML table.

Adding a session to the Web module

Console CGI applications and Apache DSO applications are launched in response to
HTTP request messages. When working with databases in these types of
applications, you can use the default session to manage your database connections,
because each request message has its own instance of the application.

Representing database information in HTML

Specialized Content producer components on the Internet palette page supply
HTML commands based on the records of a dataset. There are two types of data-
aware content producers:

• The dataset page producer, which formats the fields of a dataset into the text of an
HTML document.

• Table producers, which format the records of a dataset as an HTML table.

Using dataset page producers
Dataset page producers work like other page producer components: they convert a
template that includes HTML-transparent tags into a final HTML representation.
They include the special ability, however, of converting tags that have a tagname
which matches the name of a field in a dataset into the current value of that field. For
more information about using page producers in general, see “Using page producer
components” on page 22-16.

To use a dataset page producer, add a TDataSetPageProducer component to your web
module and set its DataSet property to the dataset whose field values should be
displayed in the HTML content. Create an HTML template that describes the output
of your dataset page producer. For every field value you want to display, include a
tag of the form

<#FieldName>

in the HTML template, where FieldName specifies the name of the field in the dataset
whose value should be displayed.

When your application calls the Content, ContentFromString, or ContentFromStream
method, the dataset page producer substitutes the current field values for the tags
that represent fields.

C r e a t i n g I n t e r n e t s e r v e r a p p l i c a t i o n s 22-21

U s i n g d a t a b a s e i n f o r m a t i o n i n r e s p o n s e s

Using table producers
The Internet palette page includes two components that create an HTML table to
represent the records of a dataset:

• Dataset table producers, which format the fields of a dataset into the text of an
HTML document.

• Query table producers, which runs a query after setting parameters supplied by
the request message and formats the resulting dataset as an HTML table.

Using either of the two table producers, you can customize the appearance of a
resulting HTML table by specifying properties for the table’s color, border, separator
thickness, and so on. To set the properties of a table producer at design time, double-
click the table producer component to display the Response Editor dialog.

Specifying the table attributes
Table producers use the THTMLTableAttributes object to describe the visual
appearance of the HTML table that displays the records from the dataset. The
THTMLTableAttributes object includes properties for the table’s width and spacing
within the HTML document, and for its background color, border thickness, cell
padding, and cell spacing. These properties are all turned into options on the HTML
<TABLE> tag created by the table producer.

At design time, specify these properties using the Object Inspector. Select the table
producer object in the Object Inspector and expand the TableAttributes property to
access the display properties of the THTMLTableAttributes object.

You can also specify these properties programmatically at runtime.

Specifying the row attributes
Similar to the table attributes, you can specify the alignment and background color of
cells in the rows of the table that display data. The RowAttributes property is a
THTMLTableRowAttributes object.

At design time, specify these properties using the Object Inspector by expanding the
RowAttributes property. You can also specify these properties programmatically at
runtime.

You can also adjust the number of rows shown in the HTML table by setting the
MaxRows property.

Specifying the columns
If you know the dataset for the table at design time, you can use the Columns editor
to customize the columns’ field bindings and display attributes. Select the table
producer component, and right-click. From the context menu, choose the Columns
editor. This lets you add, delete, or rearrange the columns in the table. You can set the
field bindings and display properties of individual columns in the Object Inspector
after selecting them in the Columns editor.

If you are getting the name of the dataset from the HTTP request message, you can’t
bind the fields in the Columns editor at design time. However, you can still

22-22 D e v e l o p e r ’ s G u i d e

U s i n g d a t a b a s e i n f o r m a t i o n i n r e s p o n s e s

customize the columns programmatically at runtime, by setting up the appropriate
THTMLTableColumn objects and using the methods of the Columns property to add
them to the table. If you do not set up the Columns property, the table producer
creates a default set of columns that match the fields of the dataset and specify no
special display characteristics.

Embedding tables in HTML documents
You can embed the HTML table that represents your dataset in a larger document by
using the Header and Footer properties of the table producer. Use Header to specify
everything that comes before the table, and Footer to specify everything that comes
after the table.

You may want to use another content producer (such as a page producer) to create
the values for the Header and Footer properties.

If you embed your table in a larger document, you may want to add a caption to the
table. Use the Caption and CaptionAlignment properties to give your table a caption.

Setting up a dataset table producer
TDataSetTableProducer is a table producer that creates an HTML table for a dataset.
Set the DataSet property of TDataSetTableProducer to specify the dataset that contains
the records you want to display. You do not set the DataSource property, as you
would for most data-aware objects in a conventional database application. This is
because TDataSetTableProducer generates its own data source internally.

You can set the value of DataSet at design time if your Web application always
displays records from the same dataset. You must set the DataSet property at runtime
if you are basing the dataset on the information in the HTTP request message.

Setting up a query table producer
You can produce an HTML table to display the results of a query, where the
parameters of the query come from the HTTP request message. Specify the
TSQLQuery object that uses those parameters as the Query property of a
TSQLQueryTableProducer component.

If the request message is a GET request, the parameters of the query come from the
Query fields of the URL that was given as the target of the HTTP request message. If
the request message is a POST request, the parameters of the query come from the
content of the request message.

When you call the Content method of TSQLQueryTableProducer, it runs the query,
using the parameters it finds in the request object. It then formats an HTML table to
display the records in the resulting dataset.

As with any table producer, you can customize the display properties or column
bindings of the HTML table, or embed the table in a larger HTML document.

C r e a t i n g I n t e r n e t s e r v e r a p p l i c a t i o n s 22-23

D e b u g g i n g s e r v e r a p p l i c a t i o n s

Debugging server applications
Debugging Web server applications presents some unique problems, because they
run in response to messages from a Web server. You can not simply launch your
application from the IDE, because that leaves the Web server out of the loop, and
your application will not find the request message it is expecting. How you debug
your Web server application depends on its type.

Debugging CGI applications

It is more difficult to debug CGI applications, because the application itself must be
launched by the Web server.

Debugging as a shared object
Another approach you can take with CGI applications is first to create and debug
your application as an Apache DSO application. Once your Apache DSO application
is working smoothly, convert it to a CGI application. To convert your application, use
the following steps:

1 Right-click the Web module and choose Add To Repository.

2 In the Add To Repository dialog box, give your Web module a title, text
description, Repository page (probably Data Modules), author name, and icon.

3 Choose OK to save your Web module as a template.

4 From the main menu, choose File|New and select Web Server Application. In the
New Web Server Application dialog box, choose CGI, as appropriate.

5 Delete the automatically generated Web module.

6 From the main menu, choose File|New and select the template you saved in step
3. This will be on the page you specified in step 2.

Debugging Apache DSO applications

Before you debug an Apache DSO application, you must first compile it.

Compiling an Apache application for DSO support
For the most current information, see the online document from the Apache Web site:

http://httpd.apache.org/docs/dso.html

To compile your application:

1 Download the Apache source code.

Currently, you can use:

http://httpd.apache.org/dist/apache_1.3.14.tar.gz

2 Extract the downloaded source tar.

22-24 D e v e l o p e r ’ s G u i d e

D e b u g g i n g s e r v e r a p p l i c a t i o n s

3 Go to the root of the extracted directory, such as: /usr/apache_1.3.14

4 If the config.status file does not exist, create it and add the following lines:

#!/bin/sh
##
config.status -- APACI auto-generated configuration restore script
##
Use this shell script to re-run the APACI configure script for
restoring your configuration. Additional parameters can be supplied.
##

CFLAGS="-g" \
CFLAGS_SHLIB="-g" \
LIBS="/usr/lib/libpthread.so" \
./configure \
"--with-layout=Apache" \
"--enable-module=so" \
"--enable-rule=SHARED_CORE" \
"$@"

Note You must add the LIBS="/usr/lib/libpthread.so" \ line to your config.status file.

5 At the command prompt ($=prompt), type the following lines:
$ chmod 755 config.status
$./config.status
$ make
$ make install

This configures Apache for DSO support installing it into the target directory.

Debugging Apache DSO applications
You can debug Apache applications by launching the host application from within
the IDE by setting the run parameters.

You should be running Kylix as the root user to debug your Apache DSO application.
Make sure that Apache is first compiled for DSO support with libpthread.so.

1 Set up the run parameters to launch the host application:

• Choose Run|Parameters.

• Set host application to /usr/local/apache/bin/httpd.

• Set parameters to -X.

2 Set the output directory.

• Choose Project|Options|Directories

• Set the output directory to/apache/libexec.

3 Set your breakpoint.

4 Build the project.

5 Run the application.

6 Open a Web browser and request a URL that will invoke your module.

W o r k i n g w i t h s o c k e t s 23-1

C h a p t e r

23
Chapter23Working with sockets

This chapter describes the socket components that let you create an application that
can communicate with other systems using TCP/IP and related protocols. Using
sockets, you can read and write over connections to other machines without
worrying about the details of the underlying networking software. Sockets provide
connections based on the TCP/IP protocol, but are sufficiently general to work with
related protocols such as Xerox Network System (XNS), Digital’s DECnet, or Novell’s
IPX/SPX family.

Using sockets, you can write network servers or client applications that read from
and write to other systems. A server or client application is usually dedicated to a
single service such as Hypertext Transfer Protocol (HTTP) or File Transfer Protocol
(FTP). Using server sockets, an application that provides one of these services can
link to client applications that want to use that service. Client sockets allow an
application that uses one of these services to link to server applications that provide
the service.

Implementing services
Sockets provide one of the pieces you need to write network servers or client
applications. For many services, such as HTTP or FTP, third party servers are readily
available. Some are even bundled with the operating system, so that there is no need
to write one yourself. However, when you want more control over the way the
service is implemented, a tighter integration between your application and the
network communication, or when no server is available for the particular service you
need, then you may want to create your own server or client application. For
example, when working with distributed data sets, you may want to write a layer to
communicate with databases on other systems.

23-2 D e v e l o p e r ’ s G u i d e

T y p e s o f s o c k e t c o n n e c t i o n s

Understanding service protocols

Before you can write a network server or client, you must understand the service that
your application is providing or using. Many services have standard protocols that
your network application must support. If you are writing a network application for
a standard service such as HTTP, FTP, or even finger or time, you must first
understand the protocols used to communicate with other systems. See the
documentation on the particular service you are providing or using.

If you are providing a new service for an application that communicates with other
systems, the first step is designing the communication protocol for the servers and
clients of this service. What messages are sent? How are these messages coordinated?
How is the information encoded?

Communicating with applications
Often, your network server or client application provides a layer between the
networking software and an application that uses the service. For example, an HTTP
server sits between the Internet and a Web server application that provides content
and responds to HTTP request messages.

Sockets provide the interface between your network server or client application and
the networking software. You must provide the interface between your application
and the applications that use it.

Services and ports

Most standard services are associated, by convention, with specific port numbers. We
will discuss port numbers in greater detail later. For now, consider the port number a
numeric code for the service.

If you are implementing a standard service, the TTcpClient) socket component
provides methods for you to look up the port number for the service. If you are
providing a new service, you can specify the associated port number in the
/etc/services file. The services file is an ASCII file that lists Internet network services,
including a name, port number, and protocol type. See the services man page for
more information on setting up a services file.

Types of socket connections
Socket connections can be divided into three basic types, which reflect how the
connection was initiated and what the local socket is connected to. These are

• Client connections.

• Listening connections.

• Server connections.

W o r k i n g w i t h s o c k e t s 23-3

D e s c r i b i n g s o c k e t s

Once the connection to a client socket is completed, the server connection is
indistinguishable from a client connection. Both end points have the same
capabilities and receive the same types of events. Only the listening connection is
fundamentally different, as it has only a single endpoint.

Client connections

Client connections connect a client socket on the local system to a server socket on a
remote system. Client connections are initiated by the client socket. First, the client
socket must describe the server socket it wishes to connect to. The client socket then
looks up the server socket and, when it locates the server, requests a connection. The
server socket may not complete the connection right away. Server sockets maintain a
queue of client requests, and complete connections as they find time. When the
server socket accepts the client connection, it sends the client socket a full description
of the server socket to which it is connecting, and the connection is completed by the
client.

Listening connections

Server sockets do not locate clients. Instead, they form passive “half connections”
that listen for client requests. Server sockets associate a queue with their listening
connections; the queue records client connection requests as they come in. When the
server socket accepts a client connection request, it forms a new socket to connect to
the client, so that the listening connection can remain open to accept other client
requests.

Server connections

Server connections are formed by server sockets when a listening socket accepts a
client request. A description of the server socket that completes the connection to the
client is sent to the client when the server accepts the connection. The connection is
established when the client socket receives this description and completes the
connection.

Describing sockets
Sockets let your network application communicate with other systems over the
network. Each socket can be viewed as an endpoint in a network connection. It has an
address that specifies

• The system on which it is running.

• The types of interfaces it understands.

• The port it is using for the connection.

23-4 D e v e l o p e r ’ s G u i d e

D e s c r i b i n g s o c k e t s

A full description of a socket connection includes the addresses of the sockets on both
ends of the connection. You can describe the address of each socket endpoint by
supplying both the IP address or host and the port number.

Before you can make a socket connection, you must fully describe the sockets that
form its end points. Some of the information is available from the system your
application is running on. For instance, you do not need to describe the local IP
address of a client socket—this information is available from the operating system.

The information you must provide depends on the type of socket you are working
with. Client sockets must describe the server they want to connect to. Listening
server sockets must describe the port that represents the service they provide.

Describing the host

The host is the system that is running the application that contains the socket. You
can describe the host for a socket by giving its IP address, which is a string of four
numeric (byte) values in the standard Internet dot notation, such as

123.197.1.2

A single system may support more than one IP address.

IP addresses are often difficult to remember and easy to mistype. An alternative is to
use the host name. Host names are aliases for the IP address that you often see in
Uniform Resource Locators (URLs). They are strings containing a domain name and
service, such as

http://www.wSite.Com

Most Intranets provide host names for the IP addresses of systems on the Internet.
On Linux machines, if a host name is not available, you can create one for your local
IP address by entering the name into the /etc/hosts file. See your Linux
documentation on for more information on the /etc/hosts file.

Server sockets do not need to specify a host. The local IP address can be read from the
system. If the local system supports more than one IP address, server sockets will
listen for client requests on all IP addresses simultaneously. When a server socket
accepts a connection, the client socket provides the remote IP address.

Client sockets must specify the remote host by providing either its host name or IP
address.

Choosing between a host name and an IP address
Most applications use the host name to specify a system. Host names are easier to
remember, and easier to check for typographical errors. Further, servers can change
the system or IP address that is associated with a particular host name. Using a host
name allows the client socket to find the abstract site represented by the host name,
even when it has moved to a new IP address.

If the host name is unknown, the client socket must specify the server system using
its IP address. Specifying the server system by giving the IP address is faster. When

W o r k i n g w i t h s o c k e t s 23-5

U s i n g s o c k e t c o m p o n e n t s

you provide the host name, the socket must search for the IP address associated with
the host name, before it can locate the server system.

Using ports

While the IP address provides enough information to find the system on the other
end of a socket connection, you also need a port number on that system. Without port
numbers, a system could only form a single connection at a time. Port numbers are
unique identifiers that enable a single system to host multiple connections
simultaneously, by giving each connection a separate port number.

Earlier, we described port numbers as numeric codes for the services implemented
by network applications. This is a convention that allows listening server connections
to make themselves available on a fixed port number so that they can be found by
client sockets. Server sockets listen on the port number associated with the service
they provide. When they accept a connection to a client socket, they create a separate
socket connection that uses a different, arbitrary, port number. This way, the
listening connection can continue to listen on the port number associated with the
service.

Client sockets use an arbitrary local port number, as there is no need for them to be
found by other sockets. They specify the port number of the server socket to which
they want to connect so that they can find the server application. Often, this port
number is specified indirectly, by naming the desired service.

Using socket components
The Internet palette page includes socket components (client sockets and server
sockets) that allow your network application to form connections to other machines,
and that allow you to read and write information over that connection. Associated
with each of these socket components are socket objects, which represent the
endpoint of an actual socket connection. The socket components use the socket
objects to encapsulate the operating system API calls, so that your application does
not need to be concerned with the details of establishing the connection or managing
the socket messages.

If you want to use the operating system API calls, or customize the details of the
connections that the socket components make on your behalf, you can use the
properties, events, and methods of the socket objects.

Using client sockets

Add a client socket component (TTcpClient) to your form or data module to turn your
application into a TCP/IP client. Client sockets allow you to specify the server socket
you want to connect to, and the service you want that server to provide. Once you
have described the desired connection, you can use the client socket component to
complete the connection to the server.

23-6 D e v e l o p e r ’ s G u i d e

U s i n g s o c k e t c o m p o n e n t s

Specifying the target server
Client socket components have a number of properties that allow you to specify the
server system and port to which you want to connect. Use the RemoteHost property to
specify the remote host server by either its host name or IP address.

In addition to the host, you must specify the port on the server system that your
client socket will connect to. You can use the RemotePort property to specify the
server port number directly or indirectly by naming the target service.

Forming the connection
Once you have set the properties of your client socket component to describe the
server you want to connect to, you can form the connection at runtime by calling the
Open method. Or, if you want your application to form the connection automatically
when it starts up, set the Active property to True at design time, using the Object
Inspector.

Getting information about the connection
After completing the connection to a server socket, you can use the client socket
object associated with your client socket component to obtain information about the
connection. Use the LocalHost and LocalPort properties to determine the address and
port number used by the client and server sockets to form the end points of the
connection. You can use the Handle property to obtain a handle to the socket
connection to use when making socket calls.

Closing the connection
When you have finished communicating with a server application over the socket
connection, you can shut down the connection by calling the Close method. The
connection may also be closed from the server end. If that is the case, you will receive
notification in an OnDisconnect event.

Using server sockets

Add a server socket component (TTcpServer) to your form or data module to turn
your application into a TCP/IP server. Server sockets allow you to specify the service
you are providing or the port you want to use to listen for client requests. You can
use the server socket component to listen for and accept client connection requests.

When a server socket component receives a connection request from the client, it
creates a TTcpClient component. The TTcpClient component serves as an endpoint for
the connection.

Specifying the port
Before your server socket can listen to client requests, you must specify the port that
your server will listen on. You can specify this port using the LocalPort property. If
your server application is providing a standard service that is associated by
convention with a specific port number, you can also specify the service name using
the LocalPort property. It is a good idea to use the service name instead of a port

W o r k i n g w i t h s o c k e t s 23-7

R e s p o n d i n g t o s o c k e t e v e n t s

number, because it is easy to introduce typographical errors when specifying the port
number.

Listening for client requests
Once you have set the port number of your server socket component, you can form a
listening connection at runtime by calling the Open method. Or, if you want your
application to form the listening connection automatically when it starts up, set the
Active property to True at design time, using the Object Inspector.

Connecting to clients
A listening server socket component automatically accepts client connection requests
when they are received if you set the AutoAccept property to True. You receive
notification every time this occurs in an OnAccept event.

Closing server connections
When you want to shut down the listening connection, call the Close method or set
the Active property to False. This shuts down all open connections to client
applications, cancels any pending connections that have not been accepted, and then
shuts down the listening connection so that your server socket component does not
accept any new connections.

When clients shut down their individual connections to your server socket, you are
informed by an OnDisconnect event.

Responding to socket events
When writing applications that use sockets, you can write or read to the socket
anywhere in the program. You can write to the socket using the SendBuf method in
your program after the socket has been opened. The OnSend and RecvBuf events are
triggered every time something is written or read from the socket. They can be used
for filtering. Every time you read or write, a read or write event is triggered.

Both client sockets and server sockets generate error events when they receive error
messages from the connection.

Socket components also receive two events in the course of opening and completing
a connection. If your application needs to influence how the opening of the socket
proceeds. You must use the SendBuf and RecvBuf methods to respond to these client
events or server events.

Error events

Both client and server sockets generate an OnError event when they receive error
messages from the connection. You can write an OnError event handler to respond to
these error messages. The event handler is passed information about

• What socket object received the error notification.

23-8 D e v e l o p e r ’ s G u i d e

R e s p o n d i n g t o s o c k e t e v e n t s

• What the socket was trying to do when the error occurred.

• The error code that was provided by the error message.

You can respond to the error in the event handler, and change the error code to 0 to
prevent the socket from raising an exception.

Client events

When a client socket opens a connection, the following events occur:

• The socket is set up and initialized for event notification.

• An OnCreateHandle event occurs after the server and server socket is created. At
this point, the socket object available through the Handle property can provide
information about the server or client socket that will form the other end of the
connection. This is the first chance to obtain the actual port used for the
connection, which may differ from the port of the listening sockets that accepted
the connection.

• The connection request is accepted by the server and completed by the client
socket.

• When the connection is established, the OnConnect notification event occurs.

Server events

Server socket components form two types of connections: listening connections and
connections to client applications. The server socket receives events during the
formation of each of these connections.

Events when listening
Just before the listening connection is formed, the OnCreateHandle event occurs. You
can use the OnConnect property to make changes to the socket before it is opened for
listening. For example, if you want to restrict the IP addresses the server uses for
listening, you would do that in an OnCreateHandle event handler.

Events with client connections
When a server socket accepts a client connection request, the following events occur:

• An OnAccept event occurs, passing in the new TTcpClient object to the event
handler. This is the first point when you can use the properties of TTcpClient to
obtain information about the server endpoint of the connection to a client.

• If BlockMode is bmThreadBlocking an OnCreateServerSocketThread event occurs. If
you want to provide your own customized descendant of TServerSocketThread, you
can create one in an OnCreateServerSocketThread event handler, and that will be
used instead of TServerSocketThread.

• If BlockMode is bmThreadBlocking, an OnCreateServerSocketThread event occurs as
the thread begins execution. If you want to perform any initialization of the

W o r k i n g w i t h s o c k e t s 23-9

R e a d i n g a n d w r i t i n g o v e r s o c k e t c o n n e c t i o n s

thread, or make any socket API calls before the thread starts reading or writing
over the connection, use the OnCreateServerSocketThread event handler.

• The client completes the connection and an OnAccept event occurs. With a non-
blocking server, you may want to start reading or writing over the socket
connection at this point.

Reading and writing over socket connections
The reason you form socket connections to other machines is so that you can read or
write information over those connections. What information you read or write, or
when you read it or write it, depends on the service associated with the socket
connection.

Reading and writing over sockets can occur asynchronously, so that it does not block
the execution of other code in your network application. This is called a non-blocking
connection. You can also form blocking connections, where your application waits
for the reading or writing to be completed before executing the next line of code.

Non-blocking connections

Non-blocking connections read and write asynchronously, so that the transfer of data
does not block the execution of other code in you network application. To create a
non-blocking connection:

• On client sockets, set the BlockMode property to bmNonBlocking.

• On server sockets, set the BlockMode property to bmNonBlocking.

When the connection is non-blocking, reading and writing events inform your socket
when the socket on the other end of the connection tries to read or write information.

Reading and writing events
Non-blocking sockets generate reading and writing events when it needs to read or
write over the connection. With client sockets, you can respond to these notifications
in an OnRead or OnWrite event handler. With server sockets, you can respond to
these events in an OnClientRead or OnClientWrite event handler.

The socket object associated with the socket connection is provided as a parameter to
the read or write event handlers. This socket object provides a number of methods to
allow you to read or write over the connection.

To read from the socket connection, use the ReceiveBuf or ReceiveText method. Before
using the ReceiveBuf method, you can use the ReceiveLength method to determine the
number of bytes currently waiting in the local buffer. Note, however, that
ReceiveLength returns a value which is valid at the time it is called, but additional data
may arrive after the call to ReceiveLength and before the call to ReceiveBuf. If
additional data does arrive during that time, your code may not receive a

23-10 D e v e l o p e r ’ s G u i d e

R e a d i n g a n d w r i t i n g o v e r s o c k e t c o n n e c t i o n s

corresponding OnRead event. Therefore, you may want to call ReceiveLength
repeatedly to ensure that no additional data is waiting.

To write to the socket connection, use the SendBuf, SendStream, or SendText method. If
you have no more need of the socket connection after you have written your
information over the socket, you can use the SendStreamThenDrop method.
SendStreamThenDrop closes the socket connection after writing all information that
can be read from the stream. If you use the SendStream or SendStreamThenDrop
method, do not free the stream object. The socket frees the stream automatically
when the connection is closed.

Note SendStreamThenDrop will close down a server connection to an individual client, not a
listening connection.

Blocking connections

When the connection is blocking your socket must initiate reading or writing over the
connection rather than waiting passively for a notification from the socket
connection. Use a blocking socket when your end of the connection is in charge of
when reading and writing takes place.

For client sockets, set the BlockMode property to bmBlocking to form a blocking
connection. Depending on what else your client application does, you may want to
create a new execution thread for reading or writing, so that your application can
continue executing code on other threads while it waits for the reading or writing
over the connection to be completed.

For server sockets, set the BlockMode property to bmBlocking or bmThreadBlocking to
form a blocking connection. Because blocking connections hold up the execution of
all other code while the socket waits for information to be written or read over the
connection, server socket components always spawn a new execution thread for
every client connection when the BlockMode is bmThreadBlocking. When the BlockMode
is bmBlocking, program execution is blocked until a new connection is established.

C r e a t i n g c u s t o m c o m p o n e n t s

P a r t

IV
PartIVCreating custom components

The chapters in “Creating custom components” present concepts necessary for
designing and implementing custom components in Kylix.

O v e r v i e w o f c o m p o n e n t c r e a t i o n 24-1

C h a p t e r

24
Chapter24Overview of component creation

This chapter provides an overview of component design and the process of writing
components for Kylix applications. The material here assumes that you are familiar
with Kylix and its standard components.

For information on installing new components, see “Installing component packages”
on page 11-5.

Component Library for Cross Platform (CLX)
Kylix’s components are all part of a class hierarchy called the Component Library for
Cross Platform (CLX). Refer to Chapter 3 for more information about CLX basics.

Figure 24.1 shows the relationship of selected classes that make up CLX. For a more
detailed discussion of class hierarchies and the inheritance relationships among
classes, see Chapter 25, “Object-oriented programming for component writers.”

The TComponent class is the shared ancestor of every component in CLX. TComponent
provides the minimal properties and events necessary for a component to work in
Kylix. The various branches of the library provide other, more specialized
capabilities.

24-2 D e v e l o p e r ’ s G u i d e

C o m p o n e n t s a n d c l a s s e s

Figure 24.1 CLX class hierarchy

When you create a component, you add to CLX by deriving a new class from one of
the existing class types in the hierarchy.

Components and classes
Because components are classes, component writers work with objects at a different
level from application developers. Creating new components requires that you
derive new classes.

Briefly, there are two main differences between creating components and using them
in applications. When creating components,

• You access parts of the class that are inaccessible to application programmers.
• You add new parts (such as properties) to your components.

Because of these differences, you need to be aware of more conventions and think
about how application developers will use the components you write.

How to create components?
A component can be almost any program element that you want to manipulate at
design time. Creating a component means deriving a new class from an existing one.

TStyleTStream TPersistent

TField

TComponent

Exception

THandleComponent

TGraphic

TControl

TWidgetControlTGraphicControl

TFrameControlTCustomControl

TScrollingWidget

TCustomForm

TObject

TDialog

O v e r v i e w o f c o m p o n e n t c r e a t i o n 24-3

H o w t o c r e a t e c o m p o n e n t s ?

You can derive a new component from any existing component, but the following are
the most common ways to create components:

• Modifying existing controls
• Creating controls
• Creating graphic controls
• Subclassing controls
• Creating nonvisual components

Table 24.1 summarizes the different kinds of components and the classes you use as
starting points for each.

You can also derive classes that are not components and cannot be manipulated on a
form. Kylix includes many such classes, for example, TFont.

Modifying existing controls

The simplest way to create a component is to customize an existing one. You can
derive a new component from any of the components provided with Kylix. Some
controls, such as list boxes and grids, come in several variations on a basic theme. In
these cases, CLX includes an abstract class (with the word “custom” in its name, such
as TCustomGrid) from which to derive customized versions.

For example, you might want to create a special list box that does not have some of
the properties of the standard TListBox class. You cannot remove (hide) a property
inherited from an ancestor class, so you need to derive your component from
something above TListBox in the hierarchy. Rather than force you to start from the
abstract TWidgetControl class and reinvent all the list box functions, CLX provides
TCustomListBox, which implements the properties of a list box but does not publish
all of them. When you derive a component from an abstract class like
TCustomListBox, you only publish the properties you want to make available in your
component and leave the rest protected.

Chapter 26, “Creating properties,” explains publishing inherited properties. Chapter
31, “Modifying an existing component,” and Chapter 33, “Customizing a grid,” show
examples of modifying existing controls.

Table 24.1 Component creation starting points

To do this Start with this type

Modify an existing component Any existing component, such as TButton or TPanel, or an
abstract component type, such as TCustomListBox

Create a widget-based control TWidgetControl

Create a graphic control TGraphicControl

Subclassing a control Any widget-based control

Create a nonvisual component TComponent

24-4 D e v e l o p e r ’ s G u i d e

H o w t o c r e a t e c o m p o n e n t s ?

Creating controls

Controls are objects that appear at runtime and that the user can interact with. Each
widget-based control has a handle, accessed through its Handle property, that
identifies the underlying widget.

The TWidgetControl class is the base class for all of the user interface widgets. All
widget-based controls descend from TWidgetControl. These include most standard
controls, such as pushbuttons, list boxes, and edit boxes. While you could derive an
original control (one that’s not related to any existing control) directly from
TWidgetControl, Kylix provides the TCustomControl component for this purpose.
TCustomControl is a specialized control that makes it easier to draw complex visual
images.

You can either create a custom control based on TCustomControl or use a widget
(such as a widget that is not already encapsulated by CLX) and encapsulate it
yourself by descending from a related object (or TWidgetControl itself).

Chapter 33, “Customizing a grid,” presents an example of creating a control.

Creating graphic controls

If your control does not need to receive input focus, you can make it a graphic
control. Components like TProgressBar, which never receive input focus, are graphic
controls. Although these controls cannot receive focus, you can design them to react
to system events.

Kylix supports the creation of custom controls through the TGraphicControl
component. TGraphicControl is an abstract class derived from TControl. Although you
can derive controls directly from TControl, it is better to start from TGraphicControl,
which provides a canvas to paint on.

Chapter 32, “Creating a graphic component,” presents an example of creating a
graphic control.

Subclassing controls

You create custom controls by defining a new widget. The widget contains
information shared among instances of the same sort of control; you can base a new
widget on an existing class, which is called subclassing. You then put your control in a
shared object file, much like the standard controls, and provide an interface to it.

Using Kylix, you can create a component “wrapper” around any existing widget
class. So if you already have a library of custom controls that you want to use in Kylix
applications, you can create Kylix components that behave like your controls, and
derive new controls from them just as you would with any other component.

For examples of the techniques used in subclassing controls, see the components in
the QStdCtrls unit that represent standard controls, such as TEdit.

O v e r v i e w o f c o m p o n e n t c r e a t i o n 24-5

W h a t g o e s i n t o a c o m p o n e n t ?

Creating nonvisual components

Nonvisual components are used as interfaces for elements like databases
(TSQLConnection) and system clocks (TTimer), and as placeholders for dialog boxes
(TDialog) and its descendants. Most of the components you write are likely to be
visual controls. Nonvisual components can be derived directly from TComponent, the
abstract base class for all components. THandleComponent is the base class for
components that require a handle to the underlying widget, such as menus.

What goes into a component?
To make your components reliable parts of the Kylix environment, you need to
follow certain conventions in their design. This section discusses the following topics:

• Removing dependencies
• Properties, methods, and events
• Graphics encapsulation
• Registration

Removing dependencies

One quality that makes components usable is the absence of restrictions on what they
can do at any point in their code. By their nature, components are incorporated into
applications in varying combinations, orders, and contexts. You should design
components that function in any situation, without preconditions.

An example of removing dependencies is the Handle property of widget controls. If
you have written GUI applications before, you know that one of the most difficult
and error-prone aspects of getting a program running is making sure that you do not
try to access a window or control until you have created it. Handle is a unique
identifier for the instance of the underlying widget. You can use Handle when making
low-level function calls, for example, into the Qt shared libraries, where the function
call requires a unique identifier for the QWidget object. If the widget does not exist,
reading Handle causes the component to create the underlying widget. Thus,
whenever an application’s code accesses the Handle property, it is assured of getting a
valid handle.

By removing background tasks like creating a widget, Kylix components allow
developers to focus on what they really want to do. Before passing a handle to a
widget, you do not need to verify that the handle exists or to create the window. The
application developer can assume that things will work, instead of constantly
checking for things that might go wrong.

Although it can take time to create components that are free of dependencies, it is
generally time well spent. It not only spares application developers from repetition
and drudgery, but it reduces your documentation and support burdens.

24-6 D e v e l o p e r ’ s G u i d e

W h a t g o e s i n t o a c o m p o n e n t ?

Properties, methods, and events

Aside from the visible image manipulated in the Form designer, the most obvious
attributes of a component are its properties, events, and methods. Each of these has a
chapter devoted to it in this book, but the discussion that follows explains some of
the motivation for their use.

Properties
Properties give the application developer the illusion of setting or reading the value
of a variable, while allowing the component writer to hide the underlying data
structure or to implement special processing when the value is accessed.

There are several advantages to using properties:

• Properties are available at design time. The application developer can set or
change initial values of properties without having to write code.

• Properties can check values or formats as the application developer assigns them.
Validating input at design time prevents errors.

• The component can construct appropriate values on demand. Perhaps the most
common type of error programmers make is to reference a variable that has not
been initialized. By representing data with a property, you can ensure that a value
is always available on demand.

• Properties allow you to hide data under a simple, consistent interface. You can
alter the way information is structured in a property without making the change
visible to application developers.

Chapter 26, “Creating properties,” explains how to add properties to your
components.

Events
An event is a special property that invokes code in response to input or other activity
at runtime. Events give the application developer a way to attach specific blocks of
code to specific runtime occurrences, such as mouse actions and keystrokes. The code
that executes when an event occurs is called an event handler.

Events allow application developers to specify responses to different kinds of input
without defining new components.

Chapter 27, “Creating events,” explains how to implement standard events and how
to define new ones.

Methods
Application developers use methods to direct a component to perform a specific
action or return a value not contained by any property. There are two types of
methods: class methods and component methods. Class methods are procedures and
functions that operate on a class rather than on specific instances of the class. For
example, every component’s constructor (the Create method) is a class method.

O v e r v i e w o f c o m p o n e n t c r e a t i o n 24-7

W h a t g o e s i n t o a c o m p o n e n t ?

Component methods are procedures and functions that operate on the component
instances themselves.

Because they require execution of code, methods can be called only at runtime.
Methods are useful for several reasons:

• Methods encapsulate the functionality of a component in the same object where
the data resides.

• Methods can hide complicated procedures under a simple, consistent interface. An
application developer can call a component’s AlignControls method without
knowing how the method works or how it differs from the AlignControls method
in another component.

• Methods allow updating of several properties with a single call.

Chapter 28, “Creating methods,” explains how to add methods to your components.

Graphics encapsulation

Kylix simplifies graphics by encapsulating various graphic tools into a canvas. The
canvas represents the drawing surface of a window or control and contains other
classes, such as a pen, a brush, and a font. A canvas is a painter that takes care of all
the bookkeeping for you.

To draw on a form or other component, you access the component’s Canvas property.
Canvas is a property and it is also an object called TCanvas. TCanvas is a wrapper
around a Qt painter that is accessible through the Handle property. You can use the
handle to access low-level Qt graphics library functions.

If you want to customize a pen or brush, you set its color or style. When you finish,
Kylix disposes of the resources. Kylix also caches resources to avoid recreating them
if your application frequently uses the same kinds of resource.

You can use the canvas built into Kylix components by descending from them. How
graphics images work in the component depends on the canvas of the object from
which your component descends. Graphics features are detailed in Chapter 29,
“Using graphics in components.”

Registration

Before you can install your components in the Kylix IDE, you have to register them.
Registration tells Kylix where to place the component on the component palette. You
can also customize the way Kylix stores your components in the form file. For
information on registering a component, see Chapter 30, “Making components
available at design time.”

24-8 D e v e l o p e r ’ s G u i d e

C r e a t i n g a n e w c o m p o n e n t

Creating a new component
You can create a new component two ways:

• Using the Component wizard
• Creating a component manually

You can use either of these methods to create a minimally functional component
ready to install on the component palette. After installing, you can add your new
component to a form and test it at both design time and runtime. You can then add
more features to the component, update the component palette, and continue testing.

There are several basic steps that you perform whenever you create a new
component. These steps are described below; other examples in this document
assume that you know how to perform them.

1 Create a unit for the new component.

2 Derive your component from an existing component type.

3 Add properties, methods, and events.

4 Register your component with Kylix.

5 Create a Help file for your component and its properties, methods, and events.

6 Create a package (a special shared object file) so that you can install your
component in the Kylix IDE.

When you finish, the complete component includes the following files:

• Package (bpl<packagename>.so)
• Compiled package (.dcp file)
• Compiled unit (.dcu and .dpu files)
• Palette bitmap (.dcr file)
• Help file

Creating a help file to instruct component users on how to use the component is
optional.

The chapters in the rest of Part IV explain all the aspects of building components and
provide several complete examples of writing different kinds of components.

Using the Component wizard

The Component wizard simplifies the initial stages of creating a component. When
you use the Component wizard, you need to specify the following:

• The class from which the new component is derived
• The class name for the new component
• The component palette page where you want it to appear
• The name of the unit in which the component is created
• The search path where the unit is found
• The name of the package in which you want to place the component

O v e r v i e w o f c o m p o n e n t c r e a t i o n 24-9

C r e a t i n g a n e w c o m p o n e n t

The Component wizard performs the same tasks you would when creating a
component manually:

• Creating a unit
• Deriving the component
• Registering the component

The Component wizard cannot add components to an existing unit. You must add
components to existing units manually.

To start the Component wizard, choose one of these two methods:

• Choose Component|New Component.

or

• Choose File|New and double-click on Component

Fill in the fields in the Component wizard:

1 In the Ancestor Type field, specify the class from which you are deriving your new
component.

2 In the Class Name field, specify the name of your new component class.

3 In the Palette Page field, specify the page on the component palette on which you
want the new component to be installed.

4 In the Unit file name field, specify the name of the unit you want the component
class declared in.

5 If the unit is not on the search path, edit the search path in the Search Path field as
necessary.

To place the component in a new or existing package, click Component|Install and
use the dialog box that appears to specify a package.

Warning If you derive a component from a CLX class whose name begins with “custom” (such
as TCustomControl), do not try to place the new component on a form until you have
overridden any abstract methods in the original component. Kylix cannot create
instance objects of a class that has abstract methods.

Kylix creates a new unit containing the class declaration and the Register procedure,
and adds a uses clause that includes all the standard Kylix units. To see the source
code for your unit, click View Unit. (If the Component wizard is already closed, open
the unit file in the Code editor by selecting File|Open.) The unit looks like this:

unit MyControl;

interface

uses
SysUtils, Types, Classes, QGraphics, QControls, QForms, QDialogs;

type
TMyControl = class(TCustomControl)
private
{ Private declarations }
protected
{ Protected declarations }

24-10 D e v e l o p e r ’ s G u i d e

C r e a t i n g a n e w c o m p o n e n t

public
{ Public declarations }
published
{ Published declarations }

end;

procedure Register;

implementation

procedure Register;
begin

RegisterComponents('Samples', [TMyControl]);
end;

end.

Creating a component manually

The easiest way to create a new component is to use the Component wizard. You can,
however, perform the same steps manually.

Creating a component manually involves the following tasks:

• Creating a unit file

• Deriving the component

• Registering the component

Creating a unit file
A unit is a separately compiled module of Object Pascal code. Kylix uses units for
several purposes. Every form has its own unit, and most components (or groups of
related components) have their own units as well.

When you create a component, you either create a new unit for the component or add
the new component to an existing unit.

To create a unit, choose File|New to and double-click on Unit. Kylix creates a new
unit file and opens it in the Code editor.

To open an existing unit, choose File|Open and select the source code unit to which
you want to add your component.

Note When adding a component to an existing unit, make sure that the unit contains only
component code. For example, adding component code to a unit that contains a form
causes errors in the component palette.

Once you have either a new or existing unit for your component, you can derive the
component class.

Deriving the component
Every component is a class derived from TComponent, from one of its more
specialized descendants (such as TControl or TGraphicControl), or from an existing
component class. “How to create components?” on page 24-2 provides guidelines

O v e r v i e w o f c o m p o n e n t c r e a t i o n 24-11

C r e a t i n g a n e w c o m p o n e n t

concerning which class to derive different kinds of components from. However, you
need to review the CLX object hierarchy to determine the best object to use.

To derive a component, add an object type declaration to the interface part of the
unit that will contain the component. Deriving classes is explained in more detail in
the section “Defining new classes” on page 25-1.

A simple component class is a nonvisual component descended directly from
TComponent.

To create a simple component class, add the following class declaration to the
interface part of your component unit:

type
TNewComponent = class(TComponent)
end;

So far the new component does nothing different from TComponent. You have created
a framework on which to build your new component.

Registering the component
Registration is a simple process that tells Kylix which components to add to its
component library, and on which pages of the component palette they should
appear. For a more detailed discussion of the registration process, see Chapter 30,
“Making components available at design time.”

To register a component,

1 Add a procedure named Register to the interface part of the component’s unit.
Register takes no parameters, so the declaration is very simple:

procedure Register;

If you are adding a component to a unit that already contains components, it
should already have a Register procedure declared, so you do not need to change
the declaration.

2 Write the Register procedure in the implementation part of the unit, calling
RegisterComponents for each component you want to register. RegisterComponents is
a procedure that takes two parameters: the name of a component palette page and
a set of component types. If you are adding a component to an existing
registration, you can either add the new component to the set in the existing
statement, or add a new statement that calls RegisterComponents.

To register a component named TMyControl and place it on the Samples page of the
palette, you would add the following Register procedure to the unit that contains
TMyControl’s declaration:

procedure Register;
begin

RegisterComponents('Samples', [TNewControl]);
end;

This Register procedure places TMyControl on the Samples page of the component
palette.

24-12 D e v e l o p e r ’ s G u i d e

T e s t i n g u n i n s t a l l e d c o m p o n e n t s

Once you register a component, you can compile it into a package (see Chapter 30)
and install it on the component palette.

Testing uninstalled components
You can test the runtime behavior of a component before you install it on the
component palette. This is particularly useful for debugging newly created
components, but the same technique works with any component, whether or not it is
on the component palette. For information on testing already installed components,
see “Testing installed components” on page 24-13.

You test an uninstalled component by emulating the actions performed by Kylix
when the component is selected from the palette and placed on a form.

To test an uninstalled component,

1 Add the name of component’s unit to the form unit’s uses clause.

2 Add an object field to the form to represent the component.

This is one of the main differences between the way you add components and the
way the IDE does it. You add the object field to the public part at the bottom of the
form’s type declaration. The IDE would add it above, in the part of the type
declaration that it manages.

Never add fields to the IDE-managed part of the form’s type declaration. The
items in that part of the type declaration correspond to the items stored in the form
file. Adding the names of components that do not exist on the form can render
your form file invalid.

3 Attach a handler to the form’s OnCreate event.

4 Construct the component in the form’s OnCreate handler.

When you call the component’s constructor, you must pass a parameter specifying
the owner of the component (the component responsible for saving the component
to a form file and for destroying the component when the time comes). You will
nearly always pass Self as the owner. In a method, Self is a reference to the object
that contains the method. In this case, in the form’s OnCreate handler, Self refers to
the form.

5 If your component is a control, assign the Parent property.

Setting the Parent property is always the first thing to do after constructing a
control. The parent is the control that contains your control visually; usually it is
the form on which the control appears, but it might be a group box or panel.
Normally, you’ll set Parent to Self, that is, the form. Always set Parent before
setting other properties of the control.

Warning If your component is not a control (that is, if TControl is not one of its ancestors),
skip this step. If you accidentally set the form’s Parent property (instead of the
component’s) to Self, you can cause an operating-system problem.

O v e r v i e w o f c o m p o n e n t c r e a t i o n 24-13

T e s t i n g i n s t a l l e d c o m p o n e n t s

6 Set any other component properties as desired.

For example, to test a new component of type TMyControl in a unit named MyControl:
create a new project, then follow the steps to create a form unit that looks like this:

unit Unit1;
interface

uses
SysUtils, Types, Classes, QGraphics, QControls;
QForms, QDialogs, MyControl; { 1. Add MyControl to uses clause }

type
TForm1 = class(TForm)

procedure FormCreate(Sender: TObject); { 3. Attach a handler to OnCreate }
private

{ Private declarations }
public

{ Public Declarations }
MyControl1: TMyControl1; { 2. Add an object field }

end;

var
Form1: TForm1;

implementation
{$R *.DFM}

procedure TForm1.FormCreate(Sender: TObject);
begin

MyControl1 := TMyControl.Create(Self); { 4. Construct the component }
MyControl1.Parent := Self; { 5. Set Parent property if component is a control }
MyControl1.Left := 12; { 6. Set other properties...)
ƒ ...continue as needed }

end;
end.

Testing installed components
You can test the design-time behavior of a component after you install it on the
component palette. This is particularly useful for debugging newly created
components, but the same technique works with any component, whether or not it is
on the component palette. For information on testing components that have not yet
been installed, see “Testing uninstalled components” on page 24-12.

Testing your components after installing allows you to debug the component that
only generates design-time exceptions when dropped on a form.

Test an installed component using a second running instance of Kylix:

1 From the Kylix IDE menu select Project|Options and on the Directories/
Conditional page, set the Debug Source Path to the component’s source file.

2 Then select Tools|Debugger Options. On the Language Exceptions page, enable
the exceptions you want to track.

24-14 D e v e l o p e r ’ s G u i d e

T e s t i n g i n s t a l l e d c o m p o n e n t s

3 Open the component source file and set breakpoints.

4 Select Run|Parameters and set the Host Application field to the name and location
of the Kylix executable file.

5 In the Run Parameters dialog, click the Load button to start a second instance of
Kylix.

6 Then drop the components to be tested on the form, which should break on your
breakpoints in the source.

O b j e c t - o r i e n t e d p r o g r a m m i n g f o r c o m p o n e n t w r i t e r s 25-1

C h a p t e r

25
Chapter25Object-oriented programming for

component writers
If you have written applications with Kylix, you know that a class contains both data
and code, and that you can manipulate classes at design time and at runtime. In that
sense, you’ve become a component user.

When you create new components, you deal with classes in ways that application
developers never need to. You also try to hide the inner workings of the component
from the developers who will use it. By choosing appropriate ancestors for your
components, designing interfaces that expose only the properties and methods that
developers need, and following the other guidelines in this chapter, you can create
versatile, reusable components.

Before you start creating components, you should be familiar with these topics,
which are related to object-oriented programming (OOP):

• Defining new classes
• Ancestors, descendants, and class hierarchies
• Controlling access
• Dispatching methods
• Abstract class members
• Classes and pointers

Defining new classes
The difference between component writers and application developers is that
component writers create new classes while application developers manipulate
instances of classes.

A class is essentially a type. As a programmer, you are always working with types
and instances, even if you do not use that terminology. For example, you create
variables of a type, such as Integer. Classes are usually more complex than simple

25-2 D e v e l o p e r ’ s G u i d e

D e f i n i n g n e w c l a s s e s

data types, but they work the same way: By assigning different values to instances of
the same type, you can perform different tasks.

For example, it is quite common to create a form containing two buttons, one labeled
OK and one labeled Cancel. Each is an instance of the class TButton, but by assigning
different values to their Caption properties and different handlers to their OnClick
events, you make the two instances behave differently.

Deriving new classes

There are two reasons to derive a new class:

• To change class defaults to avoid repetition
• To add new capabilities to a class

In either case, the goal is to create reusable objects. If you design components with
reuse in mind, you can save work later on. Give your classes usable default values,
but allow them to be customized.

To change class defaults to avoid repetition
Most programmers try to avoid repetition. Thus, if you find yourself rewriting the
same lines of code over and over, you place the code in a subroutine or function, or
build a library of routines that you can use in many programs. The same reasoning
holds for components. If you find yourself changing the same properties or making
the same method calls, you can create a new component that does these things by
default.

For example, suppose that each time you create an application, you add a dialog box
to perform a particular operation. Although it is not difficult to recreate the dialog
each time, it is also not necessary. You can design the dialog once, set its properties,
and install a wrapper component associated with it onto the Component palette. By
making the dialog into a reusable component, you not only eliminate a repetitive
task, but you encourage standardization and reduce the likelihood of errors each
time the dialog is recreated.

Chapter 31, “Modifying an existing component,” shows an example of changing a
component’s default properties.

Note If you want to modify only the published properties of an existing component, or to
save specific event handlers for a component or group of components, you may be
able to accomplish this more easily by creating a component template.

To add new capabilities to a class
A common reason for creating new components is to add capabilities not found in
existing components. When you do this, you derive the new component from either
an existing component or an abstract base class, such as TComponent or TControl.

Derive your new component from the class that contains the closest subset of the
features you want. You can add capabilities to a class, but you cannot take them
away; so if an existing component class contains properties that you do not want to
include in yours, you should derive from that component’s ancestor.

O b j e c t - o r i e n t e d p r o g r a m m i n g f o r c o m p o n e n t w r i t e r s 25-3

A n c e s t o r s , d e s c e n d a n t s , a n d c l a s s h i e r a r c h i e s

For example, if you want to add features to a list box, you could derive your
component from TListBox. However, if you want to add new features but exclude
some capabilities of the standard list box, you need to derive your component from
TCustomListBox, the ancestor of TListBox. Then you can recreate (or make visible)
only the list-box capabilities you want, and add your new features.

Chapter 33, “Customizing a grid,” shows an example of customizing an abstract
component class.

Declaring a new component class

In addition to standard components, Kylix provides many abstract classes designed
as bases for deriving new components. Table 24.1 on page 24-3 shows the classes you
can start from when you create your own components.

To declare a new component class, add a class declaration to the component’s unit
file.

Here is the declaration of a simple graphical component:

type
TSampleShape = class(TGraphicControl)
end;

A finished component declaration usually includes property, event, and method
declarations before the end. But a declaration like the one above is also valid, and
provides a starting point for the addition of component features.

Ancestors, descendants, and class hierarchies
Application developers take for granted that every control has properties named Top
and Left that determine its position on the form. To them, it may not matter that all
controls inherit these properties from a common ancestor, TControl. When you create
a component, however, you must know which class to derive it from so that it
inherits the appropriate features. And you must know everything that your control
inherits, so you can take advantage of inherited features without recreating them.

The class from which you derive a component is called its immediate ancestor. Each
component inherits from its immediate ancestor, and from the immediate ancestor of
its immediate ancestor, and so forth. All of the classes from which a component
inherits are called its ancestors; the component is a descendant of its ancestors.

Together, all the ancestor-descendant relationships in an application constitute a
hierarchy of classes. Each generation in the hierarchy contains more than its
ancestors, since a class inherits everything from its ancestors, then adds new
properties and methods or redefines existing ones.

If you do not specify an immediate ancestor, Kylix derives your class from the
default ancestor, TObject. TObject is the ultimate ancestor of all classes in the object
hierarchy.

25-4 D e v e l o p e r ’ s G u i d e

C o n t r o l l i n g a c c e s s

The general rule for choosing which object to derive from is simple: Pick the object
that contains as much as possible of what you want to include in your new object, but
which does not include anything you do not want in the new object. You can always
add things to your objects, but you cannot take things out.

Controlling access
There are several levels of access control—also called visibility—on properties,
methods, and fields. Visibility determines which code can access which parts of the
class. By specifying visibility, you define the interface to your components.

Table 25.1 shows the levels of visibility, from most restrictive to most accessible:

Declare members as private if you want them to be available only within the class
where they are defined; declare them as protected if you want them to be available
only within that class and its descendants. Remember, though, that if a member is
available anywhere within a unit file, it is available everywhere in that file. Thus, if you
define two classes in the same unit, the classes will be able to access each other’s
private methods. And if you derive a class in a different unit from its ancestor, all the
classes in the new unit will be able to access the ancestor’s protected methods.

Hiding implementation details

Declaring part of a class as private makes that part invisible to code outside the
class’s unit file. Within the unit that contains the declaration, code can access the part
as if it were public.

This example shows how declaring a field as private hides it from application
developers. The listing shows two form units. Each form has a handler for its
OnCreate event which assigns a value to a private field. The compiler allows
assignment to the field only in the form where it is declared.

unit HideInfo;
interface

uses SysUtils, Classes, QGraphics, QControls, QForms, QDialogs;

type

Table 25.1 Levels of visibility within an object

Visibility Meaning Used for

private Accessible only to code in the unit
where the class is defined.

Hiding implementation details.

protected Accessible to code in the unit(s)
where the class and its descendants
are defined.

Defining the component writer’s interface.

public Accessible to all code. Defining the runtime interface.

published Accessible to all code and from the
Object Inspector.

Defining the design-time interface.

O b j e c t - o r i e n t e d p r o g r a m m i n g f o r c o m p o n e n t w r i t e r s 25-5

C o n t r o l l i n g a c c e s s

TSecretForm = class(TForm) { declare new form }
procedure FormCreate(Sender: TObject);

private { declare private part }
FSecretCode: Integer; { declare a private field }

end;

var
SecretForm: TSecretForm;

implementation
procedure TSecretForm.FormCreate(Sender: TObject);
begin

FSecretCode := 42; { this compiles correctly }
end;
end. { end of unit }

unit TestHide; { this is the main form file }

interface
uses SysUtils, Classes, QGraphics, QControls, QForms, QDialogs,

HideInfo; { use the unit with TSecretForm }

type
TTestForm = class(TForm)

procedure FormCreate(Sender: TObject);
end;

var
TestForm: TTestForm;

implementation
procedure TTestForm.FormCreate(Sender: TObject);
begin

SecretForm.FSecretCode := 13; { compiler stops with "Field identifier expected" }
end;
end. { end of unit }

Although a program using the HideInfo unit can use objects of type TSecretForm, it
cannot access the FSecretCode field in any of those objects.

Defining the component writer’s interface

Declaring part of a class as protected makes that part visible only to the class itself
and its descendants (and to other classes that share their unit files).

You can use protected declarations to define a component writer’s interface to the class.
Application units do not have access to the protected parts, but derived classes do.
This means that component writers can change the way a class works without
making the details visible to application developers.

Note A common mistake is trying to access protected methods from an event handler.
Event handlers are typically methods of the form, not the component that receives
the event. As a result, they do not have access to the component’s protected methods
(unless the component is declared in the same unit as the form).

25-6 D e v e l o p e r ’ s G u i d e

C o n t r o l l i n g a c c e s s

Defining the runtime interface

Declaring part of a class as public makes that part visible to any code that has access
to the class as a whole.

Public parts are available at runtime to all code, so the public parts of a class define
its runtime interface. The runtime interface is useful for items that are not meaningful
or appropriate at design time, such as properties that depend on runtime input or
which are read-only. Methods that you intend for application developers to call must
also be public.

Here is an example that shows two read-only properties declared as part of a
component’s runtime interface:

type
TSampleComponent = class(TComponent)
private

FTempCelsius: Integer; { implementation details are private }
function GetTempFahrenheit: Integer;

public
property TempCelsius: Integer read FTempCelsius; { properties are public }
property TempFahrenheit: Integer read GetTempFahrenheit;

end;
ƒ
function TSampleComponent.GetTempFahrenheit: Integer;
begin

Result := FTempCelsius * 9 div 5 + 32;
end;

Defining the design-time interface

Declaring part of a class as published makes that part public and also generates
runtime type information. Among other things, runtime type information allows the
Object Inspector to access properties and events.

Because they show up in the Object Inspector, the published parts of a class define
that class’s design-time interface. The design-time interface should include any aspects
of the class that an application developer might want to customize at design time, but
must exclude any properties that depend on specific information about the runtime
environment.

Here is an example of a published property called Temperature. Because it is
published, it appears in the Object Inspector at design time.

type
TSampleComponent = class(TComponent)
private

FTemperature: Integer; { implementation details are private }
published

property Temperature: Integer read FTemperature write FTemperature; { writable! }
end;

O b j e c t - o r i e n t e d p r o g r a m m i n g f o r c o m p o n e n t w r i t e r s 25-7

D i s p a t c h i n g m e t h o d s

Dispatching methods
Dispatch refers to the way a program determines where a method should be invoked
when it encounters a method call. The code that calls a method looks like any other
procedure or function call. But classes have different ways of dispatching methods.

The three types of method dispatch are

• Static
• Virtual
• Dynamic

Static methods

All methods are static unless you specify otherwise when you declare them. Static
methods work like regular procedures or functions. The compiler determines the
exact address of the method and links the method at compile time.

The primary advantage of static methods is that dispatching them is very quick.
Because the compiler can determine the exact address of the method, it links the
method directly. Virtual and dynamic methods, by contrast, use indirect means to
look up the address of their methods at runtime, which takes somewhat longer.

A static method does not change when inherited by a descendant class. If you declare
a class that includes a static method, then derive a new class from it, the derived class
shares exactly the same method at the same address. This means that you cannot
override static methods; a static method always does exactly the same thing no
matter what class it is called in. If you declare a method in a derived class with the
same name as a static method in the ancestor class, the new method simply replaces
the inherited one in the derived class.

An example of static methods

In the following code, the first component declares two static methods. The second
declares two static methods with the same names that replace the methods inherited
from the first component.

type
TFirstComponent = class(TComponent)

procedure Move;
procedure Flash;

end;

TSecondComponent = class(TFirstComponent)
procedure Move; { different from the inherited method, despite same declaration }
function Flash(HowOften: Integer): Integer; { this is also different }

end;

25-8 D e v e l o p e r ’ s G u i d e

D i s p a t c h i n g m e t h o d s

Virtual methods

Virtual methods employ a more complicated, and more flexible, dispatch mechanism
than static methods. A virtual method can be redefined in descendant classes, but
still be called in the ancestor class. The address of a virtual method isn’t determined
at compile time; instead, the object where the method is defined looks up the address
at runtime.

To make a method virtual, add the directive virtual after the method declaration. The
virtual directive creates an entry in the object’s virtual method table, or VMT, which
holds the addresses of all the virtual methods in an object type.

When you derive a new class from an existing one, the new class gets its own VMT,
which includes all the entries from the ancestor’s VMT plus any additional virtual
methods declared in the new class.

Overriding methods
Overriding a method means extending or refining it, rather than replacing it. A
descendant class can override any of its inherited virtual methods.

To override a method in a descendant class, add the directive override to the end of
the method declaration.

Overriding a method causes a compilation error if

• The method does not exist in the ancestor class.

• The ancestor’s method of that name is static.

• The declarations are not otherwise identical (number and type of arguments
parameters differ).

The following code shows the declaration of two simple components. The first
declares three methods, each with a different kind of dispatching. The other, derived
from the first, replaces the static method and overrides the virtual methods.

type
TFirstComponent = class(TCustomControl)

procedure Move; { static method }
procedure Flash; virtual; { virtual method }
procedure Beep; dynamic; { dynamic virtual method }

end;

TSecondComponent = class(TFirstComponent)
procedure Move; { declares new method }
procedure Flash; override; { overrides inherited method }
procedure Beep; override; { overrides inherited method }

end;

Dynamic methods
Dynamic methods are virtual methods with a slightly different dispatch mechanism.
Because dynamic methods don’t have entries in the object’s virtual method table,
they can reduce the amount of memory that objects consume. However, dispatching

O b j e c t - o r i e n t e d p r o g r a m m i n g f o r c o m p o n e n t w r i t e r s 25-9

A b s t r a c t c l a s s m e m b e r s

dynamic methods is somewhat slower than dispatching regular virtual methods. If a
method is called frequently, or if its execution is time-critical, you should probably
declare it as virtual rather than dynamic.

Objects must store the addresses of their dynamic methods. But instead of receiving
entries in the virtual method table, dynamic methods are listed separately. The
dynamic method list contains entries only for methods introduced or overridden by a
particular class. (The virtual method table, in contrast, includes all of the object’s
virtual methods, both inherited and introduced.) Inherited dynamic methods are
dispatched by searching each ancestor’s dynamic method list, working backwards
through the inheritance tree.

To make a method dynamic, add the directive dynamic after the method declaration.

Abstract class members
When a method is declared as abstract in an ancestor class, you must surface it (by
redeclaring and implementing it) in any descendant component before you can use
the new component in applications. Kylix cannot create instances of a class that
contains abstract members. For more information about surfacing inherited parts of
classes, see Chapter 26, “Creating properties,” and Chapter 28, “Creating methods.”

Classes and pointers
Every class (and therefore every component) is really a pointer. The compiler
automatically dereferences class pointers for you, so most of the time you do not
need to think about this. The status of classes as pointers becomes important when
you pass a class as a parameter. In general, you should pass classes by value rather
than by reference. The reason is that classes are already pointers, which are
references; passing a class by reference amounts to passing a reference to a reference.

25-10 D e v e l o p e r ’ s G u i d e

C r e a t i n g p r o p e r t i e s 26-1

C h a p t e r

26
Chapter26Creating properties

Properties are the most visible parts of components. The application developer can
see and manipulate them at design time and get immediate feedback as the
components react in the Form designer. Well-designed properties make your
components easier for others to use and easier for you to maintain.

To make the best use of properties in your components, you should understand the
following:

• Why create properties?
• Types of properties
• Publishing inherited properties
• Defining properties
• Creating array properties
• Storing and loading properties

Why create properties?
From the application developer’s standpoint, properties look like variables.
Developers can set or read the values of properties as if they were fields. (About the
only thing you can do with a variable that you cannot do with a property is pass it as
a var parameter.)

Properties provide more power than simple fields because

• Application developers can set properties at design time. Unlike fields and
methods, which are available only at runtime, properties let the developer
customize components before running an application. Properties can appear in the
Object Inspector, which simplifies the programmer’s job; instead of handling
several parameters to construct an object, you let Kylix read the values from the
Object Inspector. The Object Inspector also validates property assignments as soon
as they are made.

26-2 D e v e l o p e r ’ s G u i d e

T y p e s o f p r o p e r t i e s

• Properties can hide implementation details. For example, data stored internally in
an encrypted form can appear unencrypted as the value of a property; although
the value is a simple number, the component may look up the value in a database
or perform complex calculations to arrive at it. Properties let you attach complex
effects to outwardly simple assignments; what looks like an assignment to a field
can be a call to a method which implements elaborate processing.

• Properties can be virtual. Hence, what looks like a single property to an
application developer may be implemented differently in different components.

A simple example is the Top property of all controls. Assigning a new value to Top
does not just change a stored value; it repositions and repaints the control. And the
effects of setting a property need not be limited to an individual component; for
example, setting the Down property of a speed button to True sets Down property of
all other speed buttons in its group to False.

Types of properties
A property can be of any type. Different types are displayed differently in the Object
Inspector, which validates property assignments as they are made at design time.

Table 26.1 How properties appear in the Object Inspector

Property type Object Inspector treatment

Simple Numeric, character, and string properties appear as numbers, characters, and
strings. The application developer can edit the value of the property directly.

Enumerated Properties of enumerated types (including Boolean) appear as editable strings.
The developer can also cycle through the possible values by double-clicking
the value column, and there is a drop-down list that shows all possible values.

Set Properties of set types appear as sets. By double-clicking on the property, the
developer can expand the set and treat each element as a Boolean value (true if
it is included in the set).

Object Properties that are themselves classes often have their own property editors,
specified in the component’s registration procedure. If the class held by a
property has its own published properties, the Object Inspector lets the
developer to expand the list (by double-clicking) to include these properties
and edit them individually. Object properties must descend from TPersistent.

Interface Properties that are interfaces can appear in the Object Inspector as long as the
value is an interface that is implemented by a component (a descendant of
TComponent). Interface properties often have their own property editors.

Array Array properties must have their own property editors; the Object Inspector
has no built-in support for editing them. You can specify a property editor
when you register your components.

C r e a t i n g p r o p e r t i e s 26-3

P u b l i s h i n g i n h e r i t e d p r o p e r t i e s

Publishing inherited properties
All components inherit properties from their ancestor classes. When you derive a
new component from an existing one, your new component inherits all the properties
of its immediate ancestor. If you derive from one of the abstract classes, many of the
inherited properties are either protected or public, but not published.

To make a protected or public property available at design time in the Object
Inspector, you must redeclare the property as published. Redeclaring means adding
a declaration for the inherited property to the declaration of the descendant class.

If you derive a component from TWidgetControl, it inherits the protected Bitmap
property. By redeclaring Bitmap in your new component, you can change the level of
protection to either public or published.

The following code shows a redeclaration of Bitmap as published, making it available at
design time.

type
TSampleComponent = class(TWidgetControl)
published

property Bitmap;
end;

When you redeclare a property, you specify only the property name, not the type and
other information described below in “Defining properties”. You can also declare
new default values and specify whether to store the property.

Redeclarations can make a property less restricted, but not more restricted. Thus you
can make a protected property public, but you cannot hide a public property by
redeclaring it as protected.

Defining properties
This section shows how to declare new properties and explains some of the
conventions followed in the standard components. Topics include

• The property declaration
• Internal data storage
• Direct access
• Access methods
• Default property values

The property declaration

A property is declared in the declaration of its component class. To declare a
property, you specify three things:

• The name of the property.

• The type of the property.

26-4 D e v e l o p e r ’ s G u i d e

D e f i n i n g p r o p e r t i e s

• The methods used to read and write the value of the property. If no write method
is declared, the property is read-only.

Properties declared in a published section of the component’s class declaration are
editable in the Object Inspector at design time. The value of a published property is
saved with the component in the form file. Properties declared in a public section are
available at runtime and can be read or set in program code.

Here is a typical declaration for a property called Count.

type
TYourComponent = class(TComponent)
private

FCount: Integer; { used for internal storage }
procedure SetCount (Value: Integer); { write method }

public
property Count: Integer read FCount write SetCount;

end;

Internal data storage

There are no restrictions on how you store the data for a property. In general,
however, components follow these conventions:

• Property data is stored in class fields.

• The fields used to store property data are private and should be accessed only
from within the component itself. Derived components should use the inherited
property; they do not need direct access to the property’s internal data storage.

• Identifiers for these fields consist of the letter F followed by the name of the
property. For example, the raw data for the Width property defined in TControl is
stored in a field called FWidth.

The principle that underlies these conventions is that only the implementation
methods for a property should access the data behind it. If a method or another
property needs to change that data, it should do so through the property, not by
direct access to the stored data. This ensures that the implementation of an inherited
property can change without invalidating derived components.

Direct access

The simplest way to make property data available is direct access. That is, the read and
write parts of the property declaration specify that assigning or reading the property
value goes directly to the internal-storage field without calling an access method.
Direct access is useful when you want to make a property available in the Object
Inspector but changes to its value trigger no immediate processing.

It is common to have direct access for the read part of a property declaration but use
an access method for the write part. This allows the status of the component to be
updated when the property value changes.

C r e a t i n g p r o p e r t i e s 26-5

D e f i n i n g p r o p e r t i e s

The following component-type declaration shows a property that uses direct access
for both the read and the write parts.

type
TSampleComponent = class(TComponent)
private { internal storage is private}

FMyProperty: Boolean; { declare field to hold property value }
published { make property available at design time }

property MyProperty: Boolean read FMyProperty write FMyProperty;
end;

Access methods

You can specify an access method instead of a field in the read and write parts of a
property declaration. Access methods should be protected, and are usually declared
as virtual; this allows descendant components to override the property’s
implementation.

Avoid making access methods public. Keeping them protected ensures that
application developers do not inadvertently modify a property by calling one of
these methods.

Here is a class that declares three properties using the index specifier, which allows
all three properties to have the same read and write access methods:

type
TSampleCalendar = class(TCustomGrid)
public

property Day: Integer index 3 read GetDateElement write SetDateElement;
property Month: Integer index 2 read GetDateElement write SetDateElement;
property Year: Integer index 1 read GetDateElement write SetDateElement;

private
function GetDateElement(Index: Integer): Integer; { note the Index parameter }
procedure SetDateElement(Index: Integer; Value: Integer);

ƒ

Because each element of the date (day, month, and year) is an integer, and because
setting each requires encoding the date when set, the code avoids duplication by
sharing the read and write methods for all three properties. You need only one
method to read a date element, and another to write the date element.

Here is the read method that obtains the date element:

function TSampleCalendar.GetDateElement(Index: Integer): Integer;
var

AYear, AMonth, ADay: Word;
begin

DecodeDate(FDate, AYear, AMonth, ADay); { break encoded date into elements }
case Index of

1: Result := AYear;
2: Result := AMonth;
3: Result := ADay;
else Result := -1;

end;
end;

26-6 D e v e l o p e r ’ s G u i d e

D e f i n i n g p r o p e r t i e s

This is the write method that sets the appropriate date element:

procedure TSampleCalendar.SetDateElement(Index: Integer; Value: Integer);
var

AYear, AMonth, ADay: Word;
begin

if Value > 0 then { all elements must be positive }
begin

DecodeDate(FDate, AYear, AMonth, ADay); { get current date elements }
case Index of { set new element depending on Index }
1: AYear := Value;
2: AMonth := Value;
3: ADay := Value;
else Exit;

end;
FDate := EncodeDate(AYear, AMonth, ADay); { encode the modified date }
Refresh; { update the visible calendar }

end;
end;

The read method
The read method for a property is a function that takes no parameters (except as
noted below) and returns a value of the same type as the property. By convention, the
function’s name is Get followed by the name of the property. For example, the read
method for a property called Count would be GetCount. The read method
manipulates the internal storage data as needed to produce the value of the property
in the appropriate type.

The only exceptions to the no-parameters rule are for array properties and properties
that use index specifiers (see “Creating array properties” on page 26-8), both of
which pass their index values as parameters. (Use index specifiers to create a single
read method that is shared by several properties. For more information about index
specifiers, see the Object Pascal Language Guide.)

If you do not declare a read method, the property is write-only. Write-only properties
are seldom used.

The write method
The write method for a property is a procedure that takes a single parameter (except
as noted below) of the same type as the property. The parameter can be passed by
reference or by value, and can have any name you choose. By convention, the write
method’s name is Set followed by the name of the property. For example, the write
method for a property called Count would be SetCount. The value passed in the
parameter becomes the new value of the property; the write method must perform
any manipulation needed to put the appropriate data in the property’s internal
storage.

The only exceptions to the single-parameter rule are for array properties and
properties that use index specifiers, both of which pass their index values as a second
parameter. (Use index specifiers to create a single write method that is shared by
several properties. For more information about index specifiers, see the Object Pascal
Language Guide.)

C r e a t i n g p r o p e r t i e s 26-7

D e f i n i n g p r o p e r t i e s

If you do not declare a write method, the property is read-only.

Write methods commonly test whether a new value differs from the current value
before changing the property. For example, here is a simple write method for an
integer property called Count that stores its current value in a field called FCount.

procedure TMyComponent.SetCount(Value: Integer);
begin

if Value <> FCount then
begin

FCount := Value;
Update;

end;
end;

Default property values

When you declare a property, you can specify a default value for it. Kylix uses the
default value to determine whether to store the property in a form file. If you do not
specify a default value for a property, Kylix always stores the property.

To specify a default value for a property, append the default directive to the
property’s declaration (or redeclaration), followed by the default value. For example,

property Cool Boolean read GetCool write SetCool default True;

Note Declaring a default value does not set the property to that value. The component’s
constructor should initialize property values when appropriate. However, since
objects always initialize their fields to 0, it is not strictly necessary for the constructor
to set integer properties to 0, string properties to null, or Boolean properties to False.

Specifying no default value
When redeclaring a property, you can specify that the property has no default value,
even if the inherited property specified one.

To designate a property as having no default value, append the nodefault directive
to the property’s declaration. For example,

property FavoriteFlavor string nodefault;

When you declare a property for the first time, there is no need to include nodefault.
The absence of a declared default value means that there is no default.

Here is the declaration of a component that includes a single Boolean property called
IsTrue with a default value of True. Below the declaration (in the implementation
section of the unit) is the constructor that initializes the property.

type
TSampleComponent = class(TComponent)
private

FIsTrue: Boolean;
public

constructor Create(AOwner: TComponent); override;
published

property IsTrue: Boolean read FIsTrue write FIsTrue default True;

26-8 D e v e l o p e r ’ s G u i d e

C r e a t i n g a r r a y p r o p e r t i e s

end;
ƒ
constructor TSampleComponent.Create(AOwner: TComponent);
begin

inherited Create(AOwner); { call the inherited constructor }
FIsTrue := True; { set the default value }

end;

Creating array properties
Some properties lend themselves to being indexed like arrays. For example, the Items
property of TCustomTreeView is an indexed list of the nodes in the tree; you can treat
it as an array of tree nodes. Items provides natural access to a particular element (a
node) in a larger set of data (the set of all nodes in the tree).

Array properties are declared like other properties, except that

• The declaration includes one or more indexes with specified types. The indexes
can be of any type.

• The read and write parts of the property declaration, if specified, must be
methods. They cannot be fields.

The read and write methods for an array property take additional parameters that
correspond to the indexes. The parameters must be in the same order and of the same
type as the indexes specified in the declaration.

There are a few important differences between array properties and arrays. Unlike
the index of an array, the index of an array property does not have to be an integer
type. You can index a property on a string, for example. In addition, you can
reference only individual elements of an array property, not the entire range of the
property.

The following example shows the declaration of a property that returns a string
based on an integer index.

type
TDemoComponent = class(TComponent)
private

function GetNumberName(Index: Integer): string;
public

property NumberName[Index: Integer]: string read GetNumberName;
end;

ƒ
function TDemoComponent.GetNumberName(Index: Integer): string;
begin

Result := 'Unknown';
case Index of

-MaxInt..-1: Result := 'Negative';
0: Result := 'Zero';
1..100: Result := 'Small';
101..MaxInt: Result := 'Large';

end;
end;

C r e a t i n g p r o p e r t i e s 26-9

C r e a t i n g p r o p e r t i e s f o r s u b c o m p o n e n t s

Creating properties for subcomponents
By default, when a property’s value is another component, you assign a value to that
property by adding an instance of the other component to the form or data module
and then assigning that component as the value of the property. However, it is also
possible for your component to create its own instance of the object that implements
the property value. Such a dedicated component is called a subcomponent.

Subcomponents can be any persistent object (any descendant of TPersistent). Unlike
separate components that happen to be assigned as the value of a property, the
published properties of subcomponents are saved with the component that creates
them. In order for this to work, however, the following conditions must be met:

• The Owner of the subcomponent must be the component that creates it and uses it
as the value of a published property. For subcomponents that are descendants of
TComponent, you can accomplish this by setting the Owner property of the
subcomponent. For other subcomponents, you must override the GetOwner
method of the persistent object so that it returns the creating component.

• If the subcomponent is a descendant of TComponent, it must indicate that it is a
subcomponent by calling the SetSubComponent method. Typically, this call is made
either by the owner when it creates the subcomponent or by the constructor of the
subcomponent.

Typically, properties whose values are subcomponents are read-only. If you allow a
property whose value is a subcomponent to be changed, the property setter must free
the subcomponent when another component is assigned as the property value. In
addition, the component often re-instantiates its subcomponent when the property is
set to nil. Otherwise, once the property is changed to another component, the
subcomponent can never be restored at design time. The following example
illustrates such a property setter for a property whose value is a TTimer:

procedure TDemoComponent.SetTimerProp(Value: TTimer);
begin

if Value <> FTimer then
begin

if Value <> nil then
begin
if (FTimer <> nil and FTimer.Owner = self then

FTimer.Free;
FTimer := Value;
FTimer,FreeNotification(self);

end
else { nil value }
begin
if FTimer.Owner <> self then
{

FTimer := TTimer.Create(self);
FTimer.SetSubComponent(True);
FTimer.FreeNotification(self);

}
end;

end;
end;

26-10 D e v e l o p e r ’ s G u i d e

C r e a t i n g p r o p e r t i e s f o r i n t e r f a c e s

Note that the property setter above called the FreeNotification method of the
component that is set as the property value. This call ensures that the component that
is the value of the property sends a notification if it is about to be destroyed. It sends
this notification by calling the Notification method. You handle this call by overriding
the Notification method, as follows:

procedure TDemoComponent.Notification(AComponent: TComponent; Operation: TOperation);
begin

inherited Notification(AComponent, Operation);
if (Operation = opRemove) and (AComponent = FTimer) then

FTimer := nil;
end;

Creating properties for interfaces
You can use an interface as the value of a published property, much as you can use
an object. However, the mechanism by which your component receives notifications
from the implementation of that interface differs. In the previous topic, the property
setter called the FreeNotification method of the component that was assigned as the
property value. This allowed the component to update itself when the component
that was the value of the property was freed. When the value of the property is an
interface, however, you don’t have access to the component that implements that
interface. As a result, you can’t call its FreeNotification method.

To handle this situation, you can call your component’s ReferenceInterface method:

procedure TDemoComponent.SetMyIntfProp(const Value: IMyInterface);
begin

ReferenceInterface(FIntfField, opRemove);
FIntfField := Value;
ReferenceInterface(FIntfField, opInsert);

end;

Calling ReferenceInterface with a specified interface does the same thing as calling
another component’s FreeNotification method. Thus, after calling ReferenceInterface
from the property setter, you can override the Notification method to handle the
notifications from the implementor of the interface:

procedure TDemoComponent.Notification(AComponent: TComponent; Operation: TOperation);
begin

inherited Notification(AComponent, Operation);
if (Assigned(MyIntfProp)) and (AComponent.IsImplementorOf(MyInftProp)) then

MyIntfProp := nil;
end;

Note that the Notification code assigns nil to the MyIntfProp property, not to the
private field (FIntfField). This ensures that Notification calls the property setter, which
calls ReferenceInterface to remove the notification request that was established when
the property value was set previously. All assignments to the interface property must
be made through the property setter.

C r e a t i n g p r o p e r t i e s 26-11

S t o r i n g a n d l o a d i n g p r o p e r t i e s

Storing and loading properties
Kylix stores forms and their components in form (.xfm) files. A form file contains the
properties of a form and its components. When Kylix developers add components
you write to their forms, your components must have the ability to write their
properties to the form file when saved. Similarly, when loaded into Kylix or executed
as part of an application, the components must restore themselves from the form file.

Most of the time you will not need to do anything to make your components work
with form files because the ability to store a representation and load from it are part
of the inherited behavior of components. Sometimes, however, you might want to
alter the way a component stores itself or the way it initializes when loaded; so you
should understand the underlying mechanism.

These are the aspects of property storage you need to understand:

• Using the store-and-load mechanism
• Specifying default values
• Determining what to store
• Initializing after loading
• Storing and loading unpublished properties

Using the store-and-load mechanism

The description of a form consists of a list of the form’s properties, along with similar
descriptions of each component on the form. Each component, including the form
itself, is responsible for storing and loading its own description.

By default, when storing itself, a component writes the values of all its public and
published properties that differ from their default values, in the order of their
declaration. When loading itself, a component first constructs itself, setting all
properties to their default values, then reads the stored, non-default property values.

This default mechanism serves the needs of most components, and requires no action
at all on the part of the component writer. There are several ways you can customize
the storing and loading process to suit the needs of your particular components,
however.

Specifying default values

Kylix components save their property values only if those values differ from the
defaults. If you do not specify otherwise, Kylix assumes a property has no default
value, meaning the component always stores the property, whatever its value.

To specify a default value for a property, add the default directive and the new
default value to the end of the property declaration.

You can also specify a default value when redeclaring a property. In fact, one reason
to redeclare a property is to designate a different default value.

26-12 D e v e l o p e r ’ s G u i d e

S t o r i n g a n d l o a d i n g p r o p e r t i e s

Note Specifying the default value does not automatically assign that value to the property
on creation of the object. You must make sure that the component’s constructor
assigns the necessary value. A property whose value is not set by a component’s
constructor assumes a zero value—that is, whatever value the property assumes when
its storage memory is set to 0. Thus numeric values default to 0, Boolean values to False,
pointers to nil, and so on. If there is any doubt, assign a value in the constructor.

The following code shows a component declaration that specifies a default value for
the Align property and the implementation of the component’s constructor that sets
the default value. In this case, the new component is a special case of the standard
panel component that will be used for status bars in a window, so its default
alignment should be to the bottom of its owner.

type
TStatusBar = class(TPanel)
public

constructor Create(AOwner: TComponent); override; { override to set new default }
published

property Align default alBottom; { redeclare with new default value }
end;

ƒ
constructor TStatusBar.Create(AOwner: TComponent);
begin

inherited Create(AOwner); { perform inherited initialization }
Align := alBottom; { assign new default value for Align }

end;

Determining what to store

You can control whether Kylix stores each of your components’ properties. By
default, all properties in the published part of the class declaration are stored. You
can choose not to store a given property at all, or you can designate a function that
determines dynamically whether to store the property.

To control whether Kylix stores a property, add the stored directive to the property
declaration, followed by True, False, or the name of a Boolean function.

The following code shows a component that declares three new properties. One is
always stored, one is never stored, and the third is stored depending on the value of a
Boolean function:

type
TSampleComponent = class(TComponent)
protected

function StoreIt: Boolean;
public
ƒ
published

property Important: Integer stored True; { always stored }
property Unimportant: Integer stored False; { never stored }
property Sometimes: Integer stored StoreIt; { storage depends on function value }

end;

C r e a t i n g p r o p e r t i e s 26-13

S t o r i n g a n d l o a d i n g p r o p e r t i e s

Initializing after loading

After a component reads all its property values from its stored description, it calls a
virtual method named Loaded, which performs any required initializations. The call
to Loaded occurs before the form and its controls are shown, so you do not need to
worry about initialization causing flicker on the screen.

To initialize a component after it loads its property values, override the Loaded
method.

Note The first thing to do in any Loaded method is call the inherited Loaded method. This
ensures that any inherited properties are correctly initialized before you initialize
your own component.

Storing and loading unpublished properties

By default, only published properties are loaded and saved with a component.
However, it is possible to load and save unpublished properties. This allows you to
have persistent properties that do not appear in the Object Inspector. It also allows
components to store and load property values that Kylix does not know how to read
or write because the value of the property is too complex. For example, the TStrings
object can’t rely on Kylix’s automatic behavior to store and load the strings it
represents and must use the following mechanism.

You can save unpublished properties by adding code that tells Kylix how to load and
save your property’s value.

To write your own code to load and save properties, use the following steps:

1 Create methods to store and load the property value.

2 Override the DefineProperties method, passing those methods to a filer object.

Creating methods to store and load property values
To store and load unpublished properties, you must first create a method to store
your property value and another to load your property value. You have two choices:

• Create a method of type TWriterProc to store your property value and a method of
type TReaderProc to load your property value. This approach lets you take
advantage of Kylix’s built-in capabilities for saving and loading simple types. If
your property value is built out of types that Kylix knows how to save and load,
use this approach.

• Create two methods of type TStreamProc, one to store and one to load your
property’s value. TStreamProc takes a stream as an argument, and you can use the
stream’s methods to write and read your property values.

For example, consider a property that represents a component that is created at
runtime. Kylix knows how to write this value, but does not do so automatically
because the component is not created in the form designer. Because the streaming
system can already load and save components, you can use the first approach. The

26-14 D e v e l o p e r ’ s G u i d e

S t o r i n g a n d l o a d i n g p r o p e r t i e s

following methods load and store the dynamically created component that is the
value of a property named MyCompProperty:

procedure TSampleComponent.LoadCompProperty(Reader: TReader);
begin

if Reader.ReadBoolean then
MyCompProperty := Reader.ReadComponent(nil);

end;
procedure TSampleComponent.StoreCompProperty(Writer: TWriter);
begin

Writer.WriteBoolean(MyCompProperty <> nil);
if MyCompProperty <> nil then

Writer.WriteComponent(MyCompProperty);
end;

Overriding the DefineProperties method
Once you have created methods to store and load your property value, you can
override the component’s DefineProperties method. Kylix calls this method when it
loads or stores the component. In the DefineProperties method, you must call the
DefineProperty method or the DefineBinaryProperty method of the current filer,
passing it the method to use for loading or saving your property value. If your load
and store methods are of type TWriterProc and type TReaderProc, then you call the
filer’s DefineProperty method. If you created methods of type TStreamProc, call
DefineBinaryProperty instead.

No matter which method you use to define the property, you pass it the methods that
store and load your property value as well as a boolean value indicating whether the
property value needs to be written. If the value can be inherited or has a default
value, you do not need to write it.

For example, given the LoadCompProperty method of type TReaderProc and the
StoreCompProperty method of type TWriterProc, you would override DefineProperties
as follows:

procedure TSampleComponent.DefineProperties(Filer: TFiler);
function DoWrite: Boolean;
begin

if Filer.Ancestor <> nil then { check Ancestor for an inherited value }
begin
if TSampleComponent(Filer.Ancestor).MyCompProperty = nil then

Result := MyCompProperty <> nil
else if MyCompProperty = nil or

TSampleComponent(Filer.Ancestor).MyCompProperty.Name <> MyCompProperty.Name then
Result := True

else Result := False;
end
else { no inherited value -- check for default (nil) value }
Result := MyCompProperty <> nil;

end;
begin

inherited; { allow base classes to define properties }
Filer.DefineProperty('MyCompProperty', LoadCompProperty, StoreCompProperty, DoWrite);

end;

C r e a t i n g e v e n t s 27-1

C h a p t e r

27
Chapter27Creating events

An event is a link between an occurrence in the system (such as a user action or a
change in focus) and a piece of code that responds to that occurrence. The responding
code is an event handler, and is nearly always written by the application developer.
Events let application developers customize the behavior of components without
having to change the classes themselves. This is known as delegation.

Events for the most common user actions (such as mouse actions) are built into all the
standard components, but you can also define new events. To create events in a
component, you need to understand the following:

• What are events?
• Implementing the standard events
• Defining your own events

Events are implemented as properties, so you should already be familiar with the
material in Chapter 26, “Creating properties,” before you attempt to create or change
a component’s events.

What are events?
An event is a mechanism that links an occurrence to some code. More specifically, an
event is a method pointer that points to a method in a specific class instance.

From the application developer’s perspective, an event is just a name related to a
system occurrence, such as OnClick, to which specific code can be attached. For
example, a push button called Button1 has an OnClick event. By default, when you
assign a value to the OnClick event, Kylix generates an event handler called
Button1Click in the form that contains the button and assigns it to OnClick. When a
click event occurs in the button, the button calls the method assigned to OnClick, in
this case, Button1Click.

27-2 D e v e l o p e r ’ s G u i d e

W h a t a r e e v e n t s ?

To write an event, you need to understand the following:

• Events are method pointers.
• Events are properties.
• Event types are method-pointer types
• Event-handler types are procedures
• Event handlers are optional.

Events are method pointers

Kylix uses method pointers to implement events. A method pointer is a special
pointer type that points to a specific method in an instance object. As a component
writer, you can treat the method pointer as a placeholder: When your code detects
that an event occurs, you call the method (if any) specified by the user for that event.

Method pointers work just like any other procedural type, but they maintain a
hidden pointer to an object. When the application developer assigns a handler to a
component’s event, the assignment is not just to a method with a particular name,
but rather to a method in a specific instance object. That object is usually the form
that contains the component, but it need not be.

All controls, for example, inherit a dynamic method called Click for handling click
events:

procedure Click; dynamic;

The implementation of Click calls the user’s click-event handler, if one exists. If the
user has assigned a handler to a control’s OnClick event, clicking the control results in
that method being called. If no handler is assigned, nothing happens.

Events are properties

Components use properties to implement their events. Unlike most other properties,
events typically do not use methods to implement their read and write parts. Instead,
event properties use a private class field of the same type as the property.

By convention, the field’s name is the name of the property preceded by the letter F.
For example, the OnClick method’s pointer is stored in a field called FOnClick of type
TNotifyEvent, and the declaration of the OnClick event property looks like this:

type
TControl = class(TComponent)
private

FOnClick: TNotifyEvent; { declare a field to hold the method pointer }
ƒ

protected
property OnClick: TNotifyEvent read FOnClick write FOnClick;

end;

User clicks Button1 Button1.OnClick points to
Form1.Button1Click

Form1.Button1Click
executes

Occurrence Event Event handler

C r e a t i n g e v e n t s 27-3

W h a t a r e e v e n t s ?

To learn about TNotifyEvent and other event types, see the next section, “Event types
are method-pointer types”.

As with any other property, you can set or change the value of an event at runtime.
The main advantage to having events be properties, however, is that component
users can assign handlers to events at design time, using the Object Inspector.

Event types are method-pointer types

Because an event is a pointer to an event handler, the type of the event property must
be a method-pointer type. Similarly, any code to be used as an event handler must be
an appropriately typed method of an object.

All event-handler methods are procedures. To be compatible with an event of a given
type, an event-handler method must have the same number and type of parameters,
in the same order, passed in the same way.

CLX defines method types for all its standard events. When you create your own
events, you can use an existing type if that is appropriate, or define one of your own.

Event-handler types are procedures
Although the compiler allows you to declare method-pointer types that are
functions, you should never do so for handling events. Because an empty function
returns an undefined result, an empty event handler that was a function might not
always be valid. For this reason, all your events and their associated event handlers
should be procedures.

Although an event handler cannot be a function, you can still get information from
the application developer’s code using var parameters. When doing this, make sure
you assign a valid value to the parameter before calling the handler so you don’t
require the user’s code to change the value.

An example of passing var parameters to an event handler is the OnKeyPress event, of
type TKeyPressEvent. TKeyPressEvent defines two parameters, one to indicate which
object generated the event, and one to indicate which key was pressed:

type
TKeyPressEvent = procedure(Sender: TObject; var Key: Char) of object;

Normally, the Key parameter contains the character pressed by the user. Under
certain circumstances, however, the user of the component may want to change the
character. One example might be to force all characters to uppercase in an editor. In
that case, the user could define the following handler for keystrokes:

procedure TForm1.Edit1KeyPressed(Sender: TObject; var Key: Char);
begin

Key := UpCase(Key);
end;

You can also use var parameters to let the user override the default handling.

27-4 D e v e l o p e r ’ s G u i d e

I m p l e m e n t i n g t h e s t a n d a r d e v e n t s

Event handlers are optional

When creating events, remember that developers using your components may not
attach handlers to them. This means that your component should not fail or generate
errors simply because there is no handler attached to a particular event. (The
mechanics of calling handlers and dealing with events that have no attached handler
are explained in “Calling the event” on page 27-8.)

Events happen almost constantly in a GUI application. Just moving the mouse
pointer across a visual component causes numerous mouse-move events, which the
component surfaces as OnMouseMove events. In most cases, developers do not want
to handle the mouse-move events, and this should not cause a problem. The
components you create should not require handlers for their events.

CLX components have events that are written in such a way as to minimize the
chance of an event handler generating errors. Obviously, you cannot protect against
logic errors in application code, but you can ensure that data structures are initialized
before calling events so that application developers do not try to access invalid data.

Implementing the standard events
The controls that come with Kylix inherit events for the most common occurrences.
These are called the standard events. Although all these events are built into the
controls, they are often protected, meaning developers cannot attach handlers to
them. When you create a control, you can choose to make events visible to users of
your control.

There are three things you need to consider when incorporating the standard events
into your controls:

• Identifying standard events
• Making events visible
• Changing the standard event handling

Identifying standard events

There are two categories of standard events: those defined for all controls and those
defined only for the widget controls.

Standard events for all controls
The most basic events are defined in the class TControl. All controls, whether widget-
based, graphical, or custom, inherit these events. The following events are available
in all controls:

OnClick OnDragDrop OnMouseMove OnMouseWheelUp

OnConstrainedResize OnDragOver OnMouseUp OnResize

OnContextPopup OnEndDrag OnMouseWheel OnStartDrag

OnDblClick OnMouseDown OnMouseWheelDown

C r e a t i n g e v e n t s 27-5

I m p l e m e n t i n g t h e s t a n d a r d e v e n t s

The standard events have corresponding protected virtual methods declared in
TControl, with names that correspond to the event names. For example, OnClick
events call a method named Click, and OnEndDrag events call a method named
DoEndDrag.

Standard events for widget-based controls
In addition to the events common to all controls, standard widget-based controls
(those that descend from TWidgetControl) have the following events:

Like the standard events in TControl, the widget-based events have corresponding
methods.

Making events visible

The declarations of the standard events in TControl and TWidgetControl are protected,
as are the methods that correspond to them. If you are inheriting from one of these
abstract classes and want to make their events accessible at runtime or design time,
you need to redeclare the events as either public or published.

Redeclaring a property without specifying its implementation keeps the same
implementation methods, but changes the protection level. You can, therefore, take
an event that is defined in TControl but not made visible, and surface it by declaring it
as public or published.

For example, to create a component that surfaces the OnClick event at design time,
add the following to the component’s class declaration.

type
TMyControl = class(TCustomControl)
ƒ
published

property OnClick;
end;

Changing the standard event handling

If you want to change the way your component responds to a certain kind of event,
you might be tempted to write some code and assign it to the event. As an
application developer, that is exactly what you would do. But when you are creating
a component, you must keep the event available for developers who use the
component.

This is the reason for the protected implementation methods associated with each of
the standard events. By overriding the implementation method, you can modify the
internal event handling; and by calling the inherited method you can maintain the
standard handling, including the event for the application developer’s code.

OnEnter OnKeyDown OnKeyPress

OnKeyUp OnExit

27-6 D e v e l o p e r ’ s G u i d e

D e f i n i n g y o u r o w n e v e n t s

The order in which you call the methods is significant. As a rule, call the inherited
method first, allowing the application developer’s event-handler to execute before
your customizations (and in some cases, to keep the customizations from executing).
There may be times when you want to execute your code before calling the inherited
method, however. For example, if the inherited code is somehow dependent on the
status of the component and your code changes that status, you should make the
changes and then allow the user’s code to respond to them.

Suppose you are writing a component and you want to modify the way it responds
to mouse clicks. Instead of assigning a handler to the OnClick event as a application
developer would, you override the protected method Click:

procedure click override { forward declaration }
ƒ

procedure TMyControl.Click;
begin

inherited Click; { perform standard handling, including calling handler }
... { your customizations go here }
end;

Defining your own events
Defining entirely new events is relatively unusual. There are times, however, when a
component introduces behavior that is entirely different from that of any other
component, so you will need to define an event for it.

There are the issues you will need to consider when defining an event:

• Triggering the event
• Defining the handler type
• Declaring the event
• Calling the event

Triggering the event

You need to know what triggers the event. For some events, the answer is obvious.
For example, a mouse-down event occurs when the user presses the left button on
the mouse. When notified of an event by the system, the component calls its
MouseDown method, which in turn calls any code the user has attached to the
OnMouseDown event.

Some events, however, are less clearly tied to specific external occurrences. For
example, a scroll bar has an OnChange event, which is triggered by several kinds of
occurrence, including keystrokes, mouse clicks, and changes in other controls. When
defining your events, you must ensure that all the appropriate occurrences call the
method that triggers the event.

C r e a t i n g e v e n t s 27-7

D e f i n i n g y o u r o w n e v e n t s

Two kinds of events
Events can be widget events, such as highlighting a menu item, or system events,
such as working with timers or key presses.

Widget events are actions that are generated by user interaction with a widget.
Widget events generate a signal that is passed onto the CLX component for
processing. The CLX component has an associated event handler installed for the
signal being passed to it. Examples of widget events are OnChange (the user changed
text in an edit control), OnHightlighted (the user highlighted a menu item on a menu),
and OnReturnPressed (the user pressed Enter in a memo control). These events are
always tied to specific widgets and are defined within those widgets.

System events are events that the operating system generates. For example, the
OnTimer event (the TTimer component issues one of these events whenever a
predefined interval has elapsed), the OnCreate event (the component is being
created), the OnPaint event (a component or widget needs to be redrawn),
OnKeyPress event (a key was pressed on the keyboard), and so on. These are events
that the application programmer must respond to if they are not handled as you
want them to be.

You have total control over the triggering of the events you define. Define the events
with care so that developers are able to understand and use them.

Defining the handler type

Once you determine when the event occurs, you must define how you want the event
handled. This means determining the type of the event handler. In most cases,
handlers for events you define yourself are either simple notifications or event-
specific types. It is also possible to get information back from the handler.

Simple notifications
A notification event is one that only tells you that the particular event happened,
with no specific information about when or where. Notifications use the type
TNotifyEvent, which carries only one parameter, the sender of the event. All a handler
for a notification “knows” about the event is what kind of event it was, and what
component the event happened to. For example, click events are notifications. When
you write a handler for a click event, all you know is that a click occurred and which
component was clicked.

Notification is a one-way process. There is no mechanism to provide feedback or
prevent further handling of a notification.

Event-specific handlers
In some cases, it is not enough to know which event happened and what component
it happened to. For example, if the event is a key-press event, it is likely that the
handler will want to know which key the user pressed. In these cases, you need
handler types that include parameters for additional information.

27-8 D e v e l o p e r ’ s G u i d e

D e f i n i n g y o u r o w n e v e n t s

If your event was generated in response to a message, it is likely that the parameters
you pass to the event handler come directly from the message parameters.

Returning information from the handler
Because all event handlers are procedures, the only way to pass information back
from a handler is through a var parameter. Your components can use such
information to determine how or whether to process an event after the user’s handler
executes.

For example, all the key events (OnKeyDown, OnKeyUp, and OnKeyPress) pass by
reference the value of the key pressed in a parameter named Key. The event handler
can change Key so that the application sees a different key as being involved in the
event. This is a way to force typed characters to uppercase, for example.

Declaring the event

Once you have determined the type of your event handler, you are ready to declare
the method pointer and the property for the event. Be sure to give the event a
meaningful and descriptive name so that users can understand what the event does.
Try to be consistent with names of similar properties in other components.

Event names start with “On”
The names of most events in Kylix begin with “On.” This is just a convention; the
compiler does not enforce it. The Object Inspector determines that a property is an
event by looking at the type of the property: all method-pointer properties are
assumed to be events and appear on the Events page.

Developers expect to find events in the alphabetical list of names starting with “On.”
Using other kinds of names is likely to confuse them.

Note The main exception to this rule is that many events that occur before and after some
occurrence begin with “Before” and “After”.

Calling the event

You should centralize calls to an event. That is, create a virtual method in your
component that calls the application’s event handler (if it assigns one) and provides
any default handling.

Putting all the event calls in one place ensures that someone deriving a new
component from yours can customize event handling by overriding a single method,
rather than searching through your code for places where you call the event.

There are two other considerations when calling the event:

• Empty handlers must be valid.
• Users can override default handling.

C r e a t i n g e v e n t s 27-9

D e f i n i n g y o u r o w n e v e n t s

Empty handlers must be valid
You should never create a situation in which an empty event handler causes an error,
nor should the proper functioning of your component depend on a particular
response from the application’s event-handling code.

An empty handler should produce the same result as no handler at all. So the code
for calling an application’s event handler should look like this:

if Assigned(OnClick) then OnClick(Self);
... { perform default handling }

You should never have something like this:

if Assigned(OnClick) then OnClick(Self)
else { perform default handling };

Users can override default handling
For some kinds of events, developers may want to replace the default handling or
even suppress all responses. To allow this, you need to pass an argument by
reference to the handler and check for a certain value when the handler returns.

This is in keeping with the rule that an empty handler should have the same effect as
no handler at all. Because an empty handler will not change the values of arguments
passed by reference, the default handling always takes place after calling the empty
handler.

When handling key-press events, for example, application developers can suppress
the component’s default handling of the keystroke by setting the var parameter Key
to a null character (#0). The logic for supporting this looks like

if Assigned(OnKeyPress) then OnKeyPress(Self, Key);
if Key <> #0 then ... { perform default handling }

The actual code is a little different from this because it deals with system events, but
the logic is the same. By default, the component calls any user-assigned handler, then
performs its standard handling. If the user’s handler sets Key to a null character, the
component skips the default handling.

27-10 D e v e l o p e r ’ s G u i d e

C r e a t i n g m e t h o d s 28-1

C h a p t e r

28
Chapter28Creating methods

Component methods are procedures and functions built into the structure of a class.
Although there are essentially no restrictions on what you can do with the methods
of a component, CLX does use some standards you should follow. These guidelines
include

• Avoiding dependencies
• Naming methods
• Protecting methods
• Making methods virtual
• Declaring methods

In general, components should not contain many methods and you should minimize
the number of methods that an application needs to call. The features you might be
inclined to implement as methods are often better encapsulated into properties.
Properties provide an interface that suits the Kylix environment and are accessible at
design time.

Avoiding dependencies
At all times when writing components, minimize the preconditions imposed on the
developer. To the greatest extent possible, developers should be able to do anything
they want to a component, whenever they want to do it. There will be times when
you cannot accommodate that, but your goal should be to come as close as possible.

This list gives you an idea of the kinds of dependencies to avoid:

• Methods that the user must call to use the component

• Methods that must execute in a particular order

• Methods that put the component into a state or mode where certain events or
methods could be invalid

28-2 D e v e l o p e r ’ s G u i d e

N a m i n g m e t h o d s

The best way to handle these situations is to ensure that you provide ways out of
them. For example, if calling a method puts your component into a state where
calling another method might be invalid, then write that second method so that if an
application calls it when the component is in a bad state, the method corrects the
state before executing its main code. At a minimum, you should raise an exception in
cases when a user calls a method that is invalid.

In other words, if you create a situation where parts of your code depend on each
other, the burden should be on you to be sure that using the code in incorrect ways
does not cause problems. A warning message, for example, is preferable to a system
failure if the user does not accommodate your dependencies.

Naming methods
Kylix imposes no restrictions on what you name methods or their parameters. There
are a few conventions that make methods easier for application developers, however.
Keep in mind that the nature of a component architecture dictates that many
different kinds of people can use your components.

If you are accustomed to writing code that only you or a small group of programmers
use, you might not think too much about how you name things. It is a good idea to
make your method names clear because people unfamiliar with your code (and even
unfamiliar with coding) might have to use your components.

Here are some suggestions for making clear method names:

• Make names descriptive. Use meaningful verbs.

A name like PasteFromClipboard is much more informative than simply Paste or
PFC.

• Function names should reflect the nature of what they return.

Although it might be obvious to you as a programmer that a function named X
returns the horizontal position of something, a name like GetHorizontalPosition is
more universally understandable.

As a final consideration, make sure the method really needs to be a method. A good
guideline is that method names have verbs in them. If you find that you create a lot of
methods that do not have verbs in their names, consider whether those methods
ought to be properties.

Protecting methods
All parts of classes, including fields, methods, and properties, have a level of
protection or “visibility,” as explained in “Controlling access” on page 25-4.
Choosing the appropriate visibility for a method is simple.

Most methods you write in your components are public or protected. You rarely
need to make a method private, unless it is truly specific to that type of component,
to the point that even derived components should not have access to it.

C r e a t i n g m e t h o d s 28-3

Methods that should be public

Any method that application developers need to call must be declared as public.
Keep in mind that most method calls occur in event handlers, so methods should
avoid tying up system resources or putting the operating system in a state where it
cannot respond to the user.

Note Constructors and destructors should always be public.

Methods that should be protected

Any implementation methods for the component should be protected so that
applications cannot call them at the wrong time. If you have methods that application
code should not call, but that are called in derived classes, declare them as protected.

For example, suppose you have a method that relies on having certain data set up for
it beforehand. If you make that method public, there is a chance that applications
will call it before setting up the data. On the other hand, by making it protected, you
ensure that applications cannot call it directly. You can then set up other, public
methods that ensure that data setup occurs before calling the protected method.

Property-implementation methods should be declared as virtual protected methods.
Methods that are so declared allow the application developers to override the
property implementation, either augmenting its functionality or replacing it
completely. Such properties are fully polymorphic. Keeping access methods
protected ensures that developers do not accidentally call them, inadvertently
modifying a property.

Abstract methods

Sometimes a method is declared as abstract in a component. In CLX, abstract
methods usually occur in classes whose names begin with “custom”, such as
TCustomGrid. Such classes are themselves abstract, in the sense that they are intended
only for deriving descendant classes.

While you can create an instance object of a class that contains an abstract member, it
is not recommended. Calling the abstract member leads to an EAbstractError
exception.

The abstract directive is used to indicate parts of classes that should be surfaced and
defined in descendant components; it forces Component writers to redeclare the
abstract member in descendant classes before actual instances of the class can be
created.

28-4 D e v e l o p e r ’ s G u i d e

M a k i n g m e t h o d s v i r t u a l

Making methods virtual
You make methods virtual when you want different types to be able to execute
different code in response to the same method call.

If you create components intended to be used directly by application developers, you
can probably make all your methods nonvirtual. On the other hand, if you create
abstract components from which other components will be derived, consider making
the added methods virtual. This way, derived components can override the inherited
virtual methods.

Declaring methods
Declaring a method in a component is the same as declaring any class method.

To declare a new method in a component, you do two things:

• Add the declaration to the component’s object-type declaration.
• Implement the method in the implementation part of the component’s unit.

The following code shows a component that defines two new methods, one protected
static method and one public virtual method.

type
TSampleComponent = class(TControl)
protected

procedure MakeBigger; { declare protected static method }

public
function CalculateArea: Integer; virtual; { declare public virtual method }

end;
ƒ

implementation
ƒ
procedure TSampleComponent.MakeBigger; { implement first method }
begin

Height := Height + 5;
Width := Width + 5;

end;

function TSampleComponent.CalculateArea: Integer; { implement second method }
begin

Result := Width * Height;
end;

U s i n g g r a p h i c s i n c o m p o n e n t s 29-1

C h a p t e r

29
Chapter29Using graphics in components

Instead of forcing you to deal with graphics at a detailed level, CLX provides a
simple yet complete interface: your component’s Canvas property. The canvas has
properties that represent the current pen, brush, and font.

The canvas manages resources for you, so you need not concern yourself with
creating, selecting, and releasing things like pen handles. You just tell the canvas
what kind of pen it should use, and it takes care of the rest.

One of the benefits of letting Kylix manage graphic resources is that it can cache
resources for later use, which can speed up repetitive operations. For example, if you
have a program that repeatedly creates, uses, and disposes of a particular kind of pen
tool, you need to repeat those steps each time you use it. Because Kylix caches
graphic resources, chances are good that a tool you use repeatedly is still in the cache,
so instead of having to recreate a tool, Kylix uses an existing one.

An example of this is an application that has dozens of forms open, with hundreds of
controls. Each of these controls might have one or more TFont properties. Though
this could result in hundreds or thousands of instances of TFont objects, most
applications wind up using only two or three font handles.

Using the canvas
The canvas class encapsulates graphics controls at several levels, including high-level
functions for drawing individual lines, shapes, and text; and intermediate properties
for manipulating the drawing capabilities of the canvas.

29-2 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h p i c t u r e s

Table 29.1 summarizes the capabilities of the canvas.

For detailed information on canvas classes and their methods and properties, see the
online Help.

Working with pictures
Most of the graphics work you do in Kylix is limited to drawing directly on the
canvases of components and forms. Kylix also provides for handling stand-alone
graphic images, such as bitmaps, drawings (recorded drawing instructions), and
icons.

There are three important aspects to working with pictures in Kylix:

• Using a picture, graphic, or canvas
• Loading and storing graphics

Using a picture, graphic, or canvas

There are three kinds of classes in Kylix that deal with graphics:

• A canvas represents a drawing surface on a form, graphic control, printer, or
bitmap. A canvas is always a property of something else, never a stand-alone class.

• A graphic represents a graphic image of the sort usually found in a file or resource,
such as a bitmap, icon, or drawing. Kylix defines classes TBitmap, TDrawing, and
TIcon, all descended from a generic TGraphic. You can also define your own
graphic classes. By defining a minimal standard interface for all graphics, TGraphic
provides a simple mechanism for applications to use different kinds of graphics
easily.

• A picture is a container for a graphic, meaning it could contain any of the graphic
classes. That is, an item of type TPicture can contain a bitmap, an icon, a drawing,
or a user-defined graphic type, and an application can access them all in the same
way through the picture class. For example, the image control has a property
called Picture, of type TPicture, that allows the control to display images from
many kinds of graphics.

Table 29.1 Canvas capability summary

Level Operation Tools

High Drawing lines and shapes Methods such as MoveTo, LineTo, Rectangle,
and Ellipse

Displaying and measuring text TextOut, TextHeight, TextWidth, and
TextRect methods

Filling areas FillRect and FloodFill methods

Intermediate Customizing text and graphics Pen, Brush, and Font properties

Copying and merging images Draw, StretchDraw, and CopyRect methods;
CopyMode property

Low Calling low-level graphics
functions

Handle property

U s i n g g r a p h i c s i n c o m p o n e n t s 29-3

O f f - s c r e e n b i t m a p s

Keep in mind that a picture class always has a graphic, and a graphic might have a
canvas. Normally, when dealing with a picture, you work only with the parts of the
graphic class exposed through TPicture. If you need access to the specifics of the
graphic class itself, you can refer to the picture’s Graphic property.

Loading and storing graphics

All pictures and graphics in Kylix can load their images from files and store them
back again (or into different files). You can load or store the image of a picture at any
time.

To load an image into a picture from a file, call the picture’s LoadFromFile method.

To save an image from a picture into a file, call the picture’s SaveToFile method.

LoadFromFile and SaveToFile each take the name of a file as the only parameter.
LoadFromFile uses the extension of the file name to determine what kind of graphic
object it will create and load. SaveToFile saves whatever type of file is appropriate for
the type of graphic object being saved.

Note You can also load images from and save them to a Qt MIME source, or a stream
object.

To load a bitmap into an image control’s picture, for example, pass the name of a
bitmap file to the picture’s LoadFromFile method:

procedure TForm1.LoadBitmapClick(Sender: TObject);
begin

Image1.Picture.LoadFromFile('RANDOM.bmp');
end;

The picture recognizes bmp as a standard extension for bitmap files, so it creates its
graphic as a TBitmap, then calls that graphic’s LoadFromFile method. Because the
graphic is a bitmap, it loads the image from the file as a bitmap.

Off-screen bitmaps
When drawing complex graphic images, a common technique in graphics
programming is to create an off-screen bitmap, draw the image on the bitmap, and
then copy the complete image from the bitmap to the final destination onscreen.
Using an off-screen image reduces flicker caused by repeated drawing directly to the
screen.

The bitmap class in Kylix, which represents bitmapped images in resources and files,
can also work as an off-screen image.

There are two main aspects to working with off-screen bitmaps:

• Creating and managing off-screen bitmaps.
• Copying bitmapped images.

29-4 D e v e l o p e r ’ s G u i d e

O f f - s c r e e n b i t m a p s

Creating and managing off-screen bitmaps

When creating complex graphic images, you should avoid drawing them directly on
a canvas that appears onscreen. Instead of drawing on the canvas for a form or
control, you can construct a bitmap object, draw on its canvas, and then copy its
completed image to the onscreen canvas.

The most common use of an off-screen bitmap is in the Paint method of a graphic
control. As with any temporary object, the bitmap should be protected with a
try..finally block:

type
TFancyControl = class(TGraphicControl)
protected

procedure Paint; override; { override the Paint method }
end;

procedure TFancyControl.Paint;
var

Bitmap: TBitmap; { temporary variable for the off-screen bitmap }
begin

Bitmap := TBitmap.Create; { construct the bitmap object }
try

{ draw on the bitmap }
{ copy the result into the control's canvas }

finally
Bitmap.Free; { destroy the bitmap object }

end;
end;

Copying bitmapped images

Kylix provides four different ways to copy images from one canvas to another.
Depending on the effect you want to create, you call different methods.

Table 29.2 summarizes the image-copying methods in canvas objects.

Table 29.2 Image-copying methods

To create this effect Call this method

Copy an entire graphic. Draw

Copy and resize a graphic. StretchDraw

Copy part of a canvas. CopyRect

Copy a graphic repeatedly to tile an area. TiledDraw

U s i n g g r a p h i c s i n c o m p o n e n t s 29-5

R e s p o n d i n g t o c h a n g e s

Responding to changes
All graphic objects, including canvases and their owned objects (pens, brushes, and
fonts) have events built into them for responding to changes in the object. By using
these events, you can make your components (or the applications that use them)
respond to changes by redrawing their images.

Responding to changes in graphic objects is particularly important if you publish
them as part of the design-time interface of your components. The only way to
ensure that the design-time appearance of the component matches the properties set
in the Object Inspector is to respond to changes in the objects.

To respond to changes in a graphic object, assign a method to the class’s OnChange
event.

The shape component publishes properties representing the pen and brush it uses to
draw its shape. The component’s constructor assigns a method to the OnChange
event of each, causing the component to refresh its image if either the pen or brush
changes:

type
TShape = class(TGraphicControl)
public

procedure StyleChanged(Sender: TObject);
end;

ƒ
implementation
ƒ
constructor TShape.Create(AOwner: TComponent);
begin

inherited Create(AOwner); { always call the inherited constructor! }
Width := 65;
Height := 65;
FPen := TPen.Create; { construct the pen }
FPen.OnChange := StyleChanged; { assign method to OnChange event }
FBrush := TBrush.Create; { construct the brush }
FBrush.OnChange := StyleChanged; { assign method to OnChange event }

end;

procedure TShape.StyleChanged(Sender: TObject);
begin

Invalidate(); { erase and repaint the component }
end;

29-6 D e v e l o p e r ’ s G u i d e

M a k i n g c o m p o n e n t s a v a i l a b l e a t d e s i g n t i m e 30-1

C h a p t e r

30
Chapter30Making components available at

design time
This chapter describes the steps for making the components you create available in
the IDE. Making your components available at design time requires several steps:

• Registering components
• Adding palette bitmaps
• Adding property editors
• Adding component editors
• Compiling components into packages

Not all these steps apply to every component. For example, if you don’t define any
new properties or events, you don’t need to provide Help for them. The only steps
that are always necessary are registration and compilation.

Once your components have been registered and compiled into packages, they can
be distributed to other developers and installed in the IDE. For information on
installing packages in the IDE, see “Installing component packages” on page 11-5.

Registering components
Registration works on a compilation unit basis, so if you create several components
in a single compilation unit, you can register them all at once.

To register a component, add a Register procedure to the unit. Within the Register
procedure, you register the components and determine where to install them on the
Component palette.

Note If you create your component by choosing Component|New Component in the IDE,
the code required to register your component is added automatically.

30-2 D e v e l o p e r ’ s G u i d e

R e g i s t e r i n g c o m p o n e n t s

The steps for manually registering a component are:

• Declaring the Register procedure
• Writing the Register procedure

Declaring the Register procedure

Registration involves writing a single procedure in the unit, which must have the
name Register. The Register procedure must appear in the interface part of the unit,
and (unlike the rest of Object Pascal) its name is case-sensitive.

The following code shows the outline of a simple unit that creates and registers new
components:

unit MyBtns;
interface
type

... { declare your component types here }

procedure Register; { this must appear in the interface section }
implementation

... { component implementation goes here }

procedure Register;
begin

... { register the components }
end;
end.

Within the Register procedure, call RegisterComponents for each component you want
to add to the Component palette. If the unit contains several components, you can
register them all in one step.

Writing the Register procedure

Inside the Register procedure of a unit containing components, you must register
each component you want to add to the Component palette. If the unit contains
several components, you can register them at the same time.

To register a component, call the RegisterComponents procedure once for each page of
the Component palette to which you want to add components. RegisterComponents
involves three important things:

1 Specifying the components
2 Specifying the palette page
3 Using the RegisterComponents function

Specifying the components
Within the Register procedure, pass the component names in an open array, which
you can construct inside the call to RegisterComponents.

RegisterComponents('Miscellaneous', [TMyComponent]);

M a k i n g c o m p o n e n t s a v a i l a b l e a t d e s i g n t i m e 30-3

A d d i n g p a l e t t e b i t m a p s

You can register several components on the same page at once, or register
components on different pages, as shown in the following code:

procedure Register;
begin

RegisterComponents('Miscellaneous', [TFirst, TSecond]); { two on this page... }
RegisterComponents('Assorted', [TThird]); { ...one on another... }
RegisterComponents(LoadStr(srStandard), [TFourth]); { ...and one on the Standard page }

end;

Specifying the palette page
The palette-page name is a string. If the name you give for the palette page does not
already exist, the forms designer creates a new page with that name. Kylix stores the
names of the standard pages in string-list resources so that international versions of
the product can name the pages in their native languages. If you want to install a
component on one of the standard pages, you should obtain the string for the page
name by calling the LoadStr function, passing the constant representing the string
resource for that page, such as srSystem for the System page.

Using the RegisterComponents function
Within the Register procedure, call RegisterComponents to register the components in
the classes array. RegisterComponents is a function that takes two parameters: the
name of a Component palette page and the array of component classes.

Set the Page parameter to the name of the page on the component palette where the
components should appear. If the named page already exists, the components are
added to that page. If the named page does not exist, the forms designer creates a
new palette page with that name.

Call RegisterComponents from the implementation of the Register procedure in one
of the units that defines the custom components. The units that define the
components must then be compiled into a package and the package must be installed
before the custom components are added to the component palette.

procedure Register;
begin

RegisterComponents('System', [TSystem1, TSystem2]); {add to system page}
RegisterComponents('MyCustomPage',[TCustom1, TCustom2]); { new page}

end;

Adding palette bitmaps
Every component needs a bitmap to represent it on the Component palette. If you
don’t specify your own bitmap, Kylix uses a default bitmap.

Each bitmap should be 24 pixels square. There are a number of tools available on
Linux for generating bitmap files. One approach is to use a tool such as Gimp to
create the images as a .ppm file and then convert them to the .bmp format using
ppmtobmp.

30-4 D e v e l o p e r ’ s G u i d e

A d d i n g p r o p e r t y e d i t o r s

Because the palette bitmaps are needed only at design time, you don’t compile them
into the component’s compilation unit. Instead, you supply them in a resource file
with the same name as the unit, but with the extension .dcr (dynamic component
resource).

For each unit that contains components you want to install, supply a palette bitmap
resource file, and within each resource file, supply a bitmap for each component you
register. The bitmap image has the same name as the component. For example, if you
create a component named TMyControl, you need to create a .dcr or .res resource file
that contains a bitmap called TMYCONTROL. The resource names are not case-
sensitive, but by convention, they are usually in uppercase letters.

Keep the resource file in the same directory with the compiled files, so Kylix can find
the bitmaps when it installs the components on the Component palette.

Adding property editors
The Object Inspector provides default editing for all types of properties. You can,
however, provide an alternate editor for specific properties by writing and
registering property editors. You can register property editors that apply only to the
properties in the components you write, but you can also create editors that apply to
all properties of a certain type.

At the simplest level, a property editor can operate in either or both of two ways:
displaying and allowing the user to edit the current value as a text string, and
displaying a dialog box that permits some other kind of editing.

Writing a property editor requires these five steps:

1 Deriving a property-editor class
2 Editing the property as text
3 Editing the property as a whole
4 Specifying editor attributes
5 Registering the property editor

Deriving a property-editor class

CLX defines several kinds of property editors, all of which descend from
TPropertyEditor. When you create a property editor, your property-editor class can
either descend directly from TPropertyEditor or indirectly through one of the
property-editor classes described in Table 30.1.

Note All that is absolutely necessary for a property editor is that it descend from
TBasePropertyEditor and that it support the IProperty interface. TPropertyEditor,
however, provides a default implementation of the IProperty interface.

M a k i n g c o m p o n e n t s a v a i l a b l e a t d e s i g n t i m e 30-5

A d d i n g p r o p e r t y e d i t o r s

CLX also defines some very specialized property editors used by unique properties
such as the component name. The listed property editors are the ones that are the
most useful for user-defined properties.

The following example shows the declaration of a simple property editor named
TMyPropertyEditor:

type
TFloatProperty = class(TPropertyEditor)
public

function AllEqual: Boolean; override;
function GetValue: string; override;
procedure SetValue(const Value: string); override;

end;

Editing the property as text

All properties need to provide a string representation of their values for the Object
Inspector to display. Most properties also allow the user to type in a new value for
the property. TPropertyEditor and its descendants provide virtual methods you can
override to convert between the text representation and the actual value.

Table 30.1 Predefined property-editor types

Type Properties edited

TOrdinalProperty All ordinal-property editors (those for integer, character, and enumerated
properties) descend from TOrdinalProperty.

TIntegerProperty All integer types, including predefined and user-defined subranges.

TCharProperty Char-type and subranges of Char, such as ‘A’..’Z’.

TEnumProperty Any enumerated type.

TFloatProperty All floating-point numbers.

TStringProperty Strings.

TSetElementProperty Individual elements in sets, shown as Boolean values

TSetProperty All sets. Sets are not directly editable, but can expand into a list of set-
element properties.

TClassProperty Classes. Displays the name of the class and allows expansion of the class’s
properties.

TMethodProperty Method pointers, most notably events.

TComponentProperty Components in the same form. The user cannot edit the component’s
properties, but can point to a specific component of a compatible type.

TColorProperty Component colors. Shows color constants if applicable, otherwise
displays hexadecimal value. Drop-down list contains the color constants.
Double-click opens the color-selection dialog box.

TFontNameProperty Font names. The drop-down list displays all currently installed fonts.

TFontProperty Fonts. Allows expansion of individual font properties as well as access to
the font dialog box.

30-6 D e v e l o p e r ’ s G u i d e

A d d i n g p r o p e r t y e d i t o r s

The methods you override are called GetValue and SetValue. Your property editor
also inherits methods for assigning and reading different sorts of values from
TPropertyEditor. Some of these are listed in Table 30.2.

When you override a GetValue method, you call one of the Get methods, and when
you override SetValue, you call one of the Set methods.

Displaying the property value
The property editor’s GetValue method returns a string that represents the current
value of the property. The Object Inspector uses this string in the value column for
the property. By default, GetValue returns “unknown”.

To provide a string representation of your property, override the property editor’s
GetValue method.

If the property is not a string value, GetValue must convert the value into a string
representation.

Setting the property value
The property editor’s SetValue method takes a string typed by the user in the Object
Inspector, converts it into the appropriate type, and sets the value of the property. If
the string does not represent a proper value for the property, SetValue should throw
an exception and not use the improper value.

To read string values into properties, override the property editor’s SetValue method.

SetValue should convert the string and validate the value before calling one of the Set
methods.

Here are the GetValue and SetValue methods for TIntegerProperty. Integer is an ordinal
type, so GetValue calls GetOrdValue and converts the result to a string. SetValue converts
the string to an integer, performs some range checking, and calls SetOrdValue.

function TIntegerProperty.GetValue: string;
begin

with GetTypeData(GetPropType)^ do
if OrdType = otULong then // unsigned

Result := IntToStr(Cardinal(GetOrdValue))
else

Result := IntToStr(GetOrdValue);
end;

procedure TIntegerProperty.SetValue(const Value: string);
procedure Error(const Args: array of const);

Table 30.2 Methods for reading and writing property values

Property type Get method Set method

Floating point GetFloatValue SetFloatValue

Method pointer (event) GetMethodValue SetMethodValue

Ordinal type GetOrdValue SetOrdValue

String GetStrValue SetStrValue

M a k i n g c o m p o n e n t s a v a i l a b l e a t d e s i g n t i m e 30-7

A d d i n g p r o p e r t y e d i t o r s

begin
raise EPropertyError.CreateResFmt(@SOutOfRange, Args);

end;
var

L: Int64;
begin

L := StrToInt64(Value);
with GetTypeData(GetPropType)^ do

if OrdType = otULong then
begin // unsigned compare and reporting needed
if (L < Cardinal(MinValue)) or (L > Cardinal(MaxValue)) then
// bump up to Int64 to get past the %d in the format string

Error([Int64(Cardinal(MinValue)), Int64(Cardinal(MaxValue))]);
end
else if (L < MinValue) or (L > MaxValue) then
Error([MinValue, MaxValue]);

SetOrdValue(L);
end;

The specifics of the particular examples here are less important than the principle:
GetValue converts the value to a string; SetValue converts the string and validates the
value before calling one of the “Set” methods.

Editing the property as a whole

You can optionally provide a dialog in which the user can visually edit a property.
The most common use of property editors is for properties that are themselves
classes. An example is the Font property, for which the user can open a font dialog
box to choose all the attributes of the font at once.

To provide a whole-property editor dialog box, override the property-editor class’s
Edit method.

Edit methods use the same Get and Set methods used in writing GetValue and
SetValue methods. In fact, an Edit method calls both a Get method and a Set method.
Because the editor is type-specific, there is usually no need to convert the property
values to strings. The editor generally deals with the value “as retrieved.”

When the user clicks the ‘...’ button next to the property or double-clicks the value
column, the Object Inspector calls the property editor’s Edit method.

Within your implementation of the Edit method, follow these steps:

1 Construct the editor you are using for the property.

2 Read the current value and assign it to the property using a Get method.

3 When the user selects a new value, assign that value to the property using a Set
method.

4 Destroy the editor.

30-8 D e v e l o p e r ’ s G u i d e

A d d i n g p r o p e r t y e d i t o r s

The Color properties found in most components use the standard color dialog box as
a property editor. Here is the Edit method from TColorProperty, which invokes the
dialog box and uses the result:

procedure TColorProperty.Edit;
var

ColorDialog: TColorDialog;
begin

ColorDialog := TColorDialog.Create(Application); { construct the editor }
try

ColorDialog.Color := GetOrdValue; { use the existing value }
if ColorDialog.Execute then { if the user OKs the dialog... }

SetOrdValue(ColorDialog.Color); { ...use the result to set value }
finally

ColorDialog.Free; { destroy the editor }
end;

end;

Specifying editor attributes

The property editor must provide information that the Object Inspector can use to
determine what tools to display. For example, the Object Inspector needs to know
whether the property has subproperties or can display a list of possible values.

To specify editor attributes, override the property editor’s GetAttributes method.

GetAttributes is a method that returns a set of values of type TPropertyAttributes that
can include any or all of the following values:

Table 30.3 Property-editor attribute flags

Flag Related method Meaning if included

paValueList GetValues The editor can give a list of enumerated values.

paSubProperties GetProperties The property has subproperties that can display.

paDialog Edit The editor can display a dialog box for editing the
entire property.

paMultiSelect N/A The property should display when the user selects
more than one component.

paAutoUpdate SetValue Updates the component after every change instead
of waiting for approval of the value.

paSortList N/A The Object Inspector should sort the value list.

paReadOnly N/A Users cannot modify the property value.

paRevertable N/A Enables the Revert to Inherited menu item on the
Object Inspector’s context menu. The menu item
tells the property editor to discard the current
property value and return to some previously
established default or standard value.

paFullWidthName N/A The value does not need to be displayed. The Object
Inspector uses its full width for the property name
instead.

M a k i n g c o m p o n e n t s a v a i l a b l e a t d e s i g n t i m e 30-9

A d d i n g p r o p e r t y e d i t o r s

Color properties are more versatile than most, in that they allow several ways for
users to choose them in the Object Inspector: typing, selection from a list, and
customized editor. TColorProperty’s GetAttributes method, therefore, includes several
attributes in its return value:

function TColorProperty.GetAttributes: TPropertyAttributes;
begin

Result := [paMultiSelect, paDialog, paValueList, paRevertable];
end;

Registering the property editor

Once you create a property editor, you need to register it with Kylix. Registering a
property editor associates a type of property with a specific property editor. You can
register the editor with all properties of a given type or just with a particular property of
a particular type of component.

To register a property editor, call the RegisterPropertyEditor procedure.

RegisterPropertyEditor takes four parameters:

• A type-information pointer for the type of property to edit.

This is always a call to the built-in function TypeInfo, such as TypeInfo(TMyComponent).

• The type of the component to which this editor applies. If this parameter is nil, the
editor applies to all properties of the given type.

• The name of the property. This parameter only has meaning if the previous
parameter specifies a particular type of component. In that case, you can specify the
name of a particular property in that component type to which this editor applies.

• The type of property editor to use for editing the specified property.

Here is an excerpt from the procedure that registers the editors for the standard
components on the Component palette:

procedure Register;
begin

RegisterPropertyEditor(TypeInfo(TComponent), nil, ‘‘, TComponentProperty);
RegisterPropertyEditor(TypeInfo(TComponentName), TComponent, ‘Name’,

TComponentNameProperty);
RegisterPropertyEditor(TypeInfo(TMenuItem), TMenu, ‘‘, TMenuItemProperty);

end;

paVolatileSubProperties GetProperties The Object Inspector refetches the values of all
subproperties any time the property value changes.

paReference GetComponent
Value

The value is a reference to something else. When
used in conjunction with paSubProperties the
referenced object should be displayed as sub
properties to this property.

Table 30.3 Property-editor attribute flags (continued)

Flag Related method Meaning if included

30-10 D e v e l o p e r ’ s G u i d e

P r o p e r t y c a t e g o r i e s

The three statements in this procedure cover the different uses of
RegisterPropertyEditor:

• The first statement is the most typical. It registers the property editor
TComponentProperty for all properties of type TComponent (or descendants of
TComponent that do not have their own editors registered). In general, when you
register a property editor, you have created an editor for a particular type, and you
want to use it for all properties of that type, so the second and third parameters are
nil and an empty string, respectively.

• The second statement is the most specific kind of registration. It registers an editor
for a specific property in a specific type of component. In this case, the editor is for
the Name property (of type TComponentName) of all components.

• The third statement is more specific than the first, but not as limited as the second.
It registers an editor for all properties of type TMenuItem in components of type
TMenu.

Property categories
In the IDE, the Object Inspector lets you selectively hide and display properties based
on property categories. The properties of new custom components can be fit into this
scheme by registering properties in categories. Do this at the same time you register
the component by calling RegisterPropertyInCategory or RegisterPropertiesInCategory.
Use RegisterPropertyInCategory to register a single property. Use
RegisterPropertiesInCategory to register multiple properties in a single function call.
These functions are defined in the unit DesignIntf.

Note that it is not mandatory that you register properties or that you register all of
the properties of a custom component when some are registered. Any property not
explicitly associated with a category is included in the TMiscellaneousCategory
category. Such properties are displayed or hidden in the Object Inspector based on
that default categorization.

In addition to these two functions for registering properties, there is an
IsPropertyInCategory function. This function is useful for creating localization utilities,
in which you must determine whether a property is registered in a given property
category.

Registering one property at a time

Register one property at a time and associate it with a property category using the
RegisterPropertyInCategory function. RegisterPropertyInCategory comes in four
overloaded variations, each providing a different set of criteria for identifying the
property in the custom component to be associated with the property category.

The first variation lets you identify the property by the property’s name. The line
below registers a property related to visual display of the component, identifying the
property by its name, “AutoSize”.

RegisterPropertyInCategory('Visual', 'AutoSize');

M a k i n g c o m p o n e n t s a v a i l a b l e a t d e s i g n t i m e 30-11

P r o p e r t y c a t e g o r i e s

The second variation is much like the first, except that it limits the category to only
those properties of the given name that appear on components of a given type. The
example below registers (into the ‘Help and Hints’ category) a property named
“HelpContext” of a component of the custom class TMyButton.

RegisterPropertyInCategory('Help and Hints', TMyButton, 'HelpContext');

The third variation identifies the property using its type rather than its name. The
example below registers a property based on its type, Integer.

RegisterPropertyInCategory('Visual', TypeInfo(Integer));

The final variation uses both the property’s type and its name to identify the
property. The example below registers a property based on a combination of its type,
TBitmap, and its name, ”Pattern”.

RegisterPropertyInCategory('Visual', TypeInfo(TBitmap), 'Pattern');

See the section Specifying property categories for a list of the available property
categories and a brief description of their uses.

Registering multiple properties at once

Register multiple properties at one time and associate them with a property category
using the RegisterPropertiesInCategory function. RegisterPropertiesInCategory comes in
three overloaded variations, each providing a different set of criteria for identifying
the property in the custom component to be associated with property categories.

The first variation lets you identify properties based on property name or type. The
list is passed as an array of constants. In the example below, any property that either
has the name “Text” or belongs to a class of type TEdit is registered in the category
‘Localizable’.

RegisterPropertiesInCategory('Localizable', ['Text', TEdit]);

The second variation lets you limit the registered properties to those that belong to a
specific component. The list of properties to register include only names, not types.
For example, the following code registers a number of properties into the ‘Help and
Hints’ category for all components:

RegisterPropertiesInCategory('Help and Hints', TComponent, ['HelpContext', 'Hint',
'ParentShowHint', 'ShowHint']);

The third variation lets you limit the registered properties to those that have a
specific type. As with the second variation, the list of properties to register can
include only names:

RegisterPropertiesInCategory('Localizable', TypeInfo(String), ['Text', 'Caption']);

See the section Specifying property categories for a list of the available property
categories and a brief description of their uses.

30-12 D e v e l o p e r ’ s G u i d e

P r o p e r t y c a t e g o r i e s

Specifying property categories

When you register properties in a category, you can use any string you want as the
name of the category. If you use a string that has not been used before, the Object
Inspector generates a new property category class with that name. You can also,
however, register properties into one of the categories that are built-in. The built-in
property categories are described in Table 30.4.

Using the IsPropertyInCategory function

An application can query the existing registered properties to determine whether a
given property is already registered in a specified category. This can be especially
useful in situations like a localization utility that checks the categorization of
properties preparatory to performing its localization operations. Two overloaded
variations of the IsPropertyInCategory function are available, allowing for different
criteria in determining whether a property is in a category.

Table 30.4 Property categories

Category Purpose

Action Properties related to runtime actions; the Enabled and Hint properties of
TEdit are in this category.

Database Properties related to database operations; the DatabaseName and SQL
properties of TQuery are in this category.

Drag, Drop, and
Docking

Properties related to drag-n-drop and docking operations; the
DragCursor and DragKind properties of TImage are in this category.

Help and Hints Properties related to using online help or hints; the HelpContext and Hint
properties of TMemo are in this category.

Layout Properties related to the visual display of a control at design-time; the
Top and Left properties of TDBEdit are in this category.

Legacy Properties related to obsolete operations; the Ctl3D and ParentCtl3D
properties of TComboBox are in this category.

Linkage Properties related to associating or linking one component to another;
the DataSet property of TDataSource is in this category.

Locale Properties related to international locales; the BiDiMode and
ParentBiDiMode properties of TMainMenu are in this category.

Localizable Properties that may require modification in localized versions of an
application. Many string properties (such as Caption) are in this
category, as are properties that determine the size and position of
controls.

Visual Properties related to the visual display of a control at runtime; the Align
and Visible properties of TScrollBox are in this category.

Input Properties related to the input of data (need not be related to database
operations); the Enabled and ReadOnly properties of TEdit are in this
category.

Miscellaneous Properties that do not fit a category or do not need to be categorized
(and properties not explicitly registered to a specific category); the
AllowAllUp and Name properties of TSpeedButton are in this category.

M a k i n g c o m p o n e n t s a v a i l a b l e a t d e s i g n t i m e 30-13

A d d i n g c o m p o n e n t e d i t o r s

The first variation lets you base the comparison criteria on a combination of the class
type of the owning component and the property’s name. In the command line below,
for IsPropertyInCategory to return True, the property must belong to a TCustomEdit
descendant, have the name “Text”, and be in the property category 'Localizable'.

IsItThere := IsPropertyInCategory('Localizable', TCustomEdit, 'Text');

The second variation lets you base the comparison criteria on a combination of the
class name of the owning component and the property’s name. In the command line
below, for IsPropertyInCategory to return True, the property must be a TCustomEdit
descendant, have the name “Text”, and be in the property category 'Localizable'.

IsItThere := IsPropertyInCategory('Localizable', ‘TCustomEdit’, 'Text');

Adding component editors
Component editors determine what happens when the component is double-clicked
in the designer and add commands to the context menu that appears when the
component is right-clicked. They can also copy your component to the clipboard in
custom formats.

If you do not give your components a component editor, Kylix uses the default
component editor. The default component editor is implemented by the class
TDefaultEditor. TDefaultEditor does not add any new items to a component’s context
menu. When the component is double-clicked, TDefaultEditor searches the properties
of the component and generates (or navigates to) the first event handler it finds.

To add items to the context menu, change the behavior when the component is
double-clicked, or add new clipboard formats, derive a new class from
TComponentEditor and register its use with your component. In your overridden
methods, you can use the Component property of TComponentEditor to access the
component that is being edited.

Adding a custom component editor consists of the steps:

• Adding items to the context menu
• Changing the double-click behavior
• Adding clipboard formats
• Registering the component editor

Adding items to the context menu

When the user right-clicks the component, the GetVerbCount and GetVerb methods of
the component editor are called to build context menu. You can override these
methods to add commands (verbs) to the context menu.

Adding items to the context menu requires the steps:

• Specifying menu items
• Implementing commands

30-14 D e v e l o p e r ’ s G u i d e

A d d i n g c o m p o n e n t e d i t o r s

Specifying menu items
Override the GetVerbCount method to return the number of commands you are
adding to the context menu. Override the GetVerb method to return the strings that
should be added for each of these commands. When overriding GetVerb, add an
ampersand (&) to a string to cause the following character to appear underlined in
the context menu and act as a shortcut key for selecting the menu item. Be sure to add
an ellipsis (...) to the end of a command if it brings up a dialog. GetVerb has a single
parameter that indicates the index of the command.

The following code overrides the GetVerbCount and GetVerb methods to add two
commands to the context menu.

function TMyEditor.GetVerbCount: Integer;
begin

Result := 2;
end;

function TMyEditor.GetVerb(Index: Integer): String;
begin

case Index of
0: Result := “&DoThis ...”;
1: Result := “Do&That”;

end;
end;

Note Be sure that your GetVerb method returns a value for every possible index indicated
by GetVerbCount.

Implementing commands
When the command provided by GetVerb is selected in the designer, the ExecuteVerb
method is called. For every command you provide in the GetVerb method, implement
an action in the ExecuteVerb method. You can access the component that is being
edited using the Component property of the editor.

For example, the following ExecuteVerb method implements the commands for the
GetVerb method in the previous example.

procedure TMyEditor.ExecuteVerb(Index: Integer);
var

MySpecialDialog: TMyDialog;
begin

case Index of
0: begin

MyDialog := TMySpecialDialog.Create(Application); { instantiate the editor }
if MySpecialDialog.Execute then; { if the user OKs the dialog... }
MyComponent.FThisProperty := MySpecialDialog.ReturnValue; { ...use the value }

MySpecialDialog.Free; { destroy the editor }
end;

1: That; { call the That method }
end;

end;

M a k i n g c o m p o n e n t s a v a i l a b l e a t d e s i g n t i m e 30-15

A d d i n g c o m p o n e n t e d i t o r s

Changing the double-click behavior

When the component is double-clicked, the Edit method of the component editor is
called. By default, the Edit method executes the first command added to the context
menu. Thus, in the previous example, double-clicking the component executes the
DoThis command.

While executing the first command is usually a good idea, you may want to change
this default behavior. For example, you can provide an alternate behavior if

• you are not adding any commands to the context menu.

• you want to display a dialog that combines several commands when the
component is double-clicked.

Override the Edit method to specify a new behavior when the component is double-
clicked. For example, the following Edit method brings up a font dialog when the
user double-clicks the component:

procedure TMyEditor.Edit;
var

FontDlg: TFontDialog;
begin

FontDlg := TFontDialog.Create(Application);
try

if FontDlg.Execute then
MyComponent.FFont.Assign(FontDlg.Font);

finally
FontDlg.Free

end;
end;

Note If you want a double-click on the component to display the Code editor for an event
handler, use TDefaultEditor as a base class for your component editor instead of
TComponentEditor. Then, instead of overriding the Edit method, override the
protected TDefaultEditor.EditProperty method instead. EditProperty scans through the
event handlers of the component, and brings up the first one it finds. You can change
this to look a particular event instead. For example:

procedure TMyEditor.EditProperty(PropertyEditor: TPropertyEditor;
Continue, FreeEditor: Boolean)

begin
if (PropertyEditor.ClassName = ‘TMethodProperty’) and

(PropertyEditor.GetName = ‘OnSpecialEvent’) then
// DefaultEditor.EditProperty(PropertyEditor, Continue, FreeEditor);

end;

Adding clipboard formats

By default, when a user chooses Copy while a component is selected in the IDE, the
component is copied in Kylix’s internal format. It can then be pasted into another
form or data module. Your component can copy additional formats to the Clipboard
by overriding the Copy method.

30-16 D e v e l o p e r ’ s G u i d e

C o m p i l i n g c o m p o n e n t s i n t o p a c k a g e s

For example, the following Copy method allows a TImage component to copy its
picture to the Clipboard. This picture is ignored by the Kylix IDE, but can be pasted
into other applications.

procedure TMyComponent.Copy;
var

Data: TMemoryStream;
begin

Data := TMemoryStream.Create;
try

TImage(Component).Picture.SaveToStream(Data);
Data.Position := 0;
Clipboard.SetFormat('image/delphi.bitmap', Data);

finally
Data.Free;

end;

Registering the component editor
Once the component editor is defined, it can be registered to work with a particular
component class. A registered component editor is created for each component of
that class when it is selected in the form designer.

To create the association between a component editor and a component class, call
RegisterComponentEditor. RegisterComponentEditor takes the name of the component
class that uses the editor, and the name of the component editor class that you have
defined. For example, the following statement registers a component editor class
named TMyEditor to work with all components of type TMyComponent:

RegisterComponentEditor(TMyComponent, TMyEditor);

Place the call to RegisterComponentEditor in the Register procedure where you register
your component. For example, if a new component named TMyComponent and its
component editor TMyEditor are both implemented in the same unit, the following
code registers the component and its association with the component editor.

procedure Register;
begin

RegisterComponents('Miscellaneous', [TMyComponent);
RegisterComponentEditor(classes[0], TMyEditor);

end;

Compiling components into packages
Once your components are registered, you must compile them as packages before
they can be installed in the IDE. A package can contain one or several components as
well as custom property editors. For more information about packages, see Chapter
11, “Working with packages and components”.

To create and compile a package, see “Creating and editing packages” on page 11-6.
Put the source-code units for your custom components in the package’s Contains list.
If your components depend on other packages, include those packages in the
Requires list.

To install your components in the IDE, see “Installing component packages” on
page 11-5.

M o d i f y i n g a n e x i s t i n g c o m p o n e n t 31-1

C h a p t e r

31
Chapter31Modifying an existing component

The easiest way to create a component is to derive it from a component that does
nearly everything you want, then make whatever changes you need. What follows is
a simple example that modifies the standard memo component to create a memo that
does not wrap words by default.

The value of the memo component’s WordWrap property is initialized to True. If you
frequently use non-wrapping memos, you can create a new memo component that
does not wrap words by default.

Note To modify published properties or save specific event handlers for an existing
component, it is often easier to use a component template rather than create a new
class.

Modifying an existing component takes only two steps:

• Creating and registering the component

• Modifying the component class

Creating and registering the component
Creation of every component begins the same way: you create a unit, derive a
component class, register it, and install it on the Component palette. This process is
outlined in “Creating a new component” on page 24-8.

For this example, follow the general procedure for creating a component, with these
specifics:

• Call the component’s unit Memos.

• Derive a new component type called TWrapMemo, descended from TMemo.

• Register TWrapMemo on the Samples page of the Component palette.

31-2 D e v e l o p e r ’ s G u i d e

M o d i f y i n g t h e c o m p o n e n t c l a s s

• The resulting unit should look like this:

unit Memos;
interface
uses

SysUtils, Types, Classes, QGraphics, QControls, QForms, QDialogs, QStdCtrls;
type

TWrapMemo = class(TMemo)
end;

procedure Register;
implementation
procedure Register;
begin

RegisterComponents('Samples', [TWrapMemo]);
end;
end.

If you compile and install the new component now, it behaves exactly like its
ancestor, TMemo. In the next section, you will make a simple change to your
component.

Modifying the component class
Once you have created a new component class, you can modify it in almost any way.
In this case, you will change only the initial value of one property in the memo
component. This involves two small changes to the component class:

• Overriding the constructor
• Specifying the new default property value

The constructor actually sets the value of the property. The default tells Kylix what
values to store in the form file. Kylix stores only values that differ from the default, so
it is important to perform both steps.

Overriding the constructor

When a component is placed on a form at design time, or when an application
constructs a component at runtime, the component’s constructor sets the property
values. When a component is loaded from a form file, the application sets any
properties changed at design time.

Note When you override a constructor, the new constructor must call the inherited
constructor before doing anything else. For more information, see “Overriding
methods” on page 25-8.

For this example, your new component needs to override the constructor inherited
from TMemo to set the WordWrap property to False. To achieve this, add the
constructor override to the forward declaration, then write the new constructor in the
implementation part of the unit:

M o d i f y i n g a n e x i s t i n g c o m p o n e n t 31-3

M o d i f y i n g t h e c o m p o n e n t c l a s s

type
TWrapMemo = class(TMemo)
public { constructors are always public }

constructor Create(AOwner: TComponent); override; { this syntax is always the same }
end;

ƒ
constructor TWrapMemo.Create(AOwner: TComponent); { this goes after implementation }
begin

inherited Create(AOwner); { ALWAYS do this first! }
WordWrap := False; { set the new desired value }

end;

Now you can install the new component on the Component palette and add it to a
form. Note that the WordWrap property is now initialized to False.

If you change an initial property value, you should also designate that value as the
default. If you fail to match the value set by the constructor to the specified default
value, Kylix cannot store and restore the proper value.

Specifying the new default property value

When Kylix stores a description of a form in a form file, it stores the values only of
properties that differ from their defaults. Storing only the differing values keeps the
form files small and makes loading the form faster. If you create a property or change
the default value, it is a good idea to update the property declaration to include the
new default. Form files, loading, and default values are explained in more detail in
Chapter 30, “Making components available at design time.”

To change the default value of a property, redeclare the property name, followed by
the directive default and the new default value. You don’t need to redeclare the
entire property, just the name and the default value.

For the word-wrapping memo component, you redeclare the WordWrap property in
the published part of the object declaration, with a default value of False:

type
TWrapMemo = class(TMemo)
ƒ
published

property WordWrap default False;
end;

Specifying the default property value does not affect the workings of the component.
You must still initialize the value in the component’s constructor. Redeclaring the
default ensures that Kylix knows when to write WordWrap to the form file.

31-4 D e v e l o p e r ’ s G u i d e

C r e a t i n g a g r a p h i c c o m p o n e n t 32-1

C h a p t e r

32
Chapter32Creating a graphic component

A graphic control is a simple kind of component. Because a purely graphic control
never receives focus, it does not have or need its own window. Users can still
manipulate the control with the mouse, but there is no keyboard interface.

The graphic component presented in this chapter is TShape, the shape component on
the Additional page of the Component palette. Although the component created is
identical to the standard shape component, you need to call it something different to
avoid duplicate identifiers. This chapter calls its shape component TSampleShape and
shows you all the steps involved in creating the shape component:

• Creating and registering the component
• Publishing inherited properties
• Adding graphic capabilities

Creating and registering the component
Creation of every component begins the same way: create a unit, derive a component
class, register it, compile it, and install it on the Component palette. This process is
outlined in “Creating a new component” on page 24-8.

For this example, follow the general procedure for creating a component, with these
specifics:

• Call the component’s unit Shapes.

• Derive a new component type called TSampleShape, descended from
TGraphicControl.

32-2 D e v e l o p e r ’ s G u i d e

P u b l i s h i n g i n h e r i t e d p r o p e r t i e s

• Register TSampleShape on the Samples page of the Component palette.
The resulting unit should look like this:

unit Shapes;
interface
uses SysUtils, Types, Classes, QGraphics, QControls, QForms;
type

TSampleShape = class(TGraphicControl)
end;

procedure Register;
implementation
procedure Register;
begin

RegisterComponent('Samples', [TSampleShape]);
end;
end.

Publishing inherited properties
Once you derive a component type, you can decide which of the properties and
events declared in the protected parts of the ancestor class you want to surface in the
new component. TGraphicControl already publishes all the properties that enable the
component to function as a control, so all you need to publish is the ability to respond
to mouse events and handle drag-and-drop.

Publishing inherited properties and events is explained in “Publishing inherited
properties” on page 26-3 and “Making events visible” on page 27-5. Both processes
involve redeclaring just the name of the properties in the published part of the class
declaration.

For the shape control, you can publish the three mouse events, the three drag-and-
drop events, and the two drag-and-drop properties:

type
TSampleShape = class(TGraphicControl)
published

property DragCursor; { drag-and-drop properties }
property DragMode;
property OnDragDrop; { drag-and-drop events }
property OnDragOver;
property OnEndDrag;
property OnMouseDown; { mouse events }
property OnMouseMove;
property OnMouseUp;

end;

The sample shape control now makes mouse and drag-and-drop interactions
available to its users.

C r e a t i n g a g r a p h i c c o m p o n e n t 32-3

A d d i n g g r a p h i c c a p a b i l i t i e s

Adding graphic capabilities
Once you have declared your graphic component and published any inherited
properties you want to make available, you can add the graphic capabilities that
distinguish your component. You have two tasks to perform when creating a graphic
control:

1 Determining what to draw.
2 Drawing the component image.

In addition, for the shape control example, you will add some properties that enable
application developers to customize the appearance of the shape at design time.

Determining what to draw

A graphic control can change its appearance to reflect a dynamic condition, including
user input. A graphic control that always looks the same should probably not be a
component at all. If you want a static image, you can import the image instead of
using a control.

In general, the appearance of a graphic control depends on some combination of its
properties. The gauge control, for example, has properties that determine its shape
and orientation and whether it shows its progress numerically as well as graphically.
Similarly, the shape control has a property that determines what kind of shape it
should draw.

To give your control a property that determines the shape it draws, add a property
called Shape. This requires

1 Declaring the property type.
2 Declaring the property.
3 Writing the implementation method.

Creating properties is explained in more detail in Chapter 26, “Creating properties.”

Declaring the property type
When you declare a property of a user-defined type, you must declare the type first,
before the class that includes the property. The most common sort of user-defined
type for properties is enumerated.

For the shape control, you need an enumerated type with an element for each kind of
shape the control can draw.

Add the following type definition above the shape control class’s declaration.

type
TSampleShapeType = (sstRectangle, sstSquare, sstRoundRect, sstRoundSquare,

sstEllipse, sstCircle);
TSampleShape = class(TGraphicControl) { this is already there }

You can now use this type to declare a new property in the class.

32-4 D e v e l o p e r ’ s G u i d e

A d d i n g g r a p h i c c a p a b i l i t i e s

Declaring the property
When you declare a property, you usually need to declare a private field to store the
data for the property, then specify methods for reading and writing the property
value. Often, you don’t need to use a method to read the value, but can just point to
the stored data instead.

For the shape control, you will declare a field that holds the current shape, then
declare a property that reads that field and writes to it through a method call.

Add the following declarations to TSampleShape:

type
TSampleShape = class(TGraphicControl)
private

FShape: TSampleShapeType; { field to hold property value }
procedure SetShape(Value: TSampleShapeType);

published
property Shape: TSampleShapeType read FShape write SetShape;

end;

Now all that remains is to add the implementation of SetShape.

Writing the implementation method
When the read or write part of a property definition uses a method instead of directly
accessing the stored property data, you need to implement the method.

Add the implementation of the SetShape method to the implementation part of the
unit:

procedure TSampleShape.SetShape(Value: TSampleShapeType);
begin

if FShape <> Value then { ignore if this isn't a change }
begin

FShape := Value; { store the new value }
Invalidate; { force a repaint with the new shape }

end;
end;

Overriding the constructor and destructor

To change default property values and initialize owned classes for your component,
you must override the inherited constructor and destructor. In both cases, remember
always to call the inherited method in your new constructor or destructor.

Changing default property values
The default size of a graphic control is fairly small, so you can change the width and
height in the constructor. Changing default property values is explained in more
detail in Chapter 31, “Modifying an existing component.”

In this example, the shape control sets its size to a square 65 pixels on each side.

C r e a t i n g a g r a p h i c c o m p o n e n t 32-5

A d d i n g g r a p h i c c a p a b i l i t i e s

Add the overridden constructor to the declaration of the component class:

type
TSampleShape = class(TGraphicControl)
public { constructors are always public }

constructor Create(AOwner: TComponent); override { remember override directive }
end;

1 Redeclare the Height and Width properties with their new default values:

type
TSampleShape = class(TGraphicControl)
ƒ
published

property Height default 65;
property Width default 65;

end;

2 Write the new constructor in the implementation part of the unit:

constructor TSampleShape.Create(AOwner: TComponent);
begin

inherited Create(AOwner); { always call the inherited constructor }
Width := 65;
Height := 65;

end;

Publishing the pen and brush

By default, a canvas has a thin black pen and a solid white brush. To let developers
change the pen and brush, you must provide classes for them to manipulate at design
time, then copy the classes into the canvas during painting. Classes such as an
auxiliary pen or brush are called owned classes because the component owns them
and is responsible for creating and destroying them.

Managing owned classes requires

1 Declaring the class fields.

2 Declaring the access properties.

3 Initializing owned classes.

4 Setting owned classes’ properties.

Declaring the class fields
Each class a component owns must have a class field declared for it in the
component. The class field ensures that the component always has a pointer to the
owned object so that it can destroy the class before destroying itself. In general, a
component initializes owned objects in its constructor and destroys them in its
destructor.

Fields for owned objects are nearly always declared as private. If applications (or
other components) need access to the owned objects, you can declare published or
public properties for this purpose.

32-6 D e v e l o p e r ’ s G u i d e

A d d i n g g r a p h i c c a p a b i l i t i e s

Add fields for a pen and brush to the shape control:

type
TSampleShape = class(TGraphicControl)
private { fields are nearly always private }

FPen: TPen; { a field for the pen object }
FBrush: TBrush; { a field for the brush object }
ƒ

end;

Declaring the access properties
You can provide access to the owned objects of a component by declaring properties
of the type of the objects. That gives developers a way to access the objects at design
time or runtime. Usually, the read part of the property just references the class field,
but the write part calls a method that enables the component to react to changes in
the owned object.

To the shape control, add properties that provide access to the pen and brush fields.
You will also declare methods for reacting to changes to the pen or brush.

type
TSampleShape = class(TGraphicControl)
ƒ
private { these methods should be private }

procedure SetBrush(Value: TBrush);
procedure SetPen(Value: TPen);

published { make these available at design time }
property Brush: TBrush read FBrush write SetBrush;
property Pen: TPen read FPen write SetPen;

end;

Then, write the SetBrush and SetPen methods in the implementation part of the unit:

procedure TSampleShape.SetBrush(Value: TBrush);
begin

FBrush.Assign(Value); { replace existing brush with parameter }
end;

procedure TSampleShape.SetPen(Value: TPen);
begin

FPen.Assign(Value); { replace existing pen with parameter }
end;

To directly assign the contents of Value to FBrush...

FBrush := Value;

...would overwrite the internal pointer for FBrush, lose memory, and create a number
of ownership problems.

Initializing owned classes
If you add classes to your component, the component’s constructor must initialize
them so that the user can interact with the objects at runtime. Similarly, the
component’s destructor must also destroy the owned objects before destroying the
component itself.

C r e a t i n g a g r a p h i c c o m p o n e n t 32-7

A d d i n g g r a p h i c c a p a b i l i t i e s

Because you have added a pen and a brush to the shape control, you need to initialize
them in the shape control’s constructor and destroy them in the control’s destructor:

1 Construct the pen and brush in the shape control constructor:

constructor TSampleShape.Create(AOwner: TComponent);
begin

inherited Create(AOwner); { always call the inherited constructor }
Width := 65;
Height := 65;
FPen := TPen.Create; { construct the pen }
FBrush := TBrush.Create; { construct the brush }

end;

2 Add the overridden destructor to the declaration of the component class:

type
TSampleShape = class(TGraphicControl)
public { destructors are always public}

constructor Create(AOwner: TComponent); override;
destructor Destroy; override; { remember override directive }

end;

3 Write the new destructor in the implementation part of the unit:

destructor TSampleShape.Destroy;
begin

FPen.Free; { destroy the pen object }
FBrush.Free; { destroy the brush object }
inherited Destroy; { always call the inherited destructor, too }

end;

Setting owned classes’ properties
As the final step in handling the pen and brush classes, you need to make sure that
changes in the pen and brush cause the shape control to repaint itself. Both pen and
brush classes have OnChange events, so you can create a method in the shape control
and point both OnChange events to it.

Add the following method to the shape control, and update the component’s
constructor to set the pen and brush events to the new method:

type
TSampleShape = class(TGraphicControl)
published

procedure StyleChanged(Sender: TObject);
end;

ƒ
implementation
ƒ
constructor TSampleShape.Create(AOwner: TComponent);
begin

inherited Create(AOwner); { always call the inherited constructor }
Width := 65;
Height := 65;
FPen := TPen.Create; { construct the pen }
FPen.OnChange := StyleChanged; { assign method to OnChange event }

32-8 D e v e l o p e r ’ s G u i d e

A d d i n g g r a p h i c c a p a b i l i t i e s

FBrush := TBrush.Create; { construct the brush }
FBrush.OnChange := StyleChanged; { assign method to OnChange event }

end;

procedure TSampleShape.StyleChanged(Sender: TObject);
begin

Invalidate; { erase and repaint the component }
end;

With these changes, the component redraws to reflect changes to either the pen or the
brush.

Drawing the component image

The essential element of a graphic control is the way it paints its image on the screen.
The abstract type TGraphicControl defines a method called Paint that you override to
paint the image you want on your control.

The Paint method for the shape control needs to do several things:

• Use the pen and brush selected by the user.
• Use the selected shape.
• Adjust coordinates so that squares and circles use the same width and height.

Overriding the Paint method requires two steps:

1 Add Paint to the component’s declaration.
2 Write the Paint method in the implementation part of the unit.

For the shape control, add the following declaration to the class declaration:

type
TSampleShape = class(TGraphicControl)
ƒ
protected

procedure Paint; override;
ƒ
end;

Then write the method in the implementation part of the unit:

procedure TSampleShape.Paint;
begin

with Canvas do
begin

Pen := FPen; { copy the component's pen }
Brush := FBrush; { copy the component's brush }
case FShape of
sstRectangle, sstSquare:

Rectangle(0, 0, Width, Height); { draw rectangles and squares }
sstRoundRect, sstRoundSquare:

RoundRect(0, 0, Width, Height, Width div 4, Height div 4); { draw rounded shapes }
sstCircle, sstEllipse:

Ellipse(0, 0, Width, Height); { draw round shapes }
end;

end;
end;

C r e a t i n g a g r a p h i c c o m p o n e n t 32-9

A d d i n g g r a p h i c c a p a b i l i t i e s

Paint is called whenever the control needs to update its image. Controls are painted
when they first appear or when a window in front of them goes away. In addition,
you can force repainting by calling Invalidate, as the StyleChanged method does.

Refining the shape drawing

The standard shape control does one more thing that your sample shape control does
not yet do: it handles squares and circles as well as rectangles and ellipses. To do that,
you need to write code that finds the shortest side and centers the image.

Here is a refined Paint method that adjusts for squares and ellipses:

procedure TSampleShape.Paint;
var

X, Y, W, H, S: Integer;
begin

with Canvas do
begin

Pen := FPen; { copy the component's pen }
Brush := FBrush; { copy the component's brush }
W := Width; { use the component width }
H := Height; { use the component height }
if W < H then S := W else S := H; { save smallest for circles/squares }

case FShape of { adjust height, width and position }
sstRectangle, sstRoundRect, sstEllipse:

begin
X := 0; { origin is top-left for these shapes }
Y := 0;

end;
sstSquare, sstRoundSquare, sstCircle:

begin
X := (W - S) div 2; { center these horizontally... }
Y := (H - S) div 2; { ...and vertically }
W := S; { use shortest dimension for width... }
H := S; { ...and for height }

end;
end;

case FShape of
sstRectangle, sstSquare:

Rectangle(X, Y, X + W, Y + H); { draw rectangles and squares }
sstRoundRect, sstRoundSquare:

RoundRect(X, Y, X + W, Y + H, S div 4, S div 4); { draw rounded shapes }
sstCircle, sstEllipse:

Ellipse(X, Y, X + W, Y + H); { draw round shapes }
end;

end;
end;

32-10 D e v e l o p e r ’ s G u i d e

C u s t o m i z i n g a g r i d 33-1

C h a p t e r

33
Chapter33Customizing a grid

Kylix provides abstract components you can use as the basis for customized
components. The most important of these are grids and list boxes. In this chapter,
you will see how to create a small one-month calendar from the basic grid
component, TCustomGrid.

Creating the calendar involves these tasks:

• Creating and registering the component
• Publishing inherited properties
• Changing initial values
• Resizing the cells
• Filling in the cells
• Navigating months and years
• Navigating days

The resulting component is similar to the TCalendar component on the Samples page
of the Component palette.

Creating and registering the component
Creation of every component begins the same way: create a unit, derive a component
class, register it, compile it, and install it on the Component palette. This process is
outlined in “Creating a new component” on page 24-8.

For this example, follow the general procedure for creating a component, with these
specifics:

• Call the component’s unit CalSamp.

• Derive a new component type called TSampleCalendar, descended from
TCustomGrid.

• Register TSampleCalendar on the Samples page of the Component palette.

33-2 D e v e l o p e r ’ s G u i d e

P u b l i s h i n g i n h e r i t e d p r o p e r t i e s

The resulting unit should look like this:

unit CalSamp;

interface

uses
SysUtils, Types, Classes, QGraphics, QControls, QForms, QDialogs, QGrids;

type
TSampleCalendar = class(TCustomGrid)
end;

procedure Register;

implementation

procedure Register;
begin

RegisterComponents('Samples', [TSampleCalendar]);
end;

end.

If you install the calendar component now, you will find that it appears on the
Samples page. The only properties available are the most basic control properties.
The next step is to make some of the more specialized properties available to users of
the calendar.

Note While you can install the sample calendar component you have just compiled, do not
try to place it on a form yet. The TCustomGrid component has an abstract DrawCell
method that must be redeclared before instance objects can be created. Overriding
the DrawCell method is described in “Filling in the cells” below.

Publishing inherited properties
The abstract grid component, TCustomGrid, provides a large number of protected
properties. You can choose which of those properties you want to make available to
users of the calendar control.

To make inherited protected properties available to users of your components,
redeclare the properties in the published part of your component’s declaration.

For the calendar control, publish the following properties and events, as shown here:

type
TSampleCalendar = class(TCustomGrid)
published

property Align; { publish properties }
property BorderStyle;
property Color;
property Font;
property GridLineWidth;
property ParentColor;
property ParentFont;
property OnClick; { publish events }
property OnDblClick;
property OnDragDrop;

C u s t o m i z i n g a g r i d 33-3

C h a n g i n g i n i t i a l v a l u e s

property OnDragOver;
property OnEndDrag;
property OnKeyDown;
property OnKeyPress;
property OnKeyUp;

end;

There are a number of other properties you could also publish, but which do not
apply to a calendar, such as the Options property that would enable the user to
choose which grid lines to draw.

If you install the modified calendar component to the Component palette and use it
in an application, you will find many more properties and events available in the
calendar, all fully functional. You can now start adding new capabilities of your own
design.

Changing initial values
A calendar is essentially a grid with a fixed number of rows and columns, although
not all the rows always contain dates. For this reason, you have not published the
grid properties ColCount and RowCount, because it is highly unlikely that users of the
calendar will want to display anything other than seven days per week. You still
must set the initial values of those properties so that the week always has seven days,
however.

To change the initial values of the component’s properties, override the constructor
to set the desired values. The constructor must be virtual.

Remember that you need to add the constructor to the public part of the
component’s object declaration, then write the new constructor in the
implementation part of the component’s unit. The first statement in the new
constructor should always be a call to the inherited constructor.

type
TSampleCalendar = class(TCustomGrid
public

constructor Create(AOwner: TComponent); override;
ƒ
end;

ƒ
constructor TSampleCalendar.Create(AOwner: TComponent);
begin

inherited Create(AOwner); { call inherited constructor }
ColCount := 7; { always seven days/week }
RowCount := 7; { always six weeks plus the headings }
FixedCols := 0; { no row labels }
FixedRows := 1; { one row for day names }
ScrollBars := ssNone; { no need to scroll }
Options := Options - [goRangeSelect] + [goDrawFocusSelected]; {disable range selection}

end;

The calendar now has seven columns and seven rows, with the top row fixed, or
nonscrolling.

33-4 D e v e l o p e r ’ s G u i d e

R e s i z i n g t h e c e l l s

Resizing the cells
When a user or application changes the size of a window or control, it is
automatically notified by a call to the protected BoundsChanged method . Your
component can respond to this notification by altering the size of the cells so they all
fit inside the boundaries of the control.

In this case, the calendar control needs to override BoundsChanged so that it calculates
the proper cell size to allow all cells to be visible in the new size:

type
TSampleCalendar = class(TCustomGrid)
protected

procedure BoundsChanged; override;
ƒ
end;

ƒ
procedure TSampleCalendar.BoundsChanged;
var

GridLines: Integer; { temporary local variable }
begin

GridLines := 6 * GridLineWidth; { calculate combined size of all lines }
DefaultColWidth := (Width - GridLines) div 7; { set new default cell width }
DefaultRowHeight := (Height - GridLines) div 7; { and cell height }
inherited; {now call the inherited method }

end;

Now when the calendar is resized, it displays all the cells in the largest size that will
fit in the control.

Filling in the cells
A grid control fills in its contents cell-by-cell. In the case of the calendar, that means
calculating which date, if any, belongs in each cell. The default drawing for grid cells
takes place in a virtual method called DrawCell.

To fill in the contents of grid cells, override the DrawCell method.

The easiest part to fill in is the heading cells in the fixed row. The runtime library
contains an array with short day names, so for the calendar, use the appropriate one
for each column:

type
TSampleCalendar = class(TCustomGrid)
protected

procedure DrawCell(ACol, ARow: Longint; ARect: TRect; AState: TGridDrawState);
override;

end;
ƒ
procedure TSampleCalendar.DrawCell(ACol, ARow: Longint; ARect: TRect;

AState: TGridDrawState);
begin

if ARow = 0 then
Canvas.TextOut(ARect.Left, ARect.Top, ShortDayNames[ACol + 1]); { use RTL strings }

end;

C u s t o m i z i n g a g r i d 33-5

F i l l i n g i n t h e c e l l s

Tracking the date

For the calendar control to be useful, users and applications must have a mechanism
for setting the day, month, and year. CLX stores dates and times in variables of type
TDateTime. TDateTime is an encoded numeric representation of the date and time,
which is useful for programmatic manipulation, but not convenient for human use.

You can therefore store the date in encoded form, providing runtime access to that
value, but also provide Day, Month, and Year properties that users of the calendar
component can set at design time.

Tracking the date in the calendar consists of the processes:

• Storing the internal date
• Accessing the day, month, and year
• Generating the day numbers
• Selecting the current day

Storing the internal date
To store the date for the calendar, you need a private field to hold the date and a
runtime-only property that provides access to that date.

Adding the internal date to the calendar requires three steps:

1 Declare a private field to hold the date:

type
TSampleCalendar = class(TCustomGrid)
private

FDate: TDateTime;
ƒ

2 Initialize the date field in the constructor:

constructor TSampleCalendar.Create(AOwner: TComponent);
begin

inherited Create(AOwner); { this is already here }
ƒ { other initializations here }
FDate := Date; { get current date from RTL }

end;

3 Declare a runtime property to allow access to the encoded date.

You’ll need a method for setting the date, because setting the date requires
updating the onscreen image of the control:

type
TSampleCalendar = class(TCustomGrid)
private

procedure SetCalendarDate(Value: TDateTime);
public

property CalendarDate: TDateTime read FDate write SetCalendarDate;
ƒ

procedure TSampleCalendar.SetCalendarDate(Value: TDateTime);
begin

FDate := Value; { set new date value }
Refresh; { update the onscreen image }

end;

33-6 D e v e l o p e r ’ s G u i d e

F i l l i n g i n t h e c e l l s

Accessing the day, month, and year
An encoded numeric date is fine for applications, but humans prefer to work with
days, months, and years. You can provide alternate access to those elements of the
stored, encoded date by creating properties.

Because each element of the date (day, month, and year) is an integer, and because
setting each requires encoding the date when set, you can avoid duplicating the code
each time by sharing the implementation methods for all three properties. That is,
you can write two methods, one to read an element and one to write one, and use
those methods to get and set all three properties.

To provide design-time access to the day, month, and year, you do the following:

1 Declare the three properties, assigning each a unique index number:

type
TSampleCalendar = class(TCustomGrid)
public

property Day: Integer index 3 read GetDateElement write SetDateElement;
property Month: Integer index 2 read GetDateElement write SetDateElement;
property Year: Integer index 1 read GetDateElement write SetDateElement;

ƒ

2 Declare and write the implementation methods, setting different elements for each
index value:

type
TSampleCalendar = class(TCustomGrid)
private

function GetDateElement(Index: Integer): Integer; { note the Index parameter }
procedure SetDateElement(Index: Integer; Value: Integer);

ƒ
function TSampleCalendar.GetDateElement(Index: Integer): Integer;
var

AYear, AMonth, ADay: Word;
begin

DecodeDate(FDate, AYear, AMonth, ADay); { break encoded date into elements }
case Index of

1: Result := AYear;
2: Result := AMonth;
3: Result := ADay;
else Result := -1;

end;
end;

procedure TSampleCalendar.SetDateElement(Index: Integer; Value: Integer);
var

AYear, AMonth, ADay: Word;
begin

if Value > 0 then { all elements must be positive }
begin

DecodeDate(FDate, AYear, AMonth, ADay); { get current date elements }
case Index of { set new element depending on Index }
1: AYear := Value;
2: AMonth := Value;
3: ADay := Value;

C u s t o m i z i n g a g r i d 33-7

F i l l i n g i n t h e c e l l s

else Exit;
end;
FDate := EncodeDate(AYear, AMonth, ADay); { encode the modified date }
Refresh; { update the visible calendar }

end;
end;

Now you can set the calendar’s day, month, and year at design time using the Object
Inspector or at runtime using code. Of course, you have not yet added the code to
paint the dates into the cells, but now you have the needed data.

Generating the day numbers
Putting numbers into the calendar involves several considerations. The number of
days in the month depends on which month it is, and whether the given year is a leap
year. In addition, months start on different days of the week, dependent on the
month and year. Use the IsLeapYear function to determine whether the year is a leap
year. Use the MonthDays array in the SysUtils unit to get the number of days in the
month.

Once you have the information on leap years and days per month, you can calculate
where in the grid the individual dates go. The calculation is based on the day of the
week the month starts on.

Because you will need the month-offset number for each cell you fill in, the best
practice is to calculate it once when you change the month or year, then refer to it
each time. You can store the value in a class field, then update that field each time the
date changes.

To fill in the days in the proper cells, you do the following:

1 Add a month-offset field to the object and a method that updates the field value:

type
TSampleCalendar = class(TCustomGrid)
private

FMonthOffset: Integer; { storage for the offset }
ƒ
protected

procedure UpdateCalendar; virtual; { property for offset access }
end;

ƒ
procedure TSampleCalendar.UpdateCalendar;
var

AYear, AMonth, ADay: Word;
FirstDate: TDateTime; { date of the first day of the month }

begin
if FDate <> 0 then { only calculate offset if date is valid }
begin

DecodeDate(FDate, AYear, AMonth, ADay); { get elements of date }
FirstDate := EncodeDate(AYear, AMonth, 1); { date of the first }
FMonthOffset := 2 - DayOfWeek(FirstDate); { generate the offset into the grid }

end;
Refresh; { always repaint the control }

end;

33-8 D e v e l o p e r ’ s G u i d e

F i l l i n g i n t h e c e l l s

2 Add statements to the constructor and the SetCalendarDate and SetDateElement
methods that call the new update method whenever the date changes:

constructor TSampleCalendar.Create(AOwner: TComponent);
begin

inherited Create(AOwner); { this is already here }
ƒ { other initializations here }
UpdateCalendar; { set proper offset }

end;

procedure TSampleCalendar.SetCalendarDate(Value: TDateTime);
begin

FDate := Value; { this was already here }
UpdateCalendar; { this previously called Refresh }

end;

procedure TSampleCalendar.SetDateElement(Index: Integer; Value: Integer);
begin

ƒ
FDate := EncodeDate(AYear, AMonth, ADay); { encode the modified date }
UpdateCalendar; { this previously called Refresh }

end;
end;

3 Add a method to the calendar that returns the day number when passed the row
and column coordinates of a cell:

function TSampleCalendar.DayNum(ACol, ARow: Integer): Integer;
begin

Result := FMonthOffset + ACol + (ARow - 1) * 7; { calculate day for this cell }
if (Result < 1) or (Result > MonthDays[IsLeapYear(Year), Month]) then

Result := -1; { return -1 if invalid }
end;

Remember to add the declaration of DayNum to the component’s type declaration.

4 Now that you can calculate where the dates go, you can update DrawCell to fill in
the dates:

procedure TCalendar.DrawCell(ACol, ARow: Longint; ARect: TRect; AState: TGridDrawState);
var

TheText: string;
TempDay: Integer;

begin
if ARow = 0 then { if this is the header row ...}

TheText := ShortDayNames[ACol + 1] { just use the day name }
else begin

TheText := ''; { blank cell is the default }
TempDay := DayNum(ACol, ARow); { get number for this cell }
if TempDay <> -1 then TheText := IntToStr(TempDay); { use the number if valid }

end;
with ARect, Canvas do

TextRect(ARect, Left + (Right - Left - TextWidth(TheText)) div 2,
Top + (Bottom - Top - TextHeight(TheText)) div 2, TheText);

end;

Now if you reinstall the calendar component and place one on a form, you will see
the proper information for the current month.

C u s t o m i z i n g a g r i d 33-9

N a v i g a t i n g m o n t h s a n d y e a r s

Selecting the current day
Now that you have numbers in the calendar cells, it makes sense to move the
selection highlighting to the cell containing the current day. By default, the selection
starts on the top left cell, so you need to set the Row and Column properties both
when constructing the calendar initially and when the date changes.

To set the selection on the current day, change the UpdateCalendar method to set Row
and Column before calling Refresh:

procedure TSampleCalendar.UpdateCalendar;
begin

if FDate <> 0 then
begin

ƒ { existing statements to set FMonthOffset }
Row := (ADay - FMonthOffset) div 7 + 1;
Col := (ADay - FMonthOffset) mod 7;

end;
Refresh; { this is already here }

end;

Note that you are now reusing the ADay variable previously set by decoding the
date.

Navigating months and years
Properties are useful for manipulating components, especially at design time. But
sometimes there are types of manipulations that are so common or natural, often
involving more than one property, that it makes sense to provide methods to handle
them. One example of such a natural manipulation is a “next month” feature for a
calendar. Handling the wrapping around of months and incrementing of years is
simple, but very convenient for the developer using the component.

The only drawback to encapsulating common manipulations into methods is that
methods are only available at runtime. However, such manipulations are generally
only cumbersome when performed repeatedly, and that is fairly rare at design time.

For the calendar, add the following four methods for next and previous month and
year. Each of these methods uses the IncMonth function in a slightly different manner
to increment or decrement CalendarDate, by increments of a month or a year. After
incrementing or decrementing CalendarDate, decode the date value to fill the Year,
Month, and Day properties with corresponding new values.

procedure TCalendar.NextMonth;
begin

DecodeDate(IncMonth(CalendarDate, 1), Year, Month, Day);
end;

procedure TCalendar.PrevMonth;
begin

DecodeDate(IncMonth(CalendarDate, -1), Year, Month, Day);
end;

procedure TCalendar.NextYear;

33-10 D e v e l o p e r ’ s G u i d e

N a v i g a t i n g d a y s

begin
DecodeDate(IncMonth(CalendarDate, 12), Year, Month, Day);

end;

procedure TCalendar.PrevYear;
begin

DecodeDate(IncMonth(CalendarDate, -12), Year, Month, Day);
end;

Be sure to add the declarations of the new methods to the class declaration.

Now when you create an application that uses the calendar component, you can
easily implement browsing through months or years.

Navigating days
Within a given month, there are two obvious ways to navigate among the days. The
first is to use the arrow keys, and the other is to respond to clicks of the mouse. The
standard grid component handles both as if they were clicks. That is, an arrow
movement is treated like a click on an adjacent cell.

The process of navigating days consists of

• Moving the selection
• Providing an OnChange event
• Excluding blank cells

Moving the selection

The inherited behavior of a grid handles moving the selection in response to either
arrow keys or clicks, but if you want to change the selected day, you need to modify
that default behavior.

To handle movements within the calendar, override the Click method of the grid.

When you override a method such as Click that is tied in with user interactions, you
will nearly always include a call to the inherited method, so as not to lose the
standard behavior.

The following is an overridden Click method for the calendar grid. Be sure to add the
declaration of Click to TSampleCalendar, including the override directive afterward.

procedure TSampleCalendar.Click;
var

TempDay: Integer;
begin

inherited Click; { remember to call the inherited method! }
TempDay := DayNum(Col, Row); { get the day number for the clicked cell }
if TempDay <> -1 then Day := TempDay; { change day if valid }

end;

C u s t o m i z i n g a g r i d 33-11

N a v i g a t i n g d a y s

Providing an OnChange event

Now that users of the calendar can change the date within the calendar, it makes
sense to allow applications to respond to those changes.

Add an OnChange event to TSampleCalendar.

1 Declare the event, a field to store the event, and a dynamic method to call the
event:

type
TSampleCalendar = class(TCustomGrid)
private

FOnChange: TNotifyEvent;
protected

procedure Change; dynamic;
ƒ
published

property OnChange: TNotifyEvent read FOnChange write FOnChange;
ƒ

2 Write the Change method:

procedure TSampleCalendar.Change;
begin

if Assigned(FOnChange) then FOnChange(Self);
end;

3 Add statements calling Change to the end of the SetCalendarDate and
SetDateElement methods:

procedure TSampleCalendar.SetCalendarDate(Value: TDateTime);
begin

FDate := Value;
UpdateCalendar;
Change; { this is the only new statement }

end;

procedure TSampleCalendar.SetDateElement(Index: Integer; Value: Integer);
begin

ƒ { many statements setting element values }
FDate := EncodeDate(AYear, AMonth, ADay);
UpdateCalendar;
Change; { this is new }

end;
end;

Applications using the calendar component can now respond to changes in the date
of the component by attaching handlers to the OnChange event.

33-12 D e v e l o p e r ’ s G u i d e

N a v i g a t i n g d a y s

Excluding blank cells

As the calendar is written, the user can select a blank cell, but the date does not
change. It makes sense, then, to disallow selection of the blank cells.

To control whether a given cell is selectable, override the SelectCell method of the
grid.

SelectCell is a function that takes a column and row as parameters, and returns a
Boolean value indicating whether the specified cell is selectable.

You can override SelectCell to return False if the cell does not contain a valid date:

function TSampleCalendar.SelectCell(ACol, ARow: Longint): Boolean;
begin

if DayNum(ACol, ARow) = -1 then Result := False { -1 indicates invalid date }
else Result := inherited SelectCell(ACol, ARow); { otherwise, use inherited value }

end;

Now if the user clicks a blank cell or tries to move to one with an arrow key, the
calendar leaves the current cell selected.

M a k i n g a c o n t r o l d a t a a w a r e 34-1

C h a p t e r

34
Chapter34Making a control data aware

When working with database connections, it is often convenient to have controls that
are data aware. That is, the application can establish a link between the control and
some part of a database. CLX includes data-aware labels, edit boxes, list boxes,
combo boxes, lookup controls, and grids. You can also make your own controls data
aware. For more information about using data-aware controls, see Chapter 15,
“Using data controls”.

There are several degrees of data awareness. The simplest is read-only data
awareness, or data browsing, the ability to reflect the current state of a database. More
complicated is editable data awareness, or data editing, where the user can edit the
values in the database by manipulating the control. Note also that the degree of
involvement with the database can vary, from the simplest case, a link with a single
field, to more complex cases, such as multiple-record controls.

This chapter first illustrates the simplest case, making a read-only control that links
to a single field in a dataset. The specific control used will be the TSampleCalendar
calendar created in Chapter 33, “Customizing a grid”.

The chapter then continues with an explanation of how to make the new data-
browsing control a data-editing control.

Creating a data-browsing control
Creating a data-aware calendar control, whether it is a read-only control or one in
which the user can change the underlying data in the dataset, involves the following
steps:

• Creating and registering the component

• Adding the data link

• Responding to data changes

34-2 D e v e l o p e r ’ s G u i d e

C r e a t i n g a d a t a - b r o w s i n g c o n t r o l

Creating and registering the component

Creation of every component begins the same way: create a unit, derive a component
class, register it, compile it, and install it on the Component palette. This process is
outlined in “Creating a new component” on page 24-8.

For this example, follow the general procedure for creating a component, with these
specifics:

• Call the component’s unit DBCal.

• Derive a new component class called TDBCalendar, descended from
TSampleCalendar. Chapter 33, “Customizing a grid,” shows you how to create the
TSampleCalendar component.

• Register TDBCalendar on the Samples page of the Component palette.

The resulting unit should look like this:

unit DBCal;

interface

uses SysUtils, Types, Classes, QGraphics, QControls, QForms, QGrids, Calendar;

type
TDBCalendar = class(TSampleCalendar)
end;

procedure Register;

implementation

procedure Register;
begin

RegisterComponents('Samples', [TDBCalendar]);
end;

end.

You can now proceed with making the new calendar a data browser.

Making the control read-only

Because this data calendar will be read-only with respect to the data, it makes sense
to make the control itself read-only, so users will not make changes within the control
and expect them to be reflected in the database.

Making the calendar read-only involves,

• Adding the ReadOnly property.
• Allowing needed updates.

Adding the ReadOnly property
By adding a ReadOnly property, you provide a way to make the control read-only at
design time. When that property is set to True, you can make all cells in the control
unselectable.

M a k i n g a c o n t r o l d a t a a w a r e 34-3

C r e a t i n g a d a t a - b r o w s i n g c o n t r o l

1 Add the property declaration and a private field to hold the value:

type
TDBCalendar = class(TSampleCalendar)
private

FReadOnly: Boolean; { field for internal storage }
public

constructor Create(AOwner: TComponent); override; { must override to set default }
published

property ReadOnly: Boolean read FReadOnly write FReadOnly default True;
end;

ƒ
constructor TDBCalendar.Create(AOwner: TComponent);
begin

inherited Create(AOwner); { always call the inherited constructor! }
FReadOnly := True; { set the default value }

end;

2 Override the SelectCell method to disallow selection if the control is read-only. Use
of SelectCell is explained in “Excluding blank cells” on page 33-12.

function TDBCalendar.SelectCell(ACol, ARow: Longint): Boolean;
begin

if FReadOnly then Result := False { cannot select if read only }
else Result := inherited SelectCell(ACol, ARow); { otherwise, use inherited method }

end;

Remember to add the declaration of SelectCell to the type declaration of TDBCalendar,
and append the override directive.

If you now add the calendar to a form, you will find that the component ignores
clicks and keystrokes. It also fails to update the selection position when you change
the date.

Allowing needed updates
The read-only calendar uses the SelectCell method for all kinds of changes, including
setting the Row and Col properties. The UpdateCalendar method sets Row and Col
every time the date changes, but because SelectCell disallows changes, the selection
remains in place, even though the date changes.

To get around this absolute prohibition on changes, you can add an internal Boolean
flag to the calendar, and permit changes when that flag is set to True:

type
TDBCalendar = class(TSampleCalendar)
private

FUpdating: Boolean; { private flag for internal use }
protected

function SelectCell(ACol, ARow: Longint): Boolean; override;
public

procedure UpdateCalendar; override; { remember the override directive }
end;

ƒ
function TDBCalendar.SelectCell(ACol, ARow: Longint): Boolean;
begin

34-4 D e v e l o p e r ’ s G u i d e

C r e a t i n g a d a t a - b r o w s i n g c o n t r o l

if (not FUpdating) and FReadOnly then Result := False { allow select if updating }
else Result := inherited SelectCell(ACol, ARow); { otherwise, use inherited method }

end;

procedure TDBCalendar.UpdateCalendar;
begin

FUpdating := True; { set flag to allow updates }
try

inherited UpdateCalendar; { update as usual }
finally

FUpdating := False; { always clear the flag }
end;

end;

The calendar still disallows user changes, but now correctly reflects changes made in
the date by changing the date properties. Now that you have a true read-only
calendar control, you are ready to add the data-browsing ability.

Adding the data link

The connection between a control and a database is handled by a class called a data
link. The datalink class that connects a control with a single field in a database is
TFieldDataLink. There are also data links for entire tables.

A data-aware control owns its datalink class. That is, the control has the responsibility
for constructing and destroying the data link.

Establishing a data link as an owned class requires these three steps:

1 Declaring the class field

2 Declaring the access properties

3 Initializing the data link

Declaring the class field
A component needs a field for each of its owned classes, as explained in “Declaring
the class fields” on page 32-5. In this case, the calendar needs a field of type
TFieldDataLink for its data link.

Declare a field for the data link in the calendar:

type
TDBCalendar = class(TSampleCalendar)
private

FDataLink: TFieldDataLink;
ƒ
end;

Before you can compile the application, you need to add DB and DBCtrls to the unit’s
uses clause.

M a k i n g a c o n t r o l d a t a a w a r e 34-5

C r e a t i n g a d a t a - b r o w s i n g c o n t r o l

Declaring the access properties
Every data-aware control has a DataSource property that specifies which data-source
class in the application provides the data to the control. In addition, a control that
accesses a single field needs a DataField property to specify that field in the data
source.

Unlike the access properties for the owned classes, which provide access to private
data members in the class, these access properties maintained by the owned class.
That is, you will create properties that allow the control and its data link to share the
same data source and field.

Declare the DataSource and DataField properties and their implementation methods,
then write the methods as “pass-through” methods to the corresponding properties
of the datalink class:

An example of declaring access properties
type

TDBCalendar = class(TSampleCalendar)
private { implementation methods are private }

...
function GetDataField: string; { returns the name of the data field }
function GetDataSource: TDataSource; { returns reference to the data source }
procedure SetDataField(const Value: string); { assigns name of data field }
procedure SetDataSource(Value: TDataSource); { assigns new data source }

published { make properties available at design time }
property DataField: string read GetDataField write SetDataField;
property DataSource: TDataSource read GetDataSource write SetDataSource;

end;
ƒ
function TDBCalendar.GetDataField: string;
begin

Result := FDataLink.FieldName;
end;

function TDBCalendar.GetDataSource: TDataSource;
begin

Result := FDataLink.DataSource;
end;

procedure TDBCalendar.SetDataField(const Value: string);
begin

FDataLink.FieldName := Value;
end;

procedure TDBCalendar.SetDataSource(Value: TDataSource);
begin

FDataLink.DataSource := Value;
end;

Now that you have established the links between the calendar and its data link, there
is one more important step. You must construct the data link class when the calendar
control is constructed, and destroy the data link before destroying the calendar.

34-6 D e v e l o p e r ’ s G u i d e

C r e a t i n g a d a t a - b r o w s i n g c o n t r o l

Initializing the data link
A data-aware control needs access to its data link throughout its existence, so it must
construct the datalink object as part of its own constructor, and destroy the datalink
object before it is itself destroyed.

Override the Create and Destroy methods of the calendar to construct and destroy the
datalink object, respectively:

type
TDBCalendar = class(TSampleCalendar)
public { constructors and destructors are always public }

constructor Create(AOwner: TComponent); override;
destructor Destroy; override;
ƒ

end;
ƒ
constructor TDBCalendar.Create(AOwner: TComponent);
begin

inherited Create(AOwner); { always call the inherited constructor first
}

FDataLink := TFieldDataLink.Create; { construct the datalink object }
FDataLink.Control := self; {let the datalink know about the calendar }
FReadOnly := True; { this is already here }

end;

destructor TDBCalendar.Destroy;
begin

FDataLink.Free; { always destroy owned objects first... }
inherited Destroy; { ...then call inherited destructor

}
end;

Now you have a complete data link, but you have not yet told the control what data
it should read from the linked field. The next section explains how to do that.

Responding to data changes

Once a control has a data link and properties to specify the data source and data field,
it needs to respond to changes in the data in that field, either because of a move to a
different record or because of a change made to that field.

Datalink classes all have events named OnDataChange. When the data source
indicates a change in its data, the datalink object calls any event handler attached to
its OnDataChange event.

To update a control in response to data changes, attach a handler to the data link’s
OnDataChange event.

In this case, you will add a method to the calendar, then designate it as the handler
for the data link’s OnDataChange.

Declare and implement the DataChange method, then assign it to the data link’s
OnDataChange event in the constructor. In the destructor, detach the OnDataChange
handler before destroying the object.

M a k i n g a c o n t r o l d a t a a w a r e 34-7

C r e a t i n g a d a t a - e d i t i n g c o n t r o l

type
TDBCalendar = class(TSampleCalendar)
private { this is an internal detail, so make it private }

procedure DataChange(Sender: TObject); { must have proper parameters for event
}

end;
ƒ

constructor TDBCalendar.Create(AOwner: TComponent);
begin

inherited Create(AOwner); { always call the inherited constructor first
}

FReadOnly := True; { this is already here }
FDataLink := TFieldDataLink.Create; { construct the datalink object }
FDataLink.OnDataChange := DataChange; { attach handler to event }

end;

destructor TDBCalendar.Destroy;
begin

FDataLink.OnDataChange := nil; { detach handler before destroying object }
FDataLink.Free; { always destroy owned objects first... }
inherited Destroy; { ...then call inherited destructor

}
end;

procedure TDBCalendar.DataChange(Sender: TObject);
begin

if FDataLink.Field = nil then { if there is no field assigned...
}

CalendarDate := 0 { ...set to invalid date }
else CalendarDate := FDataLink.Field.AsDateTime; { otherwise, set calendar to the date }

end;

You now have a data-browsing control.

Creating a data-editing control
When you create a data-editing control, you create and register the component and
add the data link just as you do for a data-browsing control. You also respond to data
changes in the underlying field in a similar manner, but you must handle a few more
issues.

For example, you probably want your control to respond to both key and mouse
events. Your control must respond when the user changes the contents of the control.
When the user exits the control, you want the changes made in the control to be
reflected in the dataset.

The data-editing control described here is the same calendar control described in the
first part of the chapter. The control is modified so that it can edit as well as view the
data in its linked field.

Modifying the existing control to make it a data-editing control involves:

• Changing the default value of FReadOnly.
• Handling mouse-down and key-down events.

34-8 D e v e l o p e r ’ s G u i d e

C r e a t i n g a d a t a - e d i t i n g c o n t r o l

• Updating the field datalink class.
• Modifying the Change method.
• Updating the dataset.

Changing the default value of FReadOnly

Because this is a data-editing control, the ReadOnly property should be set to False by
default. To make the ReadOnly property False, change the value of FReadOnly in the
constructor:

constructor TDBCalendar.Create(AOwner: TComponent);
begin

ƒ
FReadOnly := False; { set the default value }
ƒ

end;

Handling mouse-down and key-down events

When the user of the control begins interacting with it, the control receives either
mouse-down events or a key-down event. To enable a control to respond to these
messages, you must write handlers that respond to these messages.

• Responding to mouse-down events
• Responding to key-down events

Responding to mouse-down events
A MouseDown method is a protected method for a control’s OnMouseDown event. The
control itself calls MouseDown in response to a notification from the operating
system. When you override the inherited MouseDown method, you can include code
that provides other responses in addition to calling the OnMouseDown event.

To override MouseDown, add the MouseDown method to the TDBCalendar class:

type
TDBCalendar = class(TSampleCalendar);
ƒ

protected
procedure MouseDown(Button: TButton, Shift: TShiftState, X: Integer, Y: Integer);
override;

ƒ
end;

procedure TDBCalendar.MouseDown(Button: TButton; Shift: TShiftState; X, Y: Integer);
var

MyMouseDown: TMouseEvent;
begin

if not ReadOnly and FDataLink.Edit then
inherited MouseDown(Button, Shift, X, Y)

else
begin

MyMouseDown := OnMouseDown;

M a k i n g a c o n t r o l d a t a a w a r e 34-9

C r e a t i n g a d a t a - e d i t i n g c o n t r o l

if Assigned(MyMouseDown then MyMouseDown(Self, Button, Shift, X, Y);
end;

end;

When MouseDown responds to a mouse-down message, the inherited MouseDown
method is called only if the control’s ReadOnly property is False and the datalink
object is in edit mode, which means the field can be edited. If the field cannot be
edited, the code the programmer put in the OnMouseDown event handler, if one
exists, is executed.

Responding to key-down events
A KeyDown method is a protected method for a control’s OnKeyDown event. The
control itself calls KeyDown in response to a notification from the operating system.
When overriding the inherited KeyDown method, you can include code that provides
other responses in addition to calling the OnKeyDown event.

To override KeyDown, follow these steps:

1 Add a KeyDown method to the TDBCalendar class:

type
TDBCalendar = class(TSampleCalendar);
ƒ

protected
procedure KeyDown(var Key: Word; Shift: TShiftState; X: Integer; Y: Integer);
override;

ƒ
end;

2 Implement the KeyDown method:

procedure KeyDown(var Key: Word; Shift: TShiftState);
var

MyKeyDown: TKeyEvent;
begin

if not ReadOnly and (Key in [Key_Up, Key_Down, Key_Left, Key_Right, Key_End,
Key_Home, Key_Prior, Key_Next]) and FDataLink.Edit then
inherited KeyDown(Key, Shift)

else
begin
MyKeyDown := OnKeyDown;
if Assigned(MyKeyDown) then MyKeyDown(Self, Key, Shift);

end;
end;

When KeyDown responds to a mouse-down event, the inherited KeyDown method is
called only if the control’s ReadOnly property is False, the key pressed is one of the
cursor control keys, and the datalink object is in edit mode, which means the field can
be edited. If the field cannot be edited or some other key is pressed, the code the
programmer put in the OnKeyDown event handler, if one exists, is executed.

34-10 D e v e l o p e r ’ s G u i d e

C r e a t i n g a d a t a - e d i t i n g c o n t r o l

Updating the field datalink class

There are two types of data changes:

• A change in a field value that must be reflected in the data-aware control.
• A change in the data-aware control that must be reflected in the field value.

The TDBCalendar component already has a DataChange method that handles a change
in the field’s value in the dataset by assigning that value to the CalendarDate property.
The DataChange method is the handler for the OnDataChange event. So the calendar
component can handle the first type of data change.

Similarly, the field datalink class also has an OnUpdateData event that occurs as the
user of the control modifies the contents of the data-aware control. The calendar
control has a UpdateData method that becomes the event handler for the
OnUpdateData event. UpdateData assigns the changed value in the data-aware control
to the field data link.

1 To reflect a change made to the value in the calendar in the field value, add an
UpdateData method to the private section of the calendar component:

type
TDBCalendar = class(TSampleCalendar);
private

procedure UpdateData(Sender: TObject);
ƒ

end;

2 Implement the UpdateData method:

procedure UpdateData(Sender: TObject);
begin

FDataLink.Field.AsDateTime := CalendarDate; { set field link to calendar date }
end;

3 Within the constructor for TDBCalendar, assign the UpdateData method to the
OnUpdateData event:

constructor TDBCalendar.Create(AOwner: TComponent);
begin

inherited Create(AOwner);
FReadOnly := True;
FDataLink := TFieldDataLink.Create;
FDataLink.OnDataChange := DataChange;
FDataLink.OnUpdateData := UpdateData;

end;

Modifying the Change method

The Change method of the TDBCalendar is called whenever a new date value is set.
Change calls the OnChange event handler, if one exists. The component user can write
code in the OnChange event handler to respond to changes in the date.

M a k i n g a c o n t r o l d a t a a w a r e 34-11

C r e a t i n g a d a t a - e d i t i n g c o n t r o l

When the calendar date changes, the underlying dataset should be notified that a
change has occurred. You can do that by overriding the Change method and adding
one more line of code. These are the steps to follow:

1 Add a new Change method to the TDBCalendar component:

type
TDBCalendar = class(TSampleCalendar);
private

procedure Change; override;
ƒ

end;

2 Write the Change method, calling the Modified method that informs the dataset the
data has changed, then call the inherited Change method:

procedure TDBCalendar.Change;
begin

FDataLink.Modified; { call the Modified method }
inherited Change; { call the inherited Change method }

end;

Updating the dataset

So far, a change within the data-aware control has changed values in the field
datalink class. The final step in creating a data-editing control is to update the dataset
with the new value. This should happen after the person changing the value in the
data-aware control exits the control by clicking outside the control or pressing the Tab
key.

TWidgetControl has a protected DoExit method that is called when input focus shifts
away from the control. This method calls the event handler for the OnExit event. You
can override this method to update the record in the dataset before generating the
OnExit event handler.

To update the dataset when the user exits the control, follow these steps:

1 Add an override for the DoExit method to the TDBCalendar component:

type
TDBCalendar = class(TSampleCalendar);
private

procedure DoExit; override;
ƒ

end;

2 Implement the DoExit method so it looks something like this:

procedure TDBCalendar.CMExit(var Message: TWMNoParams);
begin

try
FDataLink.UpdateRecord; { tell data link to update database }

except
on Exception do SetFocus; { if it failed, don't let focus leave }

end;
inherited; { let the inherited method generate an OnExit event }

end;

34-12 D e v e l o p e r ’ s G u i d e

I n d e x I-1

Symbols
& (ampersand) character 6-24
... (ellipsis) buttons 15-20

A
Abort method 16-26
absolute addressing 10-7
abstract classes 24-3
accelerators 6-24
access violations

strings 4-31
Acquire method 9-7
action editor

adding actions 22-7
changing actions 22-9

action items 22-6, 22-7, 22-8 to
22-11

adding 22-7
chaining 22-11
default 22-8, 22-10
enabling and disabling 22-9
event handlers 22-7
page producers and 22-18
responding to requests 22-10
selecting 22-9, 22-10

action lists 6-13 to 6-19
actions 6-13 to 6-19

executing 6-15
predefined 6-18
registering 6-19
updating 6-17

Actions property 22-7
Active property

client sockets 23-6
datasets 16-2, 16-4, 18-10
server sockets 23-7

ActiveAggs property 20-22
ActnList unit 6-19
Add Fields dialog box 17-4
Add method

menus 6-31
persistent columns 15-17
strings 3-36

Add To Repository
command 5-8

AddIndex method 20-16
Additional page

(Component palette) 3-18
AddObject method 3-37
AddRef method 4-20, 4-24

addresses
socket connections 23-3, 23-4

AddStrings method 3-36, 3-37
ADT fields 17-20, 17-21 to 17-23

displaying 15-21, 17-21
flattening 15-21
persistent fields 17-22

AfterApplyUpdates
event 20-34, 21-7

AfterClose event 16-5
AfterConnect event 19-5
AfterDisconnect event 19-5
AfterDispatch event 22-8, 22-11
AfterGetRecords event 21-7
AggFields property 20-22
aggregate fields 17-6, 20-22

defining 17-10
displaying 17-10

aggregates
client datasets 20-20 to 20-22

Aggregates property 20-20,
20-22

Align property 6-4
memos 3-20
panels 6-32
status bars 3-28
text controls 7-1

Alignment property 3-23
column headers 15-19
data grids 15-19
data-aware memo

controls 15-8
fields 17-11
status bars 3-29

AllowAllUp property 3-22
speed buttons 6-34
tool buttons 6-36

AllowGrayed property 3-23
alTop constant 6-32
ampersand (&) character 6-24
ancestor classes 3-5, 3-8, 25-3

default 25-3
AnsiChar 4-25
AnsiString 4-27
Apache programs

creating 22-5
Apache Web server

applications 5-6
Append method 16-22, 16-23

Insert vs. 16-22
AppendRecord method 16-24

application servers 14-12
Application variable 6-3, 22-6
applications

Apache Web server 5-6
CGI 5-6
creating 3-17
cross-platform 10-1 to 10-27
database 5-4, 14-1
deploying 13-1
distributed 5-5
files 13-2
international 12-1
MDI 5-2
multi-threaded 9-1
portable 10-1 to 10-27
porting 10-15
SDI 5-2
status information 3-28
Web server 5-6

ApplyRange method 20-9
ApplyUpdates method 10-26

client datasets 20-30, 20-31,
21-3

multi-tiered
applications 20-30

providers 20-31, 21-7
AppServer property 20-28, 21-2
Arc method 8-4
architecture

database applications 14-4 to
14-13

Web server applications 22-6
array fields 17-20, 17-23 to 17-24

displaying 15-21, 17-21
flattening 15-21
persistent fields 17-23

arrays 26-2, 26-8
AS_ApplyUpdates method

providers 21-3
AS_DataRequest method 21-3
AS_Execute method 21-3
AS_GetParams method 21-3
AS_GetProviderNames

method 21-3
AS_GetRecords method 21-3
AS_RowRequest method 21-3
assembler code 10-18
Assign Local Data

command 20-23, 20-39
Assign method

string lists 3-37

Index

I-2 D e v e l o p e r ’ s G u i d e

AssignedValues property 15-20
assignment statements 26-2
AssignValue method 17-15
Associate property 3-21
atomicity

transactions 14-3
attributes

property editors 30-8
AutoAccept property 23-7
AutoCalcFields property 16-26
AutoDisplay property 15-9
AutoEdit property 15-5
AutoPopup property 6-36
AutoSize property 3-19, 6-4,

13-7, 15-8

B
backgrounds 12-4
BaseCLX 10-4
.bashrc 10-13
batch files 10-12
BeforeApplyUpdates

event 20-33, 21-7
BeforeClose event 16-5, 16-23
BeforeDisconnect event 19-5
BeforeDispatch event 22-8,

22-10
BeforeGetRecords event 21-7
BeforeUpdateRecord

event 20-37, 21-10
BeginRead method 9-8
BeginWrite method 9-8
beveled panels 3-31
Beveled property 3-24
bevels 3-31
bi-directional properties 10-6
bin directory 10-14
bitmap buttons 3-22
bitmap objects 8-3
bitmaps 3-30, 8-17, 29-2

adding scrollable 8-16
adding to components 30-3
associating with strings 3-37,

7-8
blank 8-17
brushes 8-8
brushes property 8-7, 8-8
destroying 8-20
drawing on 8-17
drawing surfaces 29-2
draw-item events 7-9
graphical controls vs. 32-3
in frames 6-13
internationalizing 12-5
loading 29-3

offscreen 29-3 to 29-4
replacing 8-19
scrolling 8-16
setting initial size 8-17
temporary 8-16, 8-17
toolbars 6-35
when they appear in

application 8-1
BLOB fields 15-2

displaying values 15-8
fetch on demand 20-29, 21-5
viewing graphics 15-9

BLOBs 15-8
blocking connections 23-10

event handling 23-8
non-blocking vs. 23-9

BlockMode property 23-8, 23-9,
23-10

bmBlocking 23-10
bmNonBlocking 23-9
bmThreadBlocking 23-8, 23-10
Bof property 16-9, 16-10, 16-11
Bookmark property 16-12
bookmarks 16-12 to 16-13

support by dataset
types 16-12

BookmarkValid property 16-12
Boolean fields 15-2, 15-12
Boolean values 26-2, 26-12, 34-3
borders

panels 3-26
BorderWidth property 3-26
bounding rectangles 8-10
briefcase model 14-12
Brush property 3-30, 8-3, 8-7,

29-2
BrushCopy method 29-2
brushes 8-7 to 8-9, 32-5

bitmap property 8-8
changing 32-7
colors 8-7
styles 8-8

business rules
data modules 5-7

buttons 3-21 to 3-23
adding to toolbars 6-32 to

6-34, 6-35
assigning glyphs to 6-33
disabling on toolbars 6-35
navigator 15-25
toolbars and 6-31

ButtonStyle property
data grids 15-19, 15-20

ByteType 4-28

C
CachedUpdates property 10-26
caching resources 29-1
calculated fields 16-8, 16-26,

17-6
assigning values 17-7
client datasets 20-19 to 20-20
defining 17-7 to 17-8
lookup fields and 17-9

calendars 33-1 to 33-12
adding dates 33-4 to 33-9
defining properties and

events 33-2, 33-6, 33-10
making read-only 34-2 to

34-4
moving through 33-9 to

33-12
resizing 33-4
selecting current day 33-9

Cancel method 16-5, 16-6, 16-21,
16-24

Cancel property 3-22
CancelBatch method 10-27
CancelRange method 20-9
CancelUpdates method 10-27
CanModify property

data grids 15-23
datasets 16-6, 16-20

Canvas property 3-31, 24-7
canvases 24-7, 29-1

adding shapes 8-10 to 8-11,
8-13

common properties,
methods 8-3

default drawing tools 32-5
drawing lines 8-5, 8-9 to

8-10, 8-26 to 8-27
changing pen width 8-6
event handlers 8-24

drawing vs. painting 8-4
overview 8-1 to 8-3
refreshing the screen 8-2

Caption property
column headers 15-19
group boxes and radio

groups 3-26
invalid entries 6-22
labels 3-28
TForm 3-28

cascaded deletes 21-5
cascaded updates 21-5
case sensitivity 10-12

indexes 20-17, 20-38
CaseInsFields property 20-38

I n d e x I-3

CellRect method 3-29
cells (grids) 3-29
Cells property 3-30
CGI programs 5-6, 22-5

creating 22-5
change log 20-14 to 20-16, 20-30,

20-40
saving changes 20-15 to

20-16
undoing changes 20-15

Change method 34-10
ChangeBounds property 10-19
ChangeCount property 10-26
CHANGEINDEX 20-16
ChangeScale property 10-19
changing

project files 2-2
Char data type 4-25, 12-2
character sets 4-28, 12-2, 12-2 to

12-3
2-byte conversions 12-2
double byte 12-2
international sort orders 12-4

character types 4-25, 12-2
characters 26-2
check boxes 3-22, 15-2

data-aware 15-12
Checked property 3-22
check-list boxes 3-24
CheckSynchronize routine 9-4
Chord method 8-4
circles, drawing 32-9
circular references 6-2
class completion 4-2
class fields 32-4

declaring 32-5
naming 27-2

class pointers 25-9
class type declaration 4-1
classes 24-2, 24-3, 25-1, 26-2

abstract 24-3
accessing 25-4 to 25-6, 32-6
ancestor 25-3
creating 25-1 to 25-3

general syntax 4-2
default 25-3
defining 24-10, 25-2

static methods and 25-7
virtual methods and 25-8

derived 25-8
deriving new 25-2, 25-8
descendant 25-3, 25-8
hierarchy 25-3
inheritance 25-7
instantiating 25-2

passing as parameters 25-9
properties as 26-2
property editors as 30-4
public part 25-6
published part 25-6

Clear method
fields 17-15
string lists 3-36, 3-37

ClearSelection method 7-5
click events 8-23, 8-24, 27-1,

27-2, 27-7
Click method 27-2

overriding 27-6, 33-10
client applications

interfaces 23-2
sockets and 23-1
supplying queries 21-5

client connections 23-2, 23-3
accepting requests 23-7
opening 23-6
port numbers 23-5

client datasets 14-6, 20-1 to
20-41

aggregating data 20-20 to
20-22

applying updates 20-31 to
20-32, 20-36

buffering records 14-9 to
14-11

calculated fields 20-19 to
20-20

connecting to other
datasets 20-24 to 20-34

constraints 20-13 to 20-14
copying data 20-23 to 20-24
copying existing tables 20-39
creating tables 20-37 to 20-40
deleting indexes 20-17
editing 14-7, 20-14 to 20-16
file-based applications 20-37

to 20-41
grouping data 20-18 to 20-19
indexes 20-16 to 20-39

adding 20-16 to 20-17
limiting records 20-5 to

20-10, 20-27
loading files 20-40
master/detail

relationships 20-10 to 20-13
merging changes 20-40
merging data 20-23
navigation 20-2 to 20-5
parameters 20-26 to 20-27
providers and 20-24 to 20-34
read-only 20-14

refreshing records 20-33
resolving update

errors 20-31, 20-31 to 20-32
saving changes 20-15 to

20-16
saving files 20-41
searching 20-3 to 20-5
sharing data 20-24
specifying providers 20-25,

20-25
supplying queries 20-28
switching indexes 20-17
undoing changes 20-15
updating records 20-30 to

20-32
with internal source

dataset 20-34 to 20-37
client requests 22-3 to 22-4
client sockets 23-3, 23-5 to 23-6

assigning hosts 23-4
connecting to servers 23-8
error messages 23-7
event handling 23-8
identifying servers 23-6
properties 23-6
requesting services 23-5
socket objects 23-6

client/server applications 5-4
clients

action lists 6-14
clipboard 7-3, 7-4, 15-9

clearing selection 7-5
formats

adding 30-13, 30-15
graphics and 8-20 to 8-22
graphics objects 8-3, 15-9
testing for images 8-22

CloneCursor method 20-24
Close method

datasets 16-3, 16-5
TSQLConnection 19-5

CloseDataSets method 19-11
CLX

main thread 9-3
object constructors 10-11
objects 3-2
overview 3-1 to 3-4
TComponent branch 3-14
TControl branch 3-16
TObject branch 3-13
TPersistent branch 3-14
TWidgetControl branch 3-17
vs VCL 10-4

code 28-4
portable 10-13, 10-15

I-4 D e v e l o p e r ’ s G u i d e

Code editor
displaying 30-15
opening packages 11-7
overview 2-3

Code Insight
templates 5-8

color depths 13-6
programming for 13-7

color grids 8-5
Color property 3-28, 3-30

brushes 8-7
column headers 15-19
data grids 15-19
pens 8-5

ColorChanged property 10-19
colors

internationalization and 12-4
pens 8-5

Cols property 3-30
column headers 3-27, 15-16,

15-19
columns 3-29

default state 15-15, 15-20
deleting 15-15
including in HTML

tables 22-21
persistent 15-14, 15-16

creating 15-16 to 15-20
deleting 15-17, 15-18
inserting 15-17
reordering 15-18

properties 15-16, 15-18 to
15-19

resetting 15-20
Columns editor

creating persistent
columns 15-16

deleting columns 15-17
reordering columns 15-18

Columns property 3-24, 15-17
grids 15-14
radio groups 3-26

ColWidths property 3-30
COM objects

lifetime management 4-20
combo boxes 3-25, 10-6, 15-2,

15-10
data-aware 15-9 to 15-12
lookup 15-19
owner-draw 7-7

measure-item events 7-8
command switches 10-13
Command Text editor 18-4
commands, action lists 6-14

CommandText property 18-4,
18-6, 18-7, 18-11, 20-28

CommandType property 18-3,
18-6, 18-7, 18-11

Commit method 19-8
CommitUpdates method 10-27
Common Controls page

(Component palette) 3-18
common dialog boxes 3-31
communications 23-1

protocols 22-1, 23-2
standards 22-1

CompareBookmarks
method 16-12, 16-13

compiler directives 10-17
package-specific 11-10
strings 4-34

compiler options 5-2
compile-time errors

override directive and 25-8
component editors 30-13 to

30-16
default 30-13
registering 30-16

Component palette 3-18
adding components 11-6,

30-1, 30-3
Data Controls page 15-1,

15-2
dbExpress page 14-1, 18-2
frames 6-12
pages listed 3-18

component templates 5-11, 25-2
and frames 6-12, 6-13

Component wizard 24-8
component wrappers 24-4
components 3-2, 3-12 to 3-31,

24-1, 25-1, 26-3
abstract 24-3
adding to Component

Palette 30-1
adding to existing unit 24-10
adding to units 24-10
changing 31-1 to 31-3
context menus 30-13, 30-13

to 30-14
creating 24-2, 24-8
custom 5-11
customizing 24-3, 26-1, 27-1
data-aware 34-1
data-browsing 34-1 to 34-6
data-editing 34-7 to 34-11
dependencies 24-5
derived classes 24-3, 24-10,

32-2

double-click 30-13, 30-15
grouping 3-26 to 3-28
initializing 26-13, 32-6, 34-6
installing 11-5 to 11-6, 30-16
interfaces 25-4

design-time 25-6
runtime 25-6

nonvisual 3-32, 24-5, 24-11
packages 30-16
palette bitmaps 30-3
registering 24-11
registration 30-2
renaming 3-7 to 3-8
resizing 3-23
responding to events 27-5,

27-7, 27-9, 34-6
testing 24-12, 24-13

conditional compilation 10-16,
10-17

configuration files 10-13, 13-4
connected line segments 8-9
Connected property

database components 19-4
TSQLConnection 19-4, 19-5

connection components
SQL connections 14-9, 18-2

to 18-3, 19-1 to 19-14
executing SQL

commands 19-12 to
19-13

statements per
connection 19-1

TSoapConnection 14-12
Connection Editor 19-3 to 19-4
connection names 19-3 to 19-4

changing 19-4
defining 19-4
deleting 19-4

connection parameters 19-2 to
19-3, 19-4

login information 19-6
ConnectionName property 19-3
connections

client 23-3
database 13-3
opening 23-6
SQL connections

binding 19-2 to 19-4
closing 19-5
maintaining 19-5
naming 19-3 to 19-4
opening 19-4

TCP/IP 23-2 to 23-3
terminating 23-7

connections file 13-4

I n d e x I-5

consistency
transactions 14-3

console applications 5-2
CGI 22-5

Console Wizard 5-3
ConstraintErrorMessage

property 17-11, 17-20
constraints

client datasets 20-13 to 20-14
controls 6-4
data 17-19 to 17-20

creating 17-19 to 17-20
disabling 20-13
field-level 20-13
record-level 20-13

Constraints property 20-13
constructors 3-11, 24-12, 26-12,

28-3, 33-3, 33-4, 34-6
multiple 6-7
overriding 31-2
owned objects and 32-5, 32-6

Contains list (packages) 11-6,
11-9, 30-16

Content method
page producers 22-17

content producers 22-7, 22-16
event handling 22-17, 22-18,

22-19
Content property

Web response objects 22-15
ContentFromStream method

page producers 22-17
ContentFromString method

page producers 22-17
ContentStream property

Web response objects 22-15
context IDs 5-16
context menus

adding items 30-13 to 30-14
Menu designer 6-27
toolbars 6-36

context numbers (Help) 3-29
ContextHelp 5-18
controls 3-3, 3-12 to 3-31

changing 24-3
custom 24-4
data-aware 15-1 to 15-28
data-browsing 34-1 to 34-6
data-editing 34-7 to 34-11
graphical 29-2, 32-1 to 32-9

creating 24-4, 32-3
drawing 32-3 to 32-9
events 29-5

grouping 3-26 to 3-28
owner-draw 7-7

declaring 7-7
receiving focus 24-4
repainting 32-7, 32-9, 33-4
resizing 29-4, 33-4
shape 32-7
standard

displaying data 15-4,
17-15, 17-15 to 17-16

subclassing 24-4
widget-based 24-4

conversions
field values 17-14, 17-16 to

17-17
PChar 4-32
string 4-32

cool bars
designing 6-31 to 6-37
hiding 6-36

coordinates
current drawing

position 8-24
Copy (Object Repository) 5-9
CopyFrom function 4-42
CopyMode property 29-2
CopyRect method 8-4, 29-2,

29-4
CopyToClipboard method 7-4

data-aware memo
controls 15-9

graphics 15-9
Count property 3-35
Create DataSet command 20-38
Create method 3-11
Create Submenu command

(Menu designer) 6-25, 6-27
CreateDataSet method 20-38
CreateParam method 20-27
CreateSuspended

parameter 9-10
creating

applications 3-17
critical sections 9-7

warning about use 9-7, 9-8
cross-platform

applications 10-1 to 10-27
currency

formats 12-4
internationalizing 12-4

Currency property
fields 17-11

CursorChanged property 10-19
cursors 16-8

cloning 20-24
moving 16-10, 20-3, 20-5

to first row 16-9, 16-11

to last row 16-9, 16-11
with conditions 16-14

CurValue property 17-19, 21-10
custom controls 24-4

libraries 24-4
custom datasets 14-6
CustomConstraint

property 17-11, 17-20, 20-13
customizing components 26-1
CutToClipboard method 7-4

data-aware memo
controls 15-9

graphics 15-9

D
data

accessing 34-1
changing 16-20 to 16-25
default values 15-9, 17-19
displaying 17-15, 17-15 to

17-16
current values 15-8
disabling repaints 15-6
in grids 15-14

display-only 15-7
entering 16-22
fetching 18-9 to 18-11
formats,

internationalizing 12-4
saving 16-23
synchronizing

on multiple forms 15-3
data access

components 14-1
data access components

threads 9-4
Data Access page (Component

palette) 3-18
data brokers 14-12, 20-25
data constraints See constraints
Data Controls page (Component

palette) 3-18, 15-1, 15-2
data fields 17-6

defining 17-6 to 17-7
data filters 16-8, 16-15 to 16-19

blank fields 16-17
client datasets

using parameters 20-27
defining 16-16 to 16-19
enabling/disabling 16-16
operators 16-17
queries vs. 16-16
ranges vs. 20-6
setting at runtime 16-19

I-6 D e v e l o p e r ’ s G u i d e

data formats
default 17-13

data grids 15-2, 15-13, 15-14 to
15-25

customizing 15-15 to 15-20
default state 15-15

restoring 15-20
displaying data 15-14, 15-15

ADT fields 15-21
array fields 15-21

drawing 15-23 to 15-24
editing data 15-5, 15-23
events 15-24 to 15-25
getting values 15-16
inserting columns 15-17
removing columns 15-15,

15-17, 15-18
reordering columns 15-18
runtime options 15-22 to

15-23
data integrity 14-4
data links 18-15, 34-4 to 34-6

initializing 34-6
data members 3-3
data modules 5-6 to 5-7, 14-5

accessing from forms 5-7
business rules 5-7
creating 5-7
remote vs. standard 5-6
renaming 5-7
Web applications and 22-6,

22-7
data packets

application-defined
information 20-22, 21-6

controlling fields 21-4
copying 20-23
editing 21-6
ensuring unique

records 21-4
fetching 20-29 to 20-30, 21-6

to 21-7
including field

properties 21-5
limiting client edits 21-4
read-only 21-4
refreshing updated

records 21-5
Data property 20-14, 20-22,

20-23, 20-40
data sources 14-5, 15-3 to 15-4

disabling 15-4
enabling 15-4
events 15-4

data types
persistent fields 17-6

data-aware controls 15-1 to
15-28, 17-15, 34-1

associating with
datasets 15-3

common features 15-2
creating 34-1 to 34-11
data-browsing 34-1 to 34-6
data-editing 34-7 to 34-11
destroying 34-6
disabling repaints 15-6,

16-11
displaying data 15-6

current values 15-8
in grids 15-14

displaying graphics 15-9
editing 15-5, 16-7, 16-21
entering data 17-12
grids 15-13
inserting records 16-22
list 15-2
read-only 15-7
refreshing data 15-6
representing fields 15-7
responding to changes 34-6

database applications 5-4, 14-1
architecture 14-4 to 14-13
deploying 13-3
distributed 5-6
file-based 14-6 to 14-8, 20-37

to 20-41
porting 10-23

database navigator 15-2, 15-25
to 15-28, 16-9, 16-10

buttons 15-25
deleting data 16-23
editing 16-21
enabling/disabling

buttons 15-26
help hints 15-27

Database parameter 19-2
database servers 5-4

connecting 14-8, 19-4
constraints 17-19
disconnecting 19-5
types 14-2

databases 5-4, 14-1 to 14-4, 34-1
access properties 34-5
accessing 16-1
adding data 16-24
choosing 14-2
connecting 19-1 to 19-14
file-based 14-2
generating HTML

responses 22-20 to 22-22
logging in 14-3, 19-5 to 19-7
relational 14-1

saving data 16-23
security 14-3
transactions 14-3 to 14-4
types 14-2
unauthorized access 19-5
Web applications and 22-20

DataChange method 34-10
DataCLX 10-4
data-entry validation 17-14
DataField property 15-10, 34-5

lookup list and combo
boxes 15-11

DataRequest method 20-34,
21-3

dataset fields 17-20, 17-24
client datasets 20-12
displaying 15-22

dataset page producers 22-20
converting field values 22-20

DataSet property
data grids 15-15
providers 21-2

dataset providers 14-10
DataSetCount property 19-11
DataSetField property

client datasets 20-13
datasets 14-5, 16-1 to 16-26

adding records 16-7, 16-22 to
16-23, 16-24

browsing 16-5 to 16-6
canceling operations 16-26
changing data 16-20 to 16-25
closing 16-2 to 16-3, 16-4 to

16-5
posting records 16-23

closing w/o
disconnecting 19-11

connecting to servers 18-2 to
18-3, 20-35

current row 16-8
cursors 16-8
custom 14-6
default state 16-3
deleting records 16-23
editing 16-6 to 16-7, 16-21 to

16-22
events 16-25
fields 16-1
filtering records 16-8, 16-15

to 16-19
getting active 19-11
HTML documents 22-22
indexes 16-7
iterating over 19-11
linking 20-10

I n d e x I-7

marking records 16-12 to
16-13

modes 16-3 to 16-4
navigating 15-25, 16-8 to

16-12, 16-20
opening 16-2
posting records 16-23
providers and 21-2
searching 16-14 to 16-15,

20-3 to 20-5
multiple columns 16-14,

16-15
using indexes 16-14,

16-15, 20-3 to 20-5
states 16-3 to 16-4
undoing changes 16-24
unidirectional 14-6, 18-1 to

18-20
limitations 18-1

unindexed 16-24
DataSets property 19-11
DataSource property

data grids 15-15
data navigators 15-27
data-aware controls 34-5
lookup list and combo

boxes 15-11
queries 18-14

DataType property
parameters 18-5, 18-8

date fields
formatting 17-13

dates
internationalizing 12-4

Day property 33-5
DBCheckBox component 15-2,

15-12
DBComboBox component 15-2,

15-10
DBEdit component 15-2, 15-8
dbExpress 10-21 to 10-26, 14-1,

19-1, 20-1
debugging 19-13 to 19-14
deployment 13-3
drivers 19-1, 19-2

dbExpress page (Component
palette) 3-18, 14-1, 18-2

DBGrid component 15-2, 15-14
to 15-25

events 15-24
properties 15-19

DBGridColumns
component 15-14

DBImage component 15-2, 15-9

DBListBox component 15-2,
15-10

DBLogDlg unit 19-5
DBLookupComboBox

component 15-2, 15-10 to
15-12

DBLookupListBox
component 15-2, 15-10 to
15-12

DBMemo component 15-2, 15-8
to 15-9

DBNavigator component 15-2,
15-25 to 15-28

DBRadioGroup
component 15-2, 15-12 to
15-13

DBText component 15-2, 15-7 to
15-8

dbxconnections file 19-3, 19-3 to
19-4

login information 19-6
dbxdrivers file 19-2
.dcp files 11-2, 11-12
.dcr files 30-4
DDL 18-11
debugging

dbExpress
applications 19-13 to 19-14

Web server
applications 22-23

declarations
classes 25-9, 32-5

public 25-6
published 25-6

event handlers 27-5, 27-8,
33-11

methods 8-14, 28-4
dynamic 25-9
public 28-3
static 25-7
virtual 25-8

new component types 25-3
properties 26-3, 26-3 to 26-7,

26-12, 27-8, 32-4
stored 26-12
user-defined types 32-3

variables
example 3-10

DECnet protocol (Digital) 23-1
default

ancestor class 25-3
directive 26-11, 31-3
handlers

events 27-9
overriding 27-9

project options 5-2
property values 26-7

changing 31-2, 31-3
specifying 26-11 to 26-12

reserved word 26-7
values 15-9

Default property
action items 22-10

DEFAULT_ORDER 20-16
DefaultColWidth property 3-30
DefaultDrawing property 7-7,

15-24
DefaultExpression

property 17-19, 20-13
DefaultRowHeight

property 3-30
delegation 27-1
Delete command (Menu

designer) 6-27
Delete method 16-6, 16-23

string lists 3-36, 3-37
DELETE statements 21-9
Delete Templates command

(Menu designer) 6-28, 6-29
Delete Templates dialog

box 6-29
DeleteFile function 4-35
DeleteIndex method 20-17
Delphi/Kylix unit

comparison 10-8
delphi60dmt 6-29, 6-30
delta packets 21-7, 21-8

editing 21-7, 21-8
screening updates 21-10

Delta property 20-30
$DENYPACKAGEUNIT

compiler directive 11-10
deploy.txt 13-8
deploying

applications 13-1
database applications 13-3
fonts 13-8
general applications 13-2
package files 13-2
shared object files 13-3
Web applications 13-4

dereferencing object
pointers 25-9

deriving classes 25-8
descendant classes 3-8, 25-3

redefining methods 25-8
DescFields property 20-38
design tools 2-2
designing

applications 2-2

I-8 D e v e l o p e r ’ s G u i d e

$DESIGNONLY compiler
directive 11-10

design-time interfaces 25-6
design-time packages 11-1, 11-4

to 11-6
Destroy method 3-11
destructors 3-11, 28-3, 34-6

owned objects and 32-5, 32-6
developer support 1-2
device contexts 8-1, 24-7
diacritical marks 12-4
dialog boxes

common 3-31
internationalizing 12-4, 12-5
multipage 3-27
property editors as 30-7

Dialogs page (Component
palette) 3-18

directives 10-17
$DENYPACKAGEUNIT

compiler 11-10
$DESIGNONLY

compiler 11-10
$ELSEIF 10-17
$ENDIF 10-17
$G complier 11-10
$H compiler 4-26, 4-34
$IF 10-17
$IFDEF 10-16
$IFEND 10-17
$IFNDEF 10-16
$IMPLICITBUILD

compiler 11-10
$IMPORTEDDATA

compiler 11-10
$MESSAGE compiler 10-18
$P compiler 4-34
$RUNONLY compiler 11-10
$SONAME compiler 5-4
$SOPREFIX compiler 5-4
$SOSUFFIX compiler 5-4
$SOVERSION compiler 5-4
$V compiler 4-34
$WEAKPACKAGEUNIT

compiler 11-10
$X compiler 4-34
conditional

compilation 10-16
default 26-11, 31-3
dynamic 25-9
LEpath compiler 11-11
LNpath compiler 11-11
LUpackage compiler 11-11
override 25-8
package-related 11-10

protected 27-5
public 27-5
published 26-3, 27-5
stored 26-12
string-related 4-34
virtual 25-8
Z compiler 11-11

directories, Linux 10-14
DirtyRead 19-9
DisableConstraints

method 20-14
DisableControls method 15-6
DisabledImages property 6-35
disconnected model 14-12
dispatcher 22-6
DisplayFormat property 15-23,

17-11, 17-13
DisplayLabel property 15-16,

17-11
DisplayWidth property 15-15,

17-11
distributed applications 5-5

database 5-6
DLLs 10-7, 10-13

internationalizing 12-6
See also shared objects

DML 18-11
documentation

ordering 1-2
double byte character set 12-2
double-clicks

components 30-13
responding to 30-15

Down property 3-22
speed buttons 6-33

.dpk files 11-2, 11-6

.dpu files 11-2, 11-12
drag-and-drop

events 32-2
DragMode property

grids 15-18
draw grids 3-29
Draw method 8-4, 29-2, 29-4
drawing modes 8-27
drawing tools 29-1, 29-5, 32-5

assigning as default 6-33
changing 8-12, 32-7
handling multiple in an

application 8-11
testing for 8-11, 8-12

drawings 3-30
DrawShape 8-15
drill-down forms 15-14
Drive letters 10-13
DriverName property 19-2

drivers file 13-4
drop-down lists 15-9

in data grids 15-19
drop-down menus 6-24 to 6-25
DropDownCount property 3-25
DropDownMenu property 6-36
DropDownRows property

data grids 15-19, 15-20
lookup combo boxes 15-12

DSO 22-4
durability

transactions 14-3
dynamic columns 15-15

properties 15-15
dynamic directives 25-9
dynamic fields 17-2 to 17-3
dynamic memory 3-39
dynamic methods 25-8
dynamic shared objects

(DSOs) 22-4

E
EAbort 4-15
EBX register 10-7, 10-19
Edit control 3-19
edit controls 3-19, 7-1, 15-2, 15-8

multi-line 15-8
selecting text 7-3, 7-4

Edit method 16-6, 16-21, 30-7,
30-8

edit mode 16-21
canceling 16-21

EditFormat property 15-23,
17-11, 17-13

editing code 2-2
EditKey method 20-3, 20-5
EditMask property 17-12

fields 17-11
EditRangeEnd method 20-9
EditRangeStart method 20-9
ELF files 12-6
Ellipse method 8-4, 8-10, 29-2
ellipses

drawing 8-10, 32-9
ellipsis (...)

buttons in grids 15-20
$ELSEIF directive 10-17
EmptyDataSet method 20-30
EmptyStr variable 4-31
EnableConstraints

method 20-14
EnableControls method 15-6
Enabled property

action items 22-9
data sources 15-4, 15-5

I n d e x I-9

data-aware controls 15-7
menus 6-31, 7-5
speed buttons 6-33

EnabledChanged
property 10-19

encapsulation 3-5
end of file character 10-12
endpoints

socket connections 23-5
EndRead method 9-8
EndWrite method 9-8
enumerated types 26-2, 32-3

constants vs. 8-12
declaring 8-11

environment variables 12-6
EOF marker 4-42
Eof property 16-9, 16-10, 16-11
EPasswordInvalid 4-17
EReadError 4-41
error messages

internationalizing 12-5
ErrorAddr variable 4-17
errors

override directive and 25-8
event handlers 3-7, 10-19, 24-6,

27-2, 34-6
declarations 27-5, 27-8, 33-11
default, overriding 27-9
displaying the Code

editor 30-15
drawing lines 8-24
empty 27-9
menus 7-6

as templates 6-31
methods 27-3, 27-5

overriding 27-5
parameters 27-3, 27-7, 27-8,

27-9
notification events 27-7

passing parameters by
reference 27-9

pointers 27-2, 27-3, 27-8
responding to button

clicks 8-12
shared 8-14
types 27-3, 27-7 to 27-8
writing 3-8

event objects 9-9
events 3-4, 10-19, 24-6, 27-1 to

27-9
accessing 27-5
application-level 6-3
data grids 15-24 to 15-25
data sources 15-4

data-aware controls
enabling 15-7

datasets 16-25
defining new 27-6 to 27-9
field objects 17-13 to 17-14
graphical controls 29-5
implementing 27-2, 27-4
inherited 27-4
mouse 8-22 to 8-25

testing for 8-25
naming 27-8
objects and 3-10
responding to 27-5, 27-7,

27-9, 34-6
retrieving 27-3
signalling 9-9
standard 27-4, 27-4 to 27-6
system 3-4
timeout 9-10
waiting for 9-9
widget 3-4

EWriteError 4-41
Exception 4-16
exception handling 4-4 to 4-17

creating a handler 4-10
declaring the object 4-16
default handlers 4-12
executing cleanup code 4-5
flow of control 4-5
overview 4-4 to 4-17
protecting blocks of code 4-4
protecting resource

allocations 4-7
resource protection

blocks 4-8
scope 4-12
See also exceptions
statements 4-10
TApplication 4-14

exceptions 4-4 to 4-17, 10-13,
28-2

classes 4-13
component 4-14
handling 4-5
instances 4-11
nested 4-6
raising 4-16
reraising 4-13
responding to 4-5
RTL 4-8, 4-9
See also exception handling
silent 4-15
threads 9-5
user-defined 4-16

ExecProc method 18-12

ExecSQL method 18-12
executable files 10-13

internationalizing 12-6
Execute method 3-31, 9-3

client datasets 20-26, 21-3
providers 21-3
TSQLConnection 19-12

ExecuteTarget method 6-18
Expandable property 15-21
Expanded property

columns 15-21
data grids 15-19

Expression property 20-20
expressions 17-19
ExprText property 17-10

F
features

non-portable Windows 10-6
Fetch Params command 20-26
FetchAll method 10-27
FetchBlobs method 20-30, 21-3
FetchDetails method 20-30, 21-3
fetch-on-demand 20-30
FetchOnDemand

property 20-30
FetchParams method 20-26,

21-3
field attributes

in data packets 21-5
field definitions

creating client datasets 20-38
Field Link editor 18-15, 20-11
field objects 17-1 to 17-25

accessing values 17-17 to
17-19

defining 17-5 to 17-10
deleting 17-10
display and edit

properties 17-11
dynamic 17-2 to 17-3

vs. persistent 17-2
events 17-13 to 17-14
persistent 17-3 to 17-14

vs. dynamic 17-2
properties 17-1, 17-10 to

17-13
runtime 17-12

field types
converting 17-14, 17-16 to

17-17
FieldByName method 17-18
FieldCount property

persistent fields 15-16

I-10 D e v e l o p e r ’ s G u i d e

FieldKind property 17-11
FieldName property 17-5, 17-11

data grids 15-19, 15-20
persistent fields 15-16

fields 17-1 to 17-25
abstract data types 17-20 to

17-25
activating 17-14
adding to forms 8-25 to 8-26
assigning values 16-24
changing values 15-5
current value 17-19
databases 34-5, 34-6
default formats 17-13
default values 17-19
displaying values 15-10,

17-15
entering data 16-22, 17-12
hidden 21-4
limiting valid data 17-19 to

17-20
mutually-exclusive

options 15-2
null values 16-24
persistent columns

and 15-16
properties 17-1
read-only 15-5
retrieving data 17-15
updating values 15-5

Fields editor 5-7, 17-3
creating client datasets 20-38
creating persistent

fields 17-4 to 17-5, 17-5 to
17-10

deleting field objects 17-10
list of fields 17-4
navigation buttons 17-4
reordering columns 15-18
title bar 17-4

Fields property 17-18
FieldValues property 17-17
file I/O

types 4-38
file permissions 10-13
file streams

changing the size of 4-42
CLX streaming 4-39
creating 4-39
end of marker 4-42
exceptions 4-41
file I/O 4-39 to 4-42
getting a handle 4-38
opening 4-39
portable 4-38

TMemoryStream 4-39
FileAge function 4-38
file-based applications 14-6 to

14-8
client datasets 20-37 to 20-41

FileExists function 4-36
FileGetDate function 4-38
FileName property

client datasets 14-8, 20-40,
20-41

files 4-35 to 4-42
attributes 4-37
copying bytes from 4-42
date-time routines 4-38
deleting 4-35
finding 4-36
graphics 8-18 to 8-20, 29-3
handles 4-40
manipulating 4-35 to 4-38
modes 4-40
position 4-42
reading from 4-40
renaming 4-38
routines

date-time routines 4-38
runtime library 4-35

See also file streams
seeking 4-41
sending over the Web 22-15
size 4-42
strings 4-41
types

I/O 4-38
text 4-38
typed 4-38
untyped 4-38

working with 4-35 to 4-42
writing to 4-40

files streams 4-39 to 4-42
FileSetDate function 4-38
fill patterns 8-7, 8-8
FillRect method 8-4, 29-2
Filter property 16-16, 16-17 to

16-18
Filtered property 16-16
FilterOptions property 16-19
filters 16-8, 16-15 to 16-19

blank fields 16-17
case sensitivity 16-19
client datasets

using parameters 20-27
comparing strings 16-19
defining 16-16 to 16-19
enabling/disabling 16-16
operators 16-17

options for text fields 16-19
queries vs. 16-16
ranges vs. 20-6
setting at runtime 16-19

finally reserved word 29-4
FindClose procedure 4-36
FindFirst function 4-36
FindFirst method 16-20
FindKey method 20-3, 20-4

EditKey vs. 20-5
FindLast method 16-20
FindNearest method 20-3, 20-4
FindNext function 4-36
FindNext method 16-20
FindPrior method 16-20
First method 16-9
FixedColor property 3-30
FixedCols property 3-30
FixedRows property 3-30
flags 34-3
floating-point errors 4-9
FloodFill method 29-2
fly-by help 3-29
fly-over help 15-27
focus 24-4

fields 17-14
FocusControl method 17-14
FocusControl property 3-28
Font property 3-19, 3-28, 8-3,

29-2
column headers 15-19
data grids 15-19
data-aware memo

controls 15-8
FontChanged property 10-19
fonts 13-8

height of 8-4
Footer property 22-22
foreign translations 12-1
form files 3-7, 3-15, 12-6
form linking 6-2
formatting data

international
applications 12-4

forms 3-17
adding fields to 8-25 to 8-26
adding to projects 3-8, 6-1 to

6-2
adding unit references 6-2
as new object types 3-5 to 3-7
creating at runtime 6-5
displaying 6-5
drill down 15-14
global variable for 6-5
instantiating 3-6

I n d e x I-11

linking 6-2
main 6-1
master/detail tables 15-13
memory management 6-5
modal 6-4
modeless 6-4, 6-6
passing arguments 6-7
querying properties

example 6-8
referencing 6-2
retrieving data 6-8 to 6-11
scrolling regions 3-27
sharing event handlers 8-14
synchronizing data

on multiple 15-3
using local variables to

create 6-6
Found property 16-20
FrameRect method 8-4
frames 5-11, 6-11 to 6-13

and component
templates 6-12, 6-13

graphics 6-13
resources 6-13
sharing and

distributing 6-13
Free method 3-11, 10-11
FreeBookmark method 16-12,

16-13
functions 24-6, 24-7

events and 27-3
naming 28-2
reading properties 26-6,

30-6, 30-8

G
$G compiler directive 11-10,

11-11
geometric shapes

drawing 32-9
GetAttributes method 30-8
GetBookmark method 16-12,

16-13
GetData method

fields 17-15
GetFieldByName method 22-12
GetFieldNames method 19-10
GetFloatValue method 30-6
GetGroupState method 20-19
GetHandle 5-14
GetHelpFile 5-14
GetHelpPath 5-14
GetHelpStrings 5-15

GetIndexNames method 19-10,
20-17

GetMethodValue method 30-6
GetNextPacket method 10-27,

20-29, 20-30, 21-3
GetOptionalParam

method 20-22, 21-6
GetOrdValue method 30-6
GetParams method 21-3
GetProcedureNames

method 19-10
GetProcedureParams

method 19-10
GetProperties method 30-8
GetRecords method 21-6
GetStrValue method 30-6
GetTableNames method 19-10
GetValue method 30-6
GetViewerName 5-14
Global Offset Table

(GOT) 10-18
Glyph property 3-22, 6-33
GNU assembler 10-15
GNU make utility 10-13
GotoBookmark method 16-12,

16-13
GotoKey method 20-3, 20-4
GotoNearest method 20-3, 20-4
Graphic property 8-17, 8-20,

29-3
graphical controls 24-4, 29-2,

32-1 to 32-9
bitmaps vs. 32-3
creating 24-4, 32-3
drawing 32-3 to 32-9
events 29-5
saving system resources 24-4

graphics 29-1 to 29-5
adding controls 8-16
adding to HTML 22-17
associating with strings 3-37
changing images 8-19
complex 29-3
containers 29-2
copying 8-21
deleting 8-21
displaying 3-30
drawing lines 8-5, 8-9 to

8-10, 8-26 to 8-27
changing pen width 8-6
event handlers 8-24

drawing tools 29-1, 29-5,
32-5

changing 32-7
drawing vs. painting 8-4

file formats 8-3
files 8-18 to 8-20
in frames 6-13
internationalizing 12-4
loading 8-18, 29-3
methods 29-2, 29-3, 29-4

copying images 29-4
owner-draw controls 7-7
pasting 8-21
programming overview 8-1

to 8-3
redrawing images 29-5
replacing 8-19
resizing 8-19, 15-9, 29-4
rubber banding

example 8-22 to 8-27
saving 8-19, 29-3
standalone 29-2
storing 29-3
string lists 7-8 to 7-9
types of objects 8-2 to 8-3

graphics boxes 15-2
graphics objects

threads 9-4
GridLineWidth property 3-30
grids 3-29 to 3-30, 33-1, 33-2,

33-4, 33-10
color 8-5
customizing 15-15 to 15-20
data-aware 15-13
default state 15-15

restoring 15-20
displaying data 15-14, 15-15
drawing 15-23 to 15-24
editing data 15-5, 15-23
getting values 15-16
inserting columns 15-17
removing columns 15-15,

15-17, 15-18
reordering columns 15-18
runtime options 15-22 to

15-23
group boxes 3-26
Grouped property

tool buttons 6-35
GroupIndex property 3-22

speed buttons 6-33
grouping components 3-26 to

3-28
grouping levels 20-18

maintained aggregates 20-21
GUI applications 3-17
GUIDs 4-21

generating 4-21

I-12 D e v e l o p e r ’ s G u i d e

H
$H compiler directive 4-26, 4-34
Handle property 4-40, 23-6,

24-4, 24-5, 29-2
device context 8-1

HandleException 4-14
handles 4-35

socket connections 23-6
HandlesTarget method 6-18
hardware exceptions 4-9
HasConstraints property 17-11
HasFormat method 8-22
header controls 3-27
Header property 22-22
headers

HTTP requests 22-2
owner-draw 7-7

heap errors 4-9
Height property 6-4

TScreen 13-6
Help

context sensitive 3-29
hints 3-29, 15-27
tool-tip 3-29

Help Manager 5-12, 5-12 to 5-20
Help selector 5-19
Help selectors 5-18
Help system 5-12

interfaces 5-12
registering objects 5-17

Help systems
tool buttons 6-36

Help viewers 5-12
HelpContext 5-18
HelpContext property 3-29
HelpFile 5-18
HelpFile property 3-29
HelpIntfs.pas 5-12
HelpKeyword 5-18
HelpSystem 5-18
HelpType 5-18
hidden fields 21-4
hierarchy (classes) 25-3
Hint property 3-29
hints 3-29
Hints property 15-27
home directory 10-13
horizontal track bars 3-21
HorzScrollBar 3-20
host names 23-4

IP addresses 23-4
hosts 23-4

addresses 23-4
URLs 22-2

HotImages property 6-35
HTML commands 22-16

database information 22-20
generating 22-17

HTML documents 22-3
databases and 22-20
dataset page

producers 22-20
datasets 22-22
embedding tables 22-22
HTTP response

messages 22-4
page producers 22-16 to

22-19
table producers 22-21 to

22-22
templates 22-16 to 22-17

HTML tables 22-17, 22-22
captions 22-22
creating 22-21 to 22-22
setting properties 22-21

HTML templates 22-16
HTMLDoc property 22-17
HTMLFile property 22-17
HTML-transparent tags

converting 22-16, 22-17
parameters 22-16
predefined 22-17
syntax 22-16

HTTP 22-1
message headers 22-1
overview 22-3 to 22-4
request headers 22-2, 22-11
request messages see request

messages
response headers 22-15
response messages see

response messages
status codes 22-14

HyperHelp 5-12
HyperHelp viewer 5-20
hypertext links

adding to HTML 22-17

I
I/O exceptions 4-9
IAppServer interface 20-28,

20-33, 21-2 to 21-3
local providers 21-2
remote providers 21-2

icons 3-30, 29-2
graphics object 8-3
toolbars 6-35
tree views 3-25

ICustomHelpViewer 5-12, 5-13,
5-15

implementing 5-13
identifiers

class fields 27-2
events 27-8
invalid 6-22
property settings 26-6
resources 30-4

ideographic characters 12-2
abbreviations and 12-4

IETF protocols and
standards 22-1

IExtendedHelpViewer 5-13,
5-16

$IFDEF directive 10-16
$IFEND directive 10-17
$IFNDEF directive 10-16
IHelpManager 5-13, 5-19
IHelpSelector 5-13, 5-17
IHelpSystem 5-13, 5-19
Image HTML tag

() 22-17
ImageIndex property 6-35
ImageMap HTML tag

(<MAP>) 22-17
images 3-30, 15-2, 29-2

adding 8-16
adding control for 7-8
adding to menus 6-26
brushes 8-8
changing 8-19
controls for 8-1, 8-16
displaying 3-30
drawing 32-8
erasing 8-21
in frames 6-13
internationalizing 12-4
redrawing 29-5
reducing flicker 29-3
saving 8-19
scrolling 8-16
tool buttons 6-35

Images property
tool buttons 6-35

IMalloc interface 4-17
implements keyword 4-23
$IMPLICITBUILD compiler

directive 11-10
ImportedConstraint

property 17-11
$IMPORTEDDATA compiler

directive 11-10
Increment property 3-21
incremental fetching 20-29

I n d e x I-13

incremental search 15-10
Indent property 3-25, 6-33, 6-35
index definitions

client datasets 20-38
Index property

fields 17-11
index reserved word 33-6
index-based searches 16-14,

16-15, 20-3 to 20-5
IndexDefs property 20-17
indexes 26-8

client datasets 20-16 to 20-39
deleting 20-17
grouping data 20-18 to 20-19
information about 20-17
partial keys 20-5
ranges 20-6
sorting records 20-16
specifying 20-3
tables 18-6
temporary 20-16

IndexFieldCount
property 20-18

IndexFieldNames
property 18-7, 20-16

IndexFields property 20-18
IndexName property 18-7, 20-3,

20-17
IndexOf method 3-35, 3-36
INFINITE constant 9-10
Inherit (Object Repository) 5-10
inheritance 3-5, 3-8
inherited

events 27-4
methods 27-6
properties 32-2, 33-2

publishing 26-3
inheriting from classes 3-8, 25-7
ini files 10-6
input controls 3-20
input focus 24-4

fields 17-14
Input Mask editor 17-12
input parameters 18-7
input/output parameters 18-8
Insert command (Menu

designer) 6-27
Insert From Resource command

(Menu designer) 6-28
Insert From Template command

(Menu designer) 6-28, 6-29
Insert method 16-22

Append vs. 16-22
menus 6-31
strings 3-36

INSERT statements 21-9
Insert Template dialog box 6-29
InsertObject method 3-37
InsertRecord method 16-24
instances 27-2
InterBaseExpress 10-22
interface keyword 4-17
interfaces 4-17 to 4-24, 25-4

aggregation 4-22
as operator 4-21
components 4-24
Ctrl+Shift+G 4-21
delegation 4-22
deriving 4-20
design-time 25-6
dynamic binding 4-21
dynamic querying 4-20
example code 4-18, 4-22, 4-23
extending single

inheritance 4-17, 4-18
Help system 5-12
IIDs 4-21, 4-24
internationalizing 12-4, 12-5
IUknown,

implementing 4-20
language feature 4-17
lifetime management 4-20,

4-23
memory management 4-21,

4-23
nonvisual program

elements 24-5
optimizing code 4-24
overview 4-17 to 4-24
polymorphism 4-18
procedures 4-19
properties 26-10
reference counting 4-20, 4-21
reusing code 4-22
runtime 25-6
sharing between classes 4-18
TComponent 4-24

InternalCalc fields 17-6, 20-19 to
20-20

indexes and 20-17
international applications 12-1

abbreviations and 12-4
localizing 12-6

internationalization 12-1
Internet Engineering Task

Force 22-1
Internet page (Component

palette) 3-18
Internet standards and

protocols 22-1

intranets
host names 23-4

InTransaction property 19-8
Invalidate method 32-9
IP addresses 23-4, 23-6

host names 23-4
hosts 23-4

IPaint interface 4-18
IPersist interface 4-17
IProviderSupport interface 21-2
IPX/SPX protocols 23-1
IRotate interface 4-19
is operator 3-10
isolation

transactions 14-3
isolation levels 19-9 to 19-10
ISpecialWinHelpViewer 5-13
IsValidChar method 17-15
ItemHeight property 3-24, 15-10
ItemIndex property 3-24

radio groups 3-26
Items property 3-24

radio controls 15-13
radio groups 3-26
TDBComboBox 15-10
TDBListBox 15-10

IUnknown interface 4-20, 4-24
implemented in

TInterfacedObject 4-20

K
KeepConnection property 19-5,

19-11
key fields

multiple 20-5, 20-7, 20-8
keyboard events 27-3, 27-9
keyboard mappings 12-5
keyboard shortcuts

adding to menus 6-24
KeyDown method 34-9
KeyExclusive property 20-5,

20-8
KeyField property 15-11
KeyFieldCount property 20-5
keys

searching on 20-5
setting ranges 20-8

keyword-based help 5-16
KeywordHelp 5-18
keywords

protected 27-5
Kind property

bitmap buttons 3-22
Kylix/Delphi unit

comparison 10-8

I-14 D e v e l o p e r ’ s G u i d e

L
labels 3-28, 12-4, 15-2

columns 15-16
Last method 16-9
Layout property 3-22
-LEpath compiler

directive 11-11
leap years 33-7
Left property 6-4
LeftCol property 3-30
Length function 4-31
libraries

custom controls 24-4
LibraryName property 19-2
license agreement 13-9
line ending characters 10-12
lines

drawing 8-5, 8-9, 8-9 to 8-10,
8-26 to 8-27

changing pen width 8-6
event handlers 8-24

erasing 8-27
Lines property 3-20
LineSize property 3-21
LineTo method 8-4, 8-7, 8-9,

29-2
Link HTML tag (<A>) 22-17
links 18-15
Linux

directories 10-14
Linux environment 10-12
list boxes 3-24, 15-2, 15-10, 33-1

data-aware 15-9 to 15-12
owner-draw 7-7

draw-item events 7-9
measure-item events 7-8

populating 15-10
storing properties

example 6-8
list controls 3-24 to 3-26
list views

owner draw 7-7
listening connections 23-2, 23-3,

23-7, 23-8
closing 23-7
port numbers 23-5

ListField property 15-11
lists

string 3-32 to 3-37
using in threads 9-4

ListSource property 15-11
literals 17-19
-LNpath compiler

directive 11-11

Loaded method 26-13
LoadFromFile method 29-3

client datasets 14-7, 20-40
graphics 8-18
strings 3-33

LoadFromStream method
client datasets 20-40

LoadParamListItems
procedure 19-10

LoadParamsFromIniFile
method 19-3

LoadParamsOnConnect
property 19-3

local databases 14-2
locale settings

string routines 4-28
locales 12-1

data formats and 12-4
resource modules 12-5

LocalHost property
client sockets 23-6

localization 12-6
overview 12-1

localizing applications 12-6
localizing resources 12-5, 12-6
LocalPort property

client sockets 23-6
Locate method 16-14
Lock method 9-7
locking objects

nesting calls 9-7
threads 9-6

LockList method 9-7
logical values 15-2, 15-12
Login dialog box 19-5
login scripts 19-5 to 19-7
LoginPrompt property 19-5
long strings 4-26
lookup combo boxes 15-2, 15-10

to 15-12
in data grids 15-19
lookup fields 15-11
populating 15-20
secondary data

sources 15-11
lookup fields 15-11, 17-6

caching values 17-9
defining 17-8 to 17-9
in data grids 15-19
performance 17-9
providing values

programmatically 17-9
specifying 15-20

lookup list boxes 15-2, 15-10 to
15-12

lookup fields 15-11
secondary data

sources 15-11
Lookup method 16-15
lookup values 15-16
LookupCache property 17-9
LookupDataSet property 17-9,

17-11
LookupKeyFields

property 17-9, 17-11
LookupResultField

property 17-11
-LUpackage compiler

directive 11-11

M
main form 6-1
MainMenu component 6-20
maintained aggregates 20-20 to

20-22
aggregate fields 17-10
specifying 20-20 to 20-21
subtotals 20-21
summary operators 20-20
values 20-22

make utility 10-13
Man pages 5-12
Margin property 3-22
mask edit controls 3-19
masks 17-12
master/detail forms 15-13
master/detail

relationships 15-13, 18-13 to
18-15

applying updates 20-13
cascaded deletes 21-5
cascaded updates 21-5
client datasets 20-10 to 20-13
linked cursors 20-10 to 20-12
nested tables 20-12 to 20-13
referential integrity 14-4
TSQLClientDataSet 20-35

MasterFields property 18-14,
18-15, 20-10

MasterSource property 18-14,
18-15, 20-10

math errors 4-9
Max property

progress bars 3-29
track bars 3-20

MaxLength property 3-19
data-aware memo

controls 15-8
MaxRows property 22-21

I n d e x I-15

MaxStmtsPerConn
property 19-1

MaxTitleRows property 15-21
MaxValue property 17-11
MBCS 4-28
MDI applications 5-2

creating 5-2
member functions 3-4
Memo control 3-19
memo controls 7-1

properties 3-20
memo fields 15-2, 15-8 to 15-9
memory

conserving 25-8
leaks in forms 6-5

memory management
COM objects 4-20
interfaces 4-24

menu bars
moving items 6-25

menu components 6-20
Menu designer 6-20 to 6-21

context menu 6-27
menu items 6-23 to 6-24

adding 6-23, 6-31
defined 6-20
deleting 6-23, 6-27
editing 6-27
grouping 6-24
moving 6-25
naming 6-22, 6-31
nesting 6-24
placeholders 6-27
separator bars 6-24
setting properties 6-27
underlining letters 6-24

menu templates 6-30
menus 6-19 to 6-31

accessing commands 6-24
action lists 6-14
adding 6-22 to 6-27

drop-down 6-24 to 6-25
adding images 6-26
disabling items 7-5
displaying 6-26, 6-28
handling events 6-31
internationalizing 12-4, 12-5
moving among 6-28
naming 6-22
owner-draw 7-7
pop-up 7-5, 7-6
reusing 6-28
saving as templates 6-29,

6-30
templates 6-22, 6-28, 6-29

deleting 6-29
loading 6-29

MergeChangeLog
method 20-15, 20-40

MergeIniFile utility 13-4
$MESSAGE directive 10-18
message headers (HTTP) 22-1,

22-2
message loop

threads 9-4
message-based servers

see Web server applications
messages 33-4

handlers 33-4
messaging 10-19
metadata 18-15 to 18-20, 19-10

format 18-16 to 18-20
modifying 18-12
obtaining from

providers 20-29
metafiles 8-16, 8-18, 29-2

when to use 8-3
method pointers 27-2, 27-3, 27-8
Method property 22-12
methods 3-4, 8-14, 24-6, 28-1,

33-9
calling 27-5, 28-3, 32-4
declaring 8-14, 28-4

dynamic 25-9
public 28-3
static 25-7
virtual 25-8

dispatching 25-7
drawing 32-8, 32-9
event handlers 27-3, 27-5

overriding 27-5
graphics 29-2, 29-3, 29-4
inherited 27-6
initialization 26-13
objects and 3-5, 3-7
overriding 25-8, 33-10
properties and 26-5 to 26-7,

28-1, 28-2, 32-4
protected 28-3
public 28-3
redefining 25-8
virtual 25-8, 28-4

MethodType property 22-9,
22-13

midas.so 13-3, 20-1
MIME messages 22-4
Min property

progress bars 3-29
track bars 3-20

MinSize property 3-24

MinValue property 17-11
mobile computing 14-12
modal forms 6-4
Mode property

pens 8-5
modeless forms 6-4, 6-6
Modified method 34-11
Modified property 3-20
modules 24-10
Month property 33-5
months, returning current 33-7
mouse buttons 8-23

clicking 8-23, 8-24
mouse-move events

and 8-25
mouse events 8-22 to 8-25, 32-2

defined 8-22
parameters 8-23
state information 8-23
testing for 8-25

MouseDown method 34-8
MouseToCell method 3-29
Move method

string lists 3-36, 3-37
MoveBy method 16-10
MovePt 8-27
MoveTo method 8-4, 8-7, 29-2
multibyte characters

(MBCS) 10-15, 10-20
multi-line text controls 15-8
multipage dialog boxes 3-27
multiple document interface 5-2
multiple forms 15-3
multiprocessing

threads 9-1
multi-read exclusive-write

synchronizer 9-7
warning about use 9-8

MultiSelect property 3-24
multitasking 10-13
multi-threaded applications 9-1
multi-tiered applications 14-2,

14-11 to 14-12
parameters 20-26

mutually exclusive options 6-33

N
Name property

fields 17-11
parameters 18-8

named connections 14-9, 19-3 to
19-4

adding 19-4
deleting 19-4
loading at runtime 19-3

I-16 D e v e l o p e r ’ s G u i d e

renaming 19-4
named parameters 18-4
naming conventions

events 27-8
fields 27-2
properties 26-6
resources 30-4

navigator 15-2, 15-25 to 15-28,
16-9, 16-10

buttons 15-25
deleting data 16-23
editing 16-21
enabling/disabling

buttons 15-26
help hints 15-27
sharing among

datasets 15-27
nested details 17-24, 20-12 to

20-13
fetch on demand 20-29, 21-5

nested tables 17-24, 20-12 to
20-13

file-based applications 20-13
NetCLX 10-4
New command 24-10
New Field dialog box 17-5

defining fields 17-6, 17-7,
17-8, 17-10

Field properties 17-5
Field type 17-6
Lookup definition 17-6

Dataset 17-9
Key Fields 17-9
Lookup Keys 17-9
Result Field 17-9

Type 17-6
New Items dialog 5-8, 5-9, 5-10
New Thread Object dialog 9-2
newsgroups 1-2
NewValue property 17-19,

21-10
Next method 16-10
NextRecordSet method 18-10
non-blocking connections 23-9

to 23-10
blocking vs. 23-9

no-nonsense license
agreement 13-9

nonvisual components 3-11,
24-5, 24-11

notebook dividers 3-27
notification events 27-7
NotifyID 5-14
null values 16-24

ranges 20-7

numbers 26-2
internationalizing 12-4
property values 26-12

numeric fields
formatting 17-13

NumGlyphs property 3-22

O
object constructors 10-11
object fields 17-20 to 17-25

types 17-20
Object Inspector 3-7, 26-2, 30-4

editing array properties 26-2
selecting menus 6-28

Object Pascal 3-3
Object Repository 5-8 to 5-11

adding items 5-8
converting Web server

applications 22-23
specifying shared

directory 5-9
using items from 5-9 to 5-10

object-oriented
programming 3-1 to 3-12, 25-1
to 25-9

declarations 25-3, 25-9
classes 25-6
methods 25-7, 25-8, 25-9

defined 3-1
inheritance 3-8

objects 3-1, 3-5 to 3-12
accessing 3-8 to 3-9
creating 3-11
customizing 3-8
defined 3-5
destroying 3-11
events and 3-7
helper 3-32
inheritance 3-8
instantiating 3-6, 27-2
multiple instances 3-6
nonvisual 3-11
overview 4-1
owned 32-5 to 32-8

initializing 32-6
properties 3-5
temporary 29-4
TObject 3-13

Objects property 3-30
string lists 3-37, 7-9

ObjectView property 15-21,
17-21

objrepos directory 5-9
offscreen bitmaps 29-3 to 29-4
OldValue property 17-19, 21-10

OnAccept event 23-7
server sockets 23-8, 23-9

OnAction event 22-10
OnCalcFields event 16-8, 16-26,

17-7, 20-20
OnCellClick event 15-24
OnChange event 17-14, 29-5,

32-7, 33-11, 34-10
OnClick event 3-22, 27-1, 27-2,

27-4
buttons 3-6

OnClientRead event
server sockets 23-9

OnClientWrite event
server sockets 23-9

OnColEnter event 15-24
OnColExit event 15-24
OnColumnMoved event 15-18,

15-24
OnConnect event

client sockets 23-8
OnCreate event 24-12
OnCreateHandle event

server sockets 23-8
OnDataChange event 15-4,

34-6, 34-10
OnDataRequest event 20-34,

21-3, 21-11
OnDblClick event 15-24, 27-4
OnDisconnect event

client sockets 23-6
OnDragDrop event 15-24, 27-4
OnDragOver event 15-24, 27-4
OnDrawCell event 3-29
OnDrawColumnCell

event 15-24
OnDrawDataCell event 15-24
OnDrawItem event 7-9
OnEditButtonClick event 15-20,

15-24
OnEndDrag event 15-24, 27-4
OnEnter event 15-24, 27-5
OnError event

sockets 23-7
one-to-many

relationships 18-13, 20-10
OnExit event 15-24
OnFilterRecord event 16-8,

16-16, 16-18 to 16-19
OnGetData event 21-7
OnGetdataSetProperties

event 21-6
OnGetTableName event 20-37,

21-11
OnGetText event 17-13, 17-14

I n d e x I-17

OnGetThread event 23-8
OnHandleActive event

client sockets 23-8
OnHTMLTag event 22-17,

22-18, 22-19
OnIdle event handler 9-4
OnKeyDown event 15-24, 27-5,

34-9
OnKeyPress event 15-24, 27-5
OnKeyUp event 15-24, 27-5
OnLogin event 19-6
OnLogTrace event 19-13
OnMeasureItem event 7-8
OnMouseDown event 8-23,

15-25, 27-4, 34-8
parameters passed to 8-23

OnMouseMove event 8-23,
8-24, 15-25, 27-4

parameters passed to 8-23
OnMouseUp event 8-13, 8-23,

8-24, 15-25, 27-4
parameters passed to 8-23

OnPaint event 3-31, 8-2
OnPopup event 7-6
OnRead event

client sockets 23-9
OnReconcileError event 10-26,

20-31, 20-32
OnResize event 8-2
OnScroll event 3-20
OnSetText event 17-13, 17-14
OnStartDrag event 15-25
OnStateChange event 16-4
OnTerminate event 9-6
OnThreadStart event

server sockets 23-8
OnTitleClick event 15-25
OnUpdateData event 15-4, 21-7,

21-8
OnUpdateError event 10-26,

20-37, 21-10
OnValidate event 17-14
OnWrite event

client sockets 23-9
Open method

databases 19-4
datasets 16-2, 18-10
server sockets 23-7
TSQLConnection 19-4

OpenString 4-27
optimizing code

interfaces 4-24
optimizing system

resources 24-4
optional parameters 20-22, 21-6
Options property 3-30

data grids 15-22
providers 21-4 to 21-5
TSQLClientDataSet 20-36

Orientation property
track bars 3-21

Origin property 8-26, 17-11
outlines, drawing 8-5
output parameters 18-8, 20-26
override directive 25-8
overriding

methods 25-8, 33-10
owned objects 32-5 to 32-8

initializing 32-6
Owner property 24-12
owner-draw controls 3-37, 7-7

declaring 7-7
drawing 7-9
list boxes 3-24, 3-25
sizing 7-8

OwnerDraw property 7-7

P
$P compiler directive 4-34
package files 13-2, 13-3
packages 11-1 to 11-12, 30-16

compiler directives 11-10
compiling 11-9 to 11-12

options 11-10
components 30-16
Contains list 11-6, 11-9, 30-16
creating 5-3, 11-6 to 11-12
custom 11-4
default settings 11-7
deploying applications 11-2,

11-12
design-only option 11-7
design-time 11-1, 11-4 to

11-6
duplicate references 11-9
editing 11-7
file name extensions 11-1
installing 11-5 to 11-6
internationalizing 12-6
options 11-7
referencing 11-3
Requires list 11-6, 11-7, 11-8,

30-16
RPM 13-1
runtime 11-1, 11-2 to 11-4,

11-7
shared object files 11-2
source files 11-2, 11-12
using 5-4
using in applications 11-3 to

11-4

PacketRecords property 10-27,
20-29

page controls 3-27
page producers 22-16 to 22-19

chaining 22-18
converting templates 22-17
data-aware 22-20
event handling 22-17, 22-18,

22-19
PageSize property 3-21
paint boxes 3-31
Paint method 29-4, 32-8, 32-9
palette bitmap files 30-4
PaletteChanged property 10-19
panels 3-26

adding speed buttons 6-32
attaching to form tops 6-32
beveled 3-31
speed buttons 3-22

Panels property 3-29
panes 3-23

resizing 3-23
PAnsiChar 4-27
PAnsiString 4-32
parallel processes

threads 9-1
ParamByName method 18-5,

18-9
ParamCheck property 18-5,

18-13
parameter collection

editor 18-5, 18-8
parameterized queries 18-4 to

18-6
parameters

adding 18-8
classes as 25-9
client datasets 20-26 to 20-27

filtering records 20-27
database connections 19-2 to

19-3
defining in SQL 18-13
event handlers 27-3, 27-7,

27-8, 27-9
HTML tags 22-16
input 18-7
input/output 18-8
master/detail

relationships 18-13 to 18-14
mouse events 8-23
named vs. unnamed 18-4
names 18-8
output 18-8, 20-26
property settings 26-6

array properties 26-8
queries 18-4

I-18 D e v e l o p e r ’ s G u i d e

result 18-8
SQL commands 19-12
stored procedures 18-7 to

18-8
supplying values 18-4

Params property 18-4, 18-5,
18-8, 19-2, 19-6

client datasets 20-26
ParamType property 18-5, 18-8
ParamValues property 18-5
Parent property 24-12
ParentColumn property 15-21
ParentShowHint property 3-29
partial keys

searching 20-5
setting ranges 20-8

PasteFromClipboard
method 7-4

data-aware memo
controls 15-9

graphics 15-9
PathInfo property 22-9
pathnames 10-13
paths (URLs) 22-2
patterns 8-8
PChar 4-27

string conversions 4-32
Pen property 8-3, 8-5, 29-2
pen width support 8-6
PenPos property 8-3, 8-7
pens 8-5, 32-5

brushes 8-5
changing 32-7
colors 8-5
default settings 8-5
drawing modes 8-27
getting position of 8-7
position, setting 8-7, 8-24
style 8-6
width 8-6

persistent columns 15-14, 15-16
creating 15-16 to 15-20
deleting 15-15, 15-17, 15-18
inserting 15-17
reordering 15-18

persistent fields 15-14, 17-3 to
17-14

ADT fields 17-22
array fields 17-23
creating 17-4 to 17-5, 17-5 to

17-10
creating client datasets 20-38
data packets and 21-4
data types 17-6
defining 17-5 to 17-10

deleting 17-10
listing 17-4, 17-5
naming 17-5
ordering 17-5
properties 17-10 to 17-13
special types 17-5, 17-6
switching to dynamic 17-3

PickList property 15-19, 15-20
picture objects 8-3, 29-3
Picture property 3-30, 8-17

in frames 6-13
pictures 8-16, 29-2

changing 8-19
loading 8-18
replacing 8-19
saving 8-19

Pie method 8-4
Pixels property 8-5
pmCopy constant 8-27
pmNotXor constant 8-27
pointers

class 25-9
default property

values 26-12
method 27-2, 27-3, 27-8

Polygon method 8-4, 8-11
polygons 8-11

drawing 8-11
PolyLine method 8-4, 8-10
polylines 8-9

drawing 8-9
polymorphism 3-2, 3-5
pop-up menus 7-5 to 7-6

displaying 6-26
drop-down menus and 6-24

PopupMenu component 6-20
PopupMenu property 7-6
Port property

server sockets 23-6
portable code 10-15
porting applications 10-1 to

10-27
ports 23-5

client sockets 23-6
multiple connections 23-5
server sockets 23-6
services and 23-2

Position property 3-21, 3-29
position-independent code

(PIC) 10-7, 10-18
Post method 16-5, 16-6, 16-23

Edit and 16-21
Precision property

fields 17-11
preexisting controls 24-4

Prepared property 18-10
printing 3-38
Prior method 16-10
priorities

using threads 9-1, 9-2
Priority property 9-3
private 3-9
private properties 26-5
private section 4-2
procedures 24-6, 24-7, 27-3

naming 28-2
property settings 30-9

processes 9-1, 10-13
progress bars 3-29
project files

changing 2-2
Project Manager 6-2
project options 5-2

default 5-2
Project Options dialog box 5-2
project templates 5-10
projects

adding forms 6-1 to 6-2
properties 3-3, 26-1 to 26-13

accessing 26-5 to 26-7
array 26-2, 26-8
as classes 26-2
changing 30-4 to 30-10, 31-2,

31-3
declaring 26-3, 26-3 to 26-7,

26-12, 27-8, 32-4
stored 26-12
user-defined types 32-3

default values 26-7, 26-11 to
26-12

redefining 31-2, 31-3
editing

as text 30-5
events and 27-1, 27-2
HTML tables 22-21
inherited 26-3, 32-2, 33-2
interfaces 26-10
internal data storage 26-4,

26-6
loading 26-13
nodefault 26-7
objects and 3-5
overview 24-6
published 33-2
read and write 26-5
reading values 30-6
read-only 25-6, 26-7, 34-2
redeclaring 26-11, 27-5
specifying values 30-6
storing 26-12

I n d e x I-19

storing and loading
unpublished 26-13 to 26-14

subcomponents 26-9
types 26-2, 26-8, 30-6, 32-3
updating 24-7
viewing 30-6
write-only 26-6
writing values 26-6, 30-6

property editors 26-2, 30-4 to
30-10

as derived classes 30-4
attributes 30-8
dialog boxes as 30-7
registering 30-9 to 30-10

property settings
reading 26-8
writing 26-8

protected 3-9
directive 27-5
events 27-5
keyword 26-3, 27-5

protected section 4-2
protocols

Internet 22-1, 23-1
ProviderFlags property 21-4,

21-9
ProviderName property 20-25,

21-3
providers 14-10, 21-1 to 21-11

applying updates 21-3, 21-7
to 21-10

screening updates 21-10
associating with

datasets 21-2
client datasets and 20-24 to

20-34
client-generated

events 21-11
error handling 21-10
local 20-25, 21-2
remote 20-25, 21-2
transactions 19-7

providers, internal 20-36
providing 21-1
PString 4-32
public 3-9

directive 27-5
keyword 27-5
part of classes 25-6
properties 26-11

public section 4-2
published 3-9, 26-3

directive 26-3, 27-5
keyword 27-5
part of classes 25-6

properties 26-11, 26-12
example 32-2, 33-2

PWideChar 4-27
PWideString 4-32

Q
QClipbrd unit 7-3
Qt widget 10-11
qualifiers 3-8 to 3-9
queries 18-3 to 18-6

automatically generated 18-6
filtering vs. 16-16
HTML tables 22-22
loading from files 18-4
master/detail

relationships 18-13 to 18-14
parameters 18-4 to 18-6

from client datasets 20-27
TSQLClientDataSet 20-35
TSQLDataSet 18-4
TSQLQuery 18-4
Web applications 22-22
wildcards 18-6

query part (URLs) 22-2
QueryInterface method 4-20,

4-24

R
radio buttons 3-23, 15-2

data-aware 15-12 to 15-13
grouping 3-26
selecting 15-13

radio groups 3-26
raise reserved word 4-16
ranges 20-6 to 20-10

applying 20-9
boundaries 20-8
canceling 20-9
changing 20-9
filters vs. 20-6
indexes and 20-6
null values 20-7
specifying 20-6 to 20-9

RDBMS 14-2
Read method

TFileStream 4-40
read method 26-6
read reserved word 26-8, 32-4
ReadBuffer method

TFileStream 4-41
ReadCommitted 19-9
reading property settings 26-6
README 13-8
read-only fields 15-5

read-only properties 25-6, 26-7,
34-2

ReadOnly property 3-19, 34-2
client datasets 20-14
data grids 15-19, 15-23
data-aware controls 15-5
data-aware memo

controls 15-8
fields 17-12

ReasonString property 22-14
RecNo property

client datasets 20-2
Reconcile method 10-27
records

adding 16-7, 16-22 to 16-23,
16-24

appending 16-23
comparison to objects 3-5
deleting 16-23
fetching 18-9 to 18-11, 20-29

to 20-30
filtering 16-8, 16-15 to 16-19
finding 16-14 to 16-15, 20-3

to 20-5
iterating through 16-11
marking 16-12 to 16-13
moving through 15-25, 16-8

to 16-12, 16-20
posting 16-23

data grids 15-23
when closing

datasets 16-23
reconciling updates 20-31
refreshing 15-6, 20-33
repeating searches 20-5
search criteria 16-14, 16-15
updating 16-24 to 16-25, 21-7

to 21-10
client datasets 20-30 to

20-32, 20-36
delta packets 21-7, 21-8
identifying tables 21-10
multiple 21-5
screening updates 21-10

Rectangle method 8-4, 8-10,
29-2

rectangles
drawing 8-10, 32-9

redefining methods 25-8
redrawing images 29-5
reference counting

COM objects 4-20
reference fields 17-20, 17-25

displaying 15-22

I-20 D e v e l o p e r ’ s G u i d e

references
forms 6-2
packages 11-3

referential integrity 14-4
Refresh method 15-6, 20-33
RefreshLookupList

property 17-9
RefreshRecord method 20-33,

21-3
Register method 8-3
Register procedure 24-11, 30-2
RegisterComponents

procedure 11-6, 24-11, 30-2
RegisterHelpViewer 5-20
registering

component editors 30-16
components 24-11
property editors 30-9 to

30-10
registering Help objects 5-17
RegisterPropertyEditor

procedure 30-9
RegisterViewer function 5-17
registry 10-13
relational databases 14-1
Release method 4-20, 4-23, 4-24

TCriticalSection 9-7
release notes 13-8
releasing mouse buttons 8-24
relocateable code 10-18
remote applications

TCP/IP 23-1
Remote Database Management

system 14-2
remote database servers 14-2
remote servers

unauthorized access 19-5
RemoteHost property

client sockets 23-6
RemotePort property

client sockets 23-6
RemoteServer property 20-25
RenameFile function 4-38
repainting controls 32-7, 32-9,

33-4
RepeatableRead 19-9
Repository 5-8 to 5-11

adding items 5-8
using items from 5-9 to 5-10

Repository dialog 5-8
Request for Comment (RFC)

documents 22-1
request headers 22-11
request messages 22-6

action items and 22-8

contents 22-13
dispatching 22-8
header information 22-11 to

22-13
HTTP overview 22-3 to 22-4
processing 22-8
responding to 22-10 to 22-11,

22-15
types 22-12

request objects
header information 22-7

Requires list (packages) 11-6,
11-7, 11-8, 30-16

Resbind utility 12-6
ResetEvent method 9-9
resizing controls 3-23, 13-6, 33-4

graphics 29-4
ResolveToDataSet

property 21-3
resolving 21-1
resource allocations 4-7
resource modules 12-5, 12-6
resources 24-7

caching 29-1
extracting 12-6
isolating 12-5
localizing 12-5, 12-6
naming 30-4
strings 12-5
system, optimizing 24-4

resourcestring reserved
word 12-5

response headers 22-15
response messages 22-6

contents 22-15, 22-16 to 22-22
creating 22-13 to 22-15, 22-16

to 22-22
database information 22-20

to 22-22
header information 22-14 to

22-15
sending 22-11, 22-15
status information 22-14

response templates 22-16
RestoreDefaults method 15-20
Result data packet 20-30
result parameter 18-8
Resume method 9-10, 9-11
ReturnValue property 9-9
RevertRecord method 10-27
RFC documents 22-1
rich text controls 7-1
Rollback method 19-9
root directory 10-14
rounded rectangles 8-10

RoundRect method 8-4, 8-10
RowAttributes property 22-21
RowCount property 15-11
RowHeights property 3-30
RowRequest method 21-3
rows 3-29
Rows property 3-30
RPM 13-1, 13-2
RTTI 25-6
rubber banding example 8-22 to

8-27
$RUNONLY compiler

directive 11-10
runtime interfaces 25-6
runtime library (RTL) 4-8
runtime packages 11-1, 11-2 to

11-4
runtime type information 25-6

S
Save as Template command

(Menu designer) 6-28, 6-30
Save Template dialog box 6-30
Save To File command 20-38
SaveToFile method 8-19, 29-3

client datasets 14-7, 20-41
strings 3-33

SaveToStream method
client datasets 20-41

ScaleBy property
TCustomForm 13-7

Scaled property
TCustomForm 13-7

ScanLine property
bitmap example 8-17

schema information 18-15 to
18-20, 19-10

fields 18-18
indexes 18-19
parameters 18-19 to 18-20
stored procedures 18-17
tables 18-17

scope (objects) 3-8 to 3-9
screen

refreshing 8-2
resolution 13-6

programming for 13-6
Screen variable 6-4
scripts (URLs) 22-2
scroll bars 3-20

text windows 7-2
scroll boxes 3-27
scrollable bitmaps 8-16
ScrollBars property 3-30, 7-2

I n d e x I-21

SDI applications 5-2
search path 10-14
search path separator 10-14
Sections property 3-27
security

databases 14-3, 19-5 to 19-7
seeking

files 4-41
Select Menu command (Menu

designer) 6-28
Select Menu dialog box 6-28
SELECT statements 18-3
SelectAll method 3-20
SelectCell method 33-12, 34-3
Selection property 3-29
SelectKeyword 5-17
selectors

Help 5-18
SelEnd property 3-20
Self parameter 24-12
SelLength property 3-20, 7-3
SelStart property 3-20, 7-3
SelText property 3-20, 7-3
SendBuf method 23-7
Sender parameter

example 8-6
separator bars (menus) 6-24
server applications

interfaces 23-2
services 23-1

server connections 23-2, 23-3
port numbers 23-5

server sockets 23-6 to 23-7
accepting client

requests 23-6
accepting clients 23-8
error messages 23-7
event handling 23-8
specifying 23-5, 23-6

services
implementing 23-1 to 23-2,

23-6
network servers 23-1
ports and 23-2
requesting 23-5

sessions
Web applications 22-20

set types 26-2
SetBrushStyle method 8-8
SetData method 17-15
SetEvent method 9-9
SetFields method 16-24
SetFloatValue method 30-6
SetKey method 20-3

EditKey vs. 20-5

SetLength procedure 4-31
SetMethodValue method 30-6
SetOptionalParam

method 20-22
SetOrdValue method 30-6
SetPenStyle method 8-6
SetProvider method 20-25
SetRange method 20-7, 20-8
SetRangeEnd method 20-7
SetRangeStart method 20-6
sets 26-2
SetSchemaInfo method 18-15
SetStrValue method 30-6
SetTraceCallbackEvent

method 19-14
Setup Graphic Installer 13-1
SetValue method 30-6
Shape property 3-30
shapes 3-30, 8-10 to 8-11, 8-13

drawing 8-10, 8-13
filling 8-7, 8-8
filling with bitmap

property 8-8
outlining 8-5

shared object files 10-7, 10-13
installing 13-3
packages 11-2

shared objects
creating 5-3
dynamic (HTTP

servers) 22-4
internationalizing 12-6
packages 11-1

sharing forms and dialogs 5-8
to 5-11

shell scripts 10-12
Shift states 8-23
short strings 4-26
ShortCut property 6-24
shortcuts

adding to menus 6-24
ShortString 4-26
Show method 6-5, 6-7
ShowColumnHeaders

property 3-26
ShowHint property 3-29, 15-27
ShowHintChanged

property 10-19
ShowModal method 6-5
signalling events 9-9
signals 10-13
simple types 26-2
single document interface 5-2
single-tiered applications 14-2,

14-7, 14-8, 14-10

Size property
fields 17-12

slow processes
using threads 9-1

socket components 23-5 to 23-7
socket connections 23-2 to 23-3

closing 23-6, 23-7
endpoints 23-3, 23-5
multiple 23-5
opening 23-6, 23-7
sending/receiving

information 23-9
types 23-2

socket objects 23-5
client sockets 23-6
clients 23-6

sockets 5-5, 23-1 to 23-10
accepting client

requests 23-3
assigning hosts 23-4
describing 23-3
error handling 23-7
event handling 23-7 to 23-9
implementing services 23-1

to 23-2, 23-6
network addresses 23-3, 23-4
providing information 23-4
reading from 23-9
reading/writing 23-9 to

23-10
writing to 23-10

software license
requirements 13-8

$SONAME directive 5-4
$SOPREFIX directive 5-4
sort order 12-4

client datasets 20-16
descending 20-17
indexes 20-38

Sorted property 3-24
TDBComboBox 15-10
TDBListBox 15-10

SortFieldNames property 18-6
$SOSUFFIX directive 5-4
source code

editing 2-2
optimizing 8-14
reusing 5-11

source files
changing 2-2
packages 11-2, 11-6, 11-7,

11-12
source files, sharing 10-12
$SOVERSION directive 5-4
Spacing property 3-22

I-22 D e v e l o p e r ’ s G u i d e

speed buttons 3-22
adding to toolbars 6-32 to

6-34
assigning glyphs 6-33
centering 6-32
engaging as toggles 6-34
event handlers 8-12
for drawing tools 8-12
grouping 6-33 to 6-34
initial state, setting 6-33
operational modes 6-32

spin edit controls 3-21
splitters 3-23
SQL 14-2, 18-3

automatically
generated 18-6, 18-12

executing commands 19-12
to 19-13

SQL client datasets 20-34 to
20-37

SQL property 18-4, 18-11
SQL servers

accessing 18-1
constraints 17-19
editing data 16-6
inserting records 16-7
logging in 14-3

SQL statements
client-supplied 20-28, 21-5
executing 18-11 to 18-13
generating 18-6, 18-12

providers 21-3, 21-8 to
21-10

TSQLDataSet 18-10
monitoring 19-13 to 19-14
provider-generated 21-10

SQLConnection property 18-2
squares, drawing 32-9
standard events 27-4, 27-4 to

27-6
customizing 27-5

Standard page (Component
palette) 3-18

StartTransaction method 19-7
state information

communicating 21-7
mouse events 8-23

State property 3-23
datasets 16-3, 17-8
grid columns 15-15
grids 15-15, 15-16

static methods 25-7
static text 3-28
static text component 3-28
status bars 3-28

internationalizing 12-4
owner draw 7-7

status information 3-28
StatusCode property 22-14
StatusFilter property 10-26, 21-7
Step property 3-29
StepBy method 3-29
StepIt method 3-29
storage media 3-39
stored directive 26-12
stored procedures 14-4, 18-7 to

18-9
parameters 18-7 to 18-9

from client datasets 20-27
performance 18-7
queries and 18-2
returning data 18-7
TSQLDataSet 18-7
TSQLStoredProc 18-7

StoredProcName property 18-7,
18-11

StrByteType 4-28
streams 3-39
Stretch property 15-9
StretchDraw method 8-4, 29-2,

29-4
string fields

size 17-6
string grids 3-30
String List editor

displaying 15-10
string lists 3-32 to 3-37

adding objects 7-8 to 7-9
adding to 3-36
associated objects 3-37
copying 3-37
creating 3-33
deleting strings 3-36
finding strings 3-35
iterating through 3-36
loading from files 3-33
long-term 3-34
moving strings 3-36
position in 3-35, 3-36
saving to files 3-33
short-term 3-33
sorting 3-36
substrings 3-36

string operators 4-35
string properties 4-26
string reserved word 4-26

default type 4-25
property types 4-26

strings 4-24, 26-2
2-byte conversions 12-2

compiler directives 4-34
declaring and

initializing 4-31
extended character sets 4-34
files 4-41
local variables 4-33
long 4-26
memory corruption 4-34
mixing and converting

types 4-32
PChar conversions 4-32
reference counting

issues 4-26, 4-32
returning 26-8
routines

case sensitivity 4-28
Multi-byte character

support 4-28
runtime library 4-27

size 7-3
sorting 12-4
starting position 7-3
translating 12-2, 12-5
truncating 12-3
types overview 4-25
variable parameters 4-34

Strings property 3-35
StrNextChar function 10-15
Structured Query Language

See SQL
Style property 3-24, 3-25, 3-30,

7-7
brushes 8-8
combo boxes 15-10
pens 8-5
tool buttons 6-35

StyleChanged property 10-19
styles 10-5
subclassing controls 24-4
subcomponents

properties 26-9
submenus 6-24
summary values

maintained aggregates 20-22
support services 1-2
Suspend method 9-11
symbolic links 10-14
Synchronize method 9-4
synchronizing data

on multiple forms 15-3
system events 10-19
system notifications 10-19
system resources,

conserving 24-4

I n d e x I-23

T
tab controls 3-27

owner-draw 7-7
tab sets 3-27
tabbed pages 3-27
Table HTML tag

(<TABLE>) 22-17
table producers 22-21 to 22-22

setting properties 22-21
TableAttributes property 22-21
TableName property 18-6
TableOfContents 5-17
tables 18-6 to 18-7

displaying in grids 15-15
indexes 18-6
inserting records 16-22 to

16-23, 16-24
master/detail

relationships 18-14 to 18-15
non-database grids 3-29
sorting records 18-6
TSQLDataSet 18-6
TSQLTable 18-6 to 18-7

tabs
draw-item events 7-9

Tabs property 3-27
TabStopChanged

property 10-19
tabular display (grids) 3-29
Tag property 17-12
TApacheApplication 5-6
TApplication 5-13, 5-18, 10-5
TApplicationEvents 6-3
tar files 13-1
targets, action lists 6-14
TASM code 10-15
TBCDField

default formatting 17-13
TBevel 3-31
TBitmap 29-2
TBrush 3-30
tbsCheck constant 6-35
TCalendar 33-1
TCanvas 3-37
TCGIApplication 22-5
TCGIRequest 22-5
TCGIResponse 22-5
TCharProperty type 30-5
TClassProperty type 30-5
TClientDataSet 13-3, 20-1
TClipboard 7-3
TColorProperty type 30-5
TComponent 3-12, 3-14, 24-5
TComponentProperty type 30-5
TControl 3-16, 24-4, 27-4, 27-5

TCP/IP 23-1
clients 23-5
servers 23-6

TCurrencyField
default formatting 17-13

TCustomClientDataSet 16-2
TCustomContentProducer

22-16
TCustomControl 3-16, 24-4
TCustomEdit 10-6
TCustomGrid 33-1, 33-2
TCustomListBox 24-3
TCustomSQLDataSet 16-2
TDataSet 16-1

descendants 16-2
TDataSetProvider 13-3, 21-1,

21-2
TDataSetTableProducer 22-22
TDataSource 15-3 to 15-4
TDateField

default formatting 17-13
TDateTime type 33-5
TDateTimeField

default formatting 17-13
TDBCheckBox 15-2, 15-12
TDBComboBox 15-2, 15-10
TDBEdit 15-2, 15-8
TDBGrid 15-2, 15-14 to 15-25

events 15-24
properties 15-19

TDBGridColumns 15-14
TDBImage 15-2, 15-9
TDBListBox 15-2, 15-9, 15-10
TDBLookupComboBox 15-2,

15-10 to 15-12
TDBLookupCombox 15-9
TDBLookupListBox 15-2, 15-9,

15-10 to 15-12
TDBMemo 15-2, 15-8 to 15-9
TDBNavigator 15-2, 15-25 to

15-28, 16-9, 16-10
TDBRadioGroup 15-2, 15-12 to

15-13
TDBText 15-2, 15-7 to 15-8
TDefaultEditor 30-13
TDrawGrid 3-29
technical support 1-2
TEdit control 3-19
templates 5-8, 5-10

component 5-11
menus 6-22, 6-28, 6-29

loading 6-29
programming 5-8
Web applications 22-6, 22-24

temporary objects 29-4
TEnumProperty type 30-5

terminal type 10-13
Terminate method 9-5
Terminated property 9-5
testing

components 24-12, 24-13
values 26-7

TEvent 9-9
text

copying, cutting, pasting 7-4
deleting 7-5
in controls 7-1
internationalizing 12-4
owner-draw controls 7-7
selecting 7-3, 7-3 to 7-4
working with 7-1 to 7-6

text controls 3-19
Text property 3-19, 3-20, 3-25,

3-29
TextHeight method 8-4, 29-2
TextOut method 8-4, 29-2
TextRect method 8-4, 29-2
TextWidth method 8-4, 29-2
TField 16-1, 17-1 to 17-25

events 17-13 to 17-14
methods 17-14 to 17-15
properties 17-1, 17-10 to

17-13
runtime 17-12

TFieldDataLink 34-4
TFiler 4-39
TFileStream 3-39

file I/O 4-39 to 4-42
TFloatField

default formatting 17-13
TFloatProperty type 30-5
TFMTBcdField

default formatting 17-13
TFontNameProperty type 30-5
TFontProperty type 30-5
TForm

scroll-bar properties 3-20
TForm component 3-5
TFrame 6-11
TGraphic 29-2
TGraphicControl 3-16, 24-4,

32-2
THeaderControl 3-27
thread function 9-3
thread objects 9-1

defining 9-2
initializing 9-2

Thread Status box 9-11
thread variables 9-5
thread-aware objects 9-4
ThreadID property 9-11
thread-local variables 9-5

I-24 D e v e l o p e r ’ s G u i d e

OnTerminate event 9-6
threads 9-1 to 9-11

avoiding simultaneous
access 9-6

blocking execution 9-6
coordinating 9-3, 9-6 to 9-10
creating 9-10
critical sections 9-7
data access components 9-4
exceptions 9-5
executing 9-10
freeing 9-2, 9-3
graphics objects 9-4
ids 9-11
initializing 9-2
limits on number 9-10
locking objects 9-6
message loop and 9-4
priorities 9-1, 9-2

overriding 9-10
process space 9-3
returning values 9-8
stopping 9-11
terminating 9-5
using lists 9-4
waiting for 9-8

multiple 9-9
waiting for events 9-9

thread-safe objects 9-4
threadvar 9-5
THTMLTableAttributes 22-21
THTMLTableColumn 22-22
TickMarks property 3-21
TickStyle property 3-21
TIcon 29-2
TiledDraw method 29-4
TImage 3-30

in frames 6-13
TImageList 6-35
time

internationalizing 12-4
time fields

formatting 17-13
timeout events 9-10
TIntegerProperty type 30-5,

30-6
TInterfacedObject 4-23

deriving from 4-21
dynamic binding 4-21
implementing

IUnknown 4-20
Title property

data grids 15-19
TKeyPressEvent type 27-3
TLabel 3-28

TListBox 24-3
TMainMenu component 6-20
TMemIniFile 10-6
TMemo control 3-19
TMemoryStream 3-39
TMethodProperty type 30-5
TMultiReadExclusiveWrite-

Synchronizer 9-7
TNotifyEvent 27-7
TObject 3-13, 4-1, 25-3
ToggleButton 10-6
toggles 6-34, 6-36
tool buttons 6-35

adding images 6-35
disabling 6-35
engaging as toggles 6-36
getting help with 6-36
grouping/ungrouping 6-35
in multiple rows 6-35
initial state, setting 6-35
wrapping 6-35

toolbars 3-23, 6-31
action lists 6-14
adding 6-34 to 6-36
adding panels as 6-32 to 6-34
context menus 6-36
default drawing tool 6-33
designing 6-31 to 6-37
disabling buttons 6-35
hiding 6-36
inserting buttons 6-32 to

6-34, 6-35
owner-draw 7-7
setting margins 6-33
speed buttons 3-22
transparent 6-35

tool-tip help 3-29
Top property 6-4, 6-32
TopRow property 3-30
TOrdinalProperty type 30-5
TPageControl 3-27
TPageProducer 22-16
TPaintBox 3-31
TPanel 3-26, 6-31
TParam 18-5, 18-8
TPersistent 3-14
TPicture type 29-2
TPopupMenu 6-36
TPrinter 3-38

using 3-38
TPropertyAttributes 30-8
TPropertyEditor class 30-4
TQuery 5-7
TraceList property 19-13
track bars 3-20

transactions 14-3 to 14-4, 19-7 to
19-10

atomicity 14-3
client datasets 19-7
committing 19-8 to 19-9
consistency 14-3
durability 14-3
ending 19-8 to 19-9
implicit 19-7
isolation 14-3

levels 19-9 to 19-10
nested 19-8
overlapped 19-8
rolling back 19-9
starting 19-7 to 19-8
using SQL commands 19-7

translating character
strings 12-2, 12-5

2-byte conversions 12-2
translation 12-4
Transliterate property 17-12
transparent backgrounds 12-4
Transparent property 3-28
transparent toolbars 6-35
TReader 4-39
tree views 3-25

owner-draw 7-7
TRegIniFile 10-6
triangles 8-11
triggers 14-4
try reserved word 29-4
TScrollBox 3-20, 3-27
TSearchRec 4-36
TSetElementProperty type 30-5
TSetProperty type 30-5
TShape 3-30
TSpinEdit control 3-21
TSQLClientDataSet 13-3
TSQLClientDataSet, advantages

and disadvantages 20-34
TSQLConnection 18-2 to 18-3,

19-1 to 19-14
binding 19-2 to 19-4
monitoring messages 19-14

TSQLDataSet 18-2, 18-4, 18-6,
18-7, 18-13

TSQLMonitor 19-13 to 19-14
TSQLQuery 18-2, 18-4, 18-13,

22-22
TSQLQueryTableProducer

22-22
TSQLStoredProc 18-2, 18-7
TSQLTable 18-2, 18-6 to 18-7,

18-14

I n d e x I-25

TSQLTimeStampField
default formatting 17-13

TStream 3-39
TStringList 3-32 to 3-37, 5-15
TStringProperty type 30-5
TStrings 3-32 to 3-37
TStringStream 3-39
TTabControl 3-27
TTable 5-7
TTcpClient 23-5
TTcpServer 23-6
TThread 9-2
TThreadList 9-4, 9-7
TTimeField

default formatting 17-13
TToolBar 6-31, 6-34
TToolButton 6-31
TTreeView 3-25
TWebActionItem 22-6
TWebApplication 22-4
TWebRequest 22-4
TWebResponse 22-4, 22-6
TWidgetControl 3-17, 10-4,

24-4, 27-5
TWinControl 10-4

See also TWidgetControl
two-byte character codes 12-2
two-tiered applications 14-2,

14-8, 14-10, 20-34
TWriter 4-39
type conversion errors 4-9
type declarations

enumerated types 8-11
properties 32-3

type reserved word 8-12
typecasting errors 4-9
types

Char 12-2
properties 26-2, 26-8, 30-6
user-defined 32-3

U
Unicode characters 12-3

strings 4-27
Unicode standard

strings 4-25
unidirectional datasets 14-6,

18-1 to 18-20
binding 18-3 to 18-9
executing commands 18-11

to 18-13
fetching data 18-9 to 18-11
limitations 18-1
master/detail

relationships 18-13 to 18-15

preparing 18-10
types 18-2

unindexed datasets 16-24
unit comparison 10-8
units

adding components 24-10
including packages 11-3

Unlock method 9-7
UnlockList method 9-7
unnamed parameters 18-4
update errors

resolving 20-31, 20-31 to
20-32, 21-7, 21-10

UPDATE statements 21-9
UpdateBatch method 10-26
UpdateCalendar method 34-3
UpdateMode property 21-9

TSQLClientDataSet 20-36
UpdateRecordTypes

property 10-26
updates

client datasets 20-36
UpdatesPending

property 10-26
UpdateStatus property 10-26,

21-8
UpdateTarget method 6-18
updating

actions 6-17
up-down controls 3-21
URIs

URLs vs. 22-2
URL property 22-12
URLs 22-2

host names 23-4
IP addresses 23-4
URIs vs. 22-2
Web browsers 22-3

Use Unit command 5-7, 6-2
USEPACKAGE macro 11-7
user interfaces 3-17

forms 6-1 to 6-2
isolating 14-5
layout 6-4
multi-record 15-13
organizing data 15-7, 15-13

to 15-14
single record 15-7

user-defined types 32-3
uses clause 3-9, 10-4

adding data modules 5-7
avoiding circular

references 6-2
including packages 11-3

UTF-8 character set 10-15, 12-2

V
$V compiler directive 4-34
validating data entry 17-14
value expressions 17-19
Value property

aggregates 20-22
fields 17-15
parameters 18-5, 18-8

ValueChecked property 15-12
values 26-2

Boolean 26-2, 26-12, 34-3
default data 15-9
default property 26-7, 26-11

to 26-12
redefining 31-2, 31-3

null 16-24
testing 26-7

Values property
radio groups 15-13

ValueUnchecked
property 15-12

var reserved word
event handlers 27-3

variables
declaring

example 3-10
objects and 3-10

variant errors 4-9
VendorLib property 19-2
vertical track bars 3-21
VertScrollBar 3-20
ViewStyle property 3-25
virtual

directive 25-8
method tables 25-8
methods 25-8, 28-4

properties as 26-2
property editors 30-6 to

30-7
visibility 3-9
Visible property 3-3

cool bars 6-36
fields 17-12
menus 6-31
toolbars 6-36, 6-37

VisibleButtons property 15-26
VisibleChanged property 10-20
VisibleColCount property 3-30
VisibleRowCount property 3-30
VisualCLX 10-4

I-26 D e v e l o p e r ’ s G u i d e

W
WaitFor method 9-8, 9-9
WantReturns property 3-20
WantTabs property 3-20

data-aware memo
controls 15-8

wchar_t widechar 10-20
$WEAKPACKAGEUNIT

compiler directive 11-10
Web applications

deploying 13-4
object 22-6

Web browsers 22-3
URLs 22-3

Web dispatcher 22-5, 22-7 to
22-8

handling requests 22-6,
22-11

selecting action items 22-9,
22-10

Web modules 22-5, 22-7
adding database

sessions 22-20
Web pages 22-3
Web server applications 5-6,

22-1 to 22-23
accessing databases 22-20
adding to projects 22-6
converting 22-23
creating 22-5
creating responses 22-10
debugging 22-23
event handling 22-8, 22-10,

22-11
managing database

connections 22-20
overview 22-4 to 22-7
posting data to 22-13

querying tables 22-22
resource locations 22-2
response templates 22-16
sending files 22-15
standards 22-1
templates 22-6, 22-24
types 22-4
Web dispatcher and 22-7

Web servers
client requests and 22-4

Web site (Kylix support) 1-2
WebBroker 22-1
wide characters 12-3

runtime library routines 4-28
WideChar 4-25, 4-27, 12-3
WideString 4-27, 12-3
widestrings 10-20
widget

controls 24-4
WidgetDestroyed

property 10-20
widgets 3-17, 10-4
Width property 3-29, 6-4

data grid columns 15-15
data grids 15-19
pens 8-5, 8-6
TScreen 13-6

WIN32 10-16
WIN64 10-16
window

handles 24-4
message handling 33-4

windows
resizing 3-23

Windows applications 10-1
porting 10-1 to 10-14

Windows messaging 10-15
wizards 5-8

Component 24-8

Console Wizard 5-3
WM_SIZE message 33-4
word wrapping 7-2
WordWrap property 3-20, 7-1,

31-1
data-aware memo

controls 15-8
wrAbandoned constant 9-9
Wrap property 6-35
Wrapable property 6-35
wrappers 24-4

see also component wrappers
wrError constant 9-9
Write method

TFileStream 4-41
write method 26-6
write reserved word 26-8, 32-4
WriteBuffer method

TFileStream 4-41
write-only properties 26-6
wrSignaled constant 9-9
wrTimeout constant 9-9

X
$X compiler directive 4-34
Xerox Network System

(XNS) 23-1
.xfm files 12-5, 26-11

generating 12-6

Y
Year property 33-5

Z
-Z compiler directive 11-11

	Developer’s Guide
	Contents
	Tables
	Figures
	Introduction
	What’s in this manual?
	Manual conventions
	Developer support services
	Ordering printed documentation

	Part I: Programming with Kylix
	Ch 2: Developing applications with Kylix
	Integrated development environment
	Designing applications
	Developing applications
	Creating projects
	Editing code
	Compiling applications
	Debugging applications
	Deploying applications

	Ch 3: Using CLX
	Understanding CLX
	Properties, methods, and events
	Properties
	Methods
	Events
	Widget events
	System events

	What is an object?
	Examining a Kylix object
	Changing the name of a component

	Inheriting data and code from an object
	Scope and qualifiers
	Private, protected, public, and published declarations
	Using object variables
	Creating, instantiating, and destroying objects
	Components and ownership

	Major branches of the CLX hierarchy
	TObject branch
	TPersistent branch
	TComponent branch
	TControl branch
	TWidgetControl branch

	Using components
	Components on the component palette
	Text controls
	Text control properties
	Properties of memo controls

	Specialized input controls
	Scroll bars
	Track bars
	Spin edit controls

	Buttons and similar controls
	Button controls
	Bitmap buttons
	Speed buttons
	Check boxes
	Radio buttons
	Toolbars

	Splitter controls
	Handling lists
	List boxes and check-list boxes
	Combo boxes
	Tree views
	List views

	Grouping components
	Group boxes and radio groups
	Panels
	Scroll boxes
	Tab controls
	Page controls
	Header controls

	Providing visual feedback
	Labels
	Status bars
	Progress bars
	Help and hint properties

	Grids
	Draw grids
	String grids

	Graphics display
	Images
	Shapes
	Bevels
	Paint boxes

	Dialog boxes
	Using open dialog boxes

	Using helper objects
	Working with lists
	Working with string lists
	Loading and saving string lists
	Creating a new string list
	Manipulating strings in a list
	Associating objects with a string list

	Creating drawing spaces
	Printing
	Using streams

	Ch 4: Common programming tasks
	Understanding classes
	Defining classes
	Handling exceptions
	Protecting blocks of code
	Responding to exceptions
	Exceptions and the flow of control
	Nesting exception responses

	Protecting resource allocations
	What kind of resources need protection?
	Creating a resource protection block

	Handling RTL exceptions
	What are RTL exceptions?

	Creating an exception handler
	Exception handling statements
	Using the exception instance
	Scope of exception handlers
	Providing default exception handlers
	Handling classes of exceptions
	Reraising the exception

	Handling component exceptions
	Exception handling with external sources
	Silent exceptions
	Defining your own exceptions
	Declaring an exception object type
	Raising an exception

	Using interfaces
	Interfaces as a language feature
	Implementing interfaces across the hierarchy
	Using interfaces with procedures

	Implementing IInterface
	TInterfacedObject
	Using the as operator
	Reusing code and delegation
	Using implements for delegation

	Memory management of interface objects
	Using reference counting
	Not using reference counting

	Working with strings
	Character types
	String types
	Short strings
	Long strings
	WideString
	PChar types
	OpenString

	Runtime library string handling routines
	Wide character routines
	Commonly used long string routines

	Declaring and initializing strings
	Mixing and converting string types
	String to PChar conversions
	String dependencies
	Returning a PChar local variable
	Passing a local variable as a PChar

	Compiler directives for strings
	Strings and characters: related topics

	Working with files
	Manipulating files
	Deleting a file
	Finding a file
	Changing file attributes
	Renaming a file
	File date-time routines

	File types with file I/O
	Using file streams
	Creating and opening files
	Using the file handle
	Reading and writing to files
	Reading and writing strings
	Seeking a file
	File position and size
	Copying

	Object Pascal data types

	Ch 5: Building applications and shared objects
	Creating applications
	GUI applications
	User interface models
	Setting IDE, project, and compilation options

	Console applications

	Creating packages and shared object files
	Working with shared object libraries
	When to use packages and shared objects

	Writing database applications
	Building distributed applications
	Distributing applications using TCP/IP
	Using sockets in applications
	Creating Web server applications

	Using data modules and remote data modules
	Creating data modules
	Creating business rules in a data module

	Accessing a data module from a form

	Programming templates
	Sharing code: Using the Object Repository
	Sharing items within a project
	Adding items to the Object Repository
	Sharing objects in a team environment
	Using an Object Repository item in a project
	Copying an item
	Inheriting an item
	Using an item

	Using project templates
	Modifying shared items
	Specifying a default project, new form, and main form

	Reusing components and groups of components
	Creating and using component templates
	Enabling Help in CLX applications
	Help system interfaces
	Implementing ICustomHelpViewer
	Communicating with the Help Manager
	Asking the Help Manager for information
	Displaying keyword-based Help
	Displaying tables of contents
	Implementing IExtendedHelpViewer
	Implementing IHelpSelector
	Registering Help system objects
	Registering Help viewers
	Registering Help selectors

	Using Help in a CLX Application
	How TApplication processes Help
	How controls process Help
	Calling the Help system directly
	Using IHelpSystem

	Customizing the IDE Help system

	Ch 6: Developing the application user interface
	Controlling application behavior
	Using the main form
	Adding forms
	Linking forms

	Hiding the main form
	Working at the application level
	Setting up the look and feel of your application
	Handling the screen
	Managing layout

	Using forms
	Controlling when forms reside in memory
	Displaying an auto-created form
	Creating forms dynamically
	Creating modeless forms such as windows
	Using a local variable to create a form instance

	Passing additional arguments to forms
	Retrieving data from forms
	Retrieving data from modeless forms
	Retrieving data from modal forms

	Working with frames
	Creating frames
	Adding frames to the Component palette

	Using and modifying frames
	Sharing frames

	Using action lists
	What is an action?
	Setting up action lists
	What happens when an action fires
	Responding with events
	How actions find their targets

	Updating actions
	Predefined action classes
	Writing action components
	Registering actions

	Creating and managing menus
	Designing menus
	Building menus
	Naming menus
	Naming the menu items
	Adding, inserting, and deleting menu items
	Creating submenus
	Adding images to menu items
	Viewing the menu

	Editing menu items in the Object Inspector
	Using the Menu Designer context menu
	Commands on the context menu
	Switching between menus at design time

	Using menu templates
	Saving a menu as a template
	Naming conventions for template menu items and event handlers

	Manipulating menu items at runtime

	Designing toolbars
	Adding a toolbar using a panel component
	Adding a speed button to a panel
	Assigning a speed button’s glyph
	Setting the initial condition of a speed button
	Creating a group of speed buttons
	Allowing toggle buttons

	Adding a toolbar using the toolbar component
	Adding a tool button
	Assigning images to tool buttons
	Setting tool button appearance and initial conditions
	Creating groups of tool buttons
	Allowing toggled tool buttons

	Responding to clicks
	Assigning a menu to a tool button

	Adding hidden toolbars
	Hiding and showing toolbars

	Ch 7: Working with controls
	Working with text in controls
	Setting text alignment
	Adding scroll bars at runtime
	Adding a clipboard to an application
	Selecting text
	Selecting all text
	Cutting, copying, and pasting text
	Deleting selected text
	Disabling menu items
	Providing a pop-up menu
	Handling the OnPopup event

	Adding graphics to controls
	Indicating that a control is owner-drawn
	Adding graphical objects to a string list
	Adding images to an application

	Sizing owner-draw items
	Drawing owner-draw items

	Ch 8: Working with graphics
	Overview of graphics programming
	Refreshing the screen
	Types of graphic objects

	Common properties and methods of Canvas
	Using the properties of the Canvas object
	Using pens

	Using brushes
	Changing the brush color
	Changing the brush style
	Setting the Brush Bitmap property

	Using Canvas methods to draw graphic objects
	Drawing lines and polylines
	Drawing shapes

	Handling multiple drawing objects in your application
	Keeping track of which drawing tool to use
	Changing the tool with speed buttons
	Using drawing tools
	Drawing shapes
	Sharing code among event handlers

	Drawing on a graphic
	Making scrollable graphics
	Adding an image control
	Placing the control
	Setting the initial bitmap size
	Drawing on the bitmap

	Loading and saving graphics files
	Loading a picture from a file
	Saving a picture to a file
	Replacing the picture

	Using the clipboard with graphics
	Copying graphics to the clipboard
	Cutting graphics to the clipboard
	Pasting graphics from the clipboard

	Rubber banding example
	Responding to the mouse
	What’s in a mouse event?
	Responding to a mouse-down action
	Responding to a mouse-up action
	Responding to a mouse move

	Adding a field to a form object to track mouse actions
	Refining line drawing
	Tracking the origin point
	Tracking movement

	Ch 9: Writing multi-threaded applications
	Defining thread objects
	Initializing the thread
	Assigning a default priority
	Indicating when threads are freed

	Writing the thread function
	Using the main CLX thread
	Using thread-local variables
	Checking for termination by other threads
	Handling exceptions in the thread function

	Writing clean-up code

	Coordinating threads
	Avoiding simultaneous access
	Locking objects
	Using critical sections
	Using the multi-read exclusive-write synchronizer
	Other techniques for sharing memory

	Waiting for other threads
	Waiting for a thread to finish executing
	Waiting for a task to be completed

	Executing thread objects
	Overriding the default priority
	Starting and stopping threads

	Debugging multi-threaded applications

	Ch 10: Developing cross-platform applications
	Porting Windows applications to Linux
	Porting techniques
	Platform-specific ports
	Cross-platform ports
	Windows emulation ports

	Porting your application
	CLX versus VCL
	What CLX does differently
	Look and feel
	Styles
	Variants
	No registry
	Other differences

	Missing in CLX
	Features that will not port
	Kylix and Delphi unit comparison
	Differences in CLX object constructors
	Sharing source files between Windows and Linux
	Environmental differences between Windows and Linux
	Directory structure on Linux
	Writing portable code
	Using conditional directives
	Terminating conditional directives
	Emitting messages
	Including inline assembler code

	Messages and system events
	Programming differences on Linux

	Cross-platform database applications
	dbExpress differences
	Component-level differences
	User interface-level differences
	Porting database applications to Linux
	Updating data in dbExpress applications

	Cross-platform Internet applications
	Porting Internet applications to Linux

	Ch 11: Working with packages and components
	Why use packages?
	Packages and standard shared object files

	Runtime packages
	Using packages in an application
	Dynamically loading packages
	Deciding which runtime packages to use
	Custom packages

	Design-time packages
	Installing component packages

	Creating and editing packages
	Creating a package
	Editing an existing package
	Editing package source files manually
	Understanding the structure of a package
	Naming packages
	The Requires clause
	The Contains clause

	Compiling packages
	Package-specific compiler directives
	Using the command-line compiler and linker
	Package files created by a successful compilation

	Deploying packages
	Deploying applications that use packages
	Distributing packages to other developers

	Ch 12: Creating international applications
	Internationalization and localization
	Internationalization
	Localization

	Internationalizing applications
	Enabling application code
	Character sets
	Multiple byte character sets
	Wide characters

	Designing the user interface
	Text
	Graphic images
	Formats and sort order
	Keyboard mappings

	Isolating resources
	Creating resource modules
	Using resource modules

	Localizing applications

	Ch 13: Deploying applications
	Deploying general applications
	Deployment issues
	Using installation programs
	Identifying application files
	Package files
	Helper applications
	Shared object file locations

	Deploying database applications
	Connecting to a database
	Updating configuration files

	Deploying Web applications
	Deployment on Apache

	Programming for varying host environments
	Screen resolutions and color depths
	Considerations when not dynamically resizing
	Considerations when dynamically resizing forms and controls
	Accommodating varying color depths

	Fonts

	Software license requirements
	Deploy.txt
	README
	No-nonsense license agreement
	GPL license agreement
	Third-party product documentation

	Part II: Developing database applications
	Ch 14: Designing database applications
	Using databases
	Types of databases
	Database security
	Transactions
	Referential integrity, stored procedures, and triggers

	Database architecture
	General structure
	The user interface form
	The data module

	Using a client dataset with data stored on disk
	Using a unidirectional dataset directly
	Using a client dataset to buffer records
	Using a multi-tiered architecture
	Combining approaches

	Ch 15: Using data controls
	Using common data control features
	Associating a data control with a dataset
	Changing the associated dataset at runtime
	Enabling and disabling the data source
	Responding to changes mediated by the data source

	Editing and updating data
	Enabling editing in controls on user entry
	Editing data in a control

	Disabling and enabling data display
	Refreshing data display
	Enabling mouse, keyboard, and timer events

	Choosing how to organize the data
	Displaying a single record
	Displaying data as labels
	Displaying and editing fields in an edit box
	Displaying and editing text in a memo control
	Displaying and editing graphics fields in an image control
	Displaying and editing data in list and combo boxes
	Handling Boolean field values with check boxes
	Restricting field values with radio controls

	Displaying multiple records

	Viewing and editing data with TDBGrid
	Using a grid control in its default state
	Creating a customized grid
	Understanding persistent columns
	Creating persistent columns
	Deleting persistent columns
	Arranging the order of persistent columns
	Setting column properties at design time
	Defining a lookup list column
	Putting a button in a column
	Restoring default values to a column

	Displaying composite fields
	Setting grid options
	Editing in the grid
	Controlling grid drawing
	Responding to user actions at runtime

	Navigating and manipulating records
	Choosing navigator buttons to display
	Hiding and showing navigator buttons at design time
	Hiding and showing navigator buttons at runtime

	Displaying fly-over help
	Using a single navigator for multiple datasets

	Ch 16: Understanding datasets
	Types of datasets
	Opening and closing datasets
	Determining and setting dataset states
	Inactivating a dataset
	Browsing a dataset
	Enabling dataset editing
	Enabling insertion of new records
	Enabling index-based operations
	Calculating fields
	Filtering records
	Applying updates

	Navigating datasets
	Using the First and Last methods
	Using the Next and Prior methods
	Using the MoveBy method
	Using the Eof and Bof properties
	Eof
	Bof

	Marking and returning to records

	Searching datasets
	Using Locate
	Using Lookup

	Displaying and editing a subset of data using filters
	Enabling and disabling filtering
	Creating filters
	Setting filter options

	Navigating records in a filtered dataset

	Modifying data
	Editing records
	Adding new records
	Inserting records
	Appending records

	Deleting records
	Posting data to the database
	Canceling changes
	Modifying entire records

	Using dataset events
	Aborting a method
	Using OnCalcFields

	Ch 17: Working with field components
	Dynamic field components
	Persistent field components
	Creating persistent fields
	Arranging persistent fields
	Defining new persistent fields
	Defining a data field
	Defining a calculated field
	Defining a lookup field
	Defining an aggregate field

	Deleting persistent field components
	Setting persistent field properties and events
	Setting display and edit properties at design time
	Setting field component properties at runtime
	Controlling and masking user input
	Using default formatting for numeric, date, and time fields
	Handling events

	Working with field component methods at runtime
	Displaying, converting, and accessing field values
	Displaying field component values in standard controls
	Converting field values
	Accessing field values with the default dataset property
	Accessing field values with a dataset’s Fields property
	Accessing field values with a dataset’s FieldByName method

	Checking a field’s current value
	Setting a default value for a field
	Specifying constraints
	Using object fields
	Displaying ADT and array fields
	Working with ADT fields
	Using persistent field components
	Using the dataset’s FieldByName method
	Using the dateset’s FieldValues property
	Using the ADT field’s FieldValues property
	Using the ADT field’s Fields property

	Working with array fields
	Using persistent fields
	Using the array field’s FieldValues property
	Using the array field’s Fields property

	Working with dataset fields
	Displaying dataset fields
	Accessing data in a nested dataset

	Working with reference fields
	Displaying reference fields
	Accessing data in a reference field

	Ch 18: Using unidirectional datasets
	Types of unidirectional datasets
	Connecting to the Server
	Specifying what data to display
	Representing the results of a query
	Specifying a query using TSQLDataSet
	Specifying a query using TSQLQuery
	Using parameters in queries

	Representing the records in a table
	Representing a table using TSQLDataSet
	Representing a table using TSQLTable

	Representing the results of a stored procedure
	Specifying a stored procedure using TSQLDataSet
	Specifying a stored procedure using TSQLStoredProc
	Working with stored procedure parameters

	Fetching the data
	Preparing the dataset
	Fetching multiple datasets

	Executing commands that do not return records
	Specifying the command to execute
	Executing the command
	Creating and modifying server metadata

	Setting up master/detail relationships
	Setting up master/detail relationships with TSQLDataSet or TSQLQuery
	Setting up master/detail relationships with TSQLTable

	Accessing schema information
	Fetching data after using the dataset for metadata
	The structure of metadata datasets
	Information about tables
	Information about stored procedures
	Information about fields
	Information about indexes
	Information about stored procedure parameters

	Ch 19: Connecting to databases
	Controlling connections
	Describing the server connection
	Identifying the driver
	Specifying connection parameters
	Naming a connection description
	Using the Connection Editor

	Opening and closing server connections
	Opening a connection
	Disconnecting from a database server

	Controlling server login
	Managing transactions
	Starting a transaction
	Ending a transaction
	Ending a successful transaction
	Ending an unsuccessful transaction

	Specifying the transaction isolation level

	Accessing server metadata
	Working with associated datasets
	Closing datasets without disconnecting from the server
	Iterating through the associated datasets

	Sending commands to the server
	Debugging database applications
	Using TSQLMonitor to monitor SQL commands
	Using a callback to monitor SQL commands

	Ch 20: Using client datasets
	Working with data using a client dataset
	Navigating data in client datasets
	Specifying the index to use for searching
	Executing a search with Goto methods
	Executing a search with Find methods
	Specifying the current record after a successful search
	Searching on partial keys
	Repeating or extending a search

	Limiting what records appear
	Understanding the differences between ranges and filters
	Specifying ranges
	Modifying a range
	Applying or canceling a range

	Representing master/detail relationships
	Making the client dataset a detail of another dataset
	Using nested detail tables

	Constraining data values
	Making data read-only
	Editing data
	Undoing changes
	Saving changes

	Sorting and indexing
	Adding a new index
	Deleting and switching indexes
	Obtaining information about indexes
	Using indexes to group data

	Representing calculated values
	Using internally calculated fields in client datasets

	Using maintained aggregates
	Specifying aggregates
	Aggregating over groups of records
	Obtaining aggregate values

	Adding application-specific information to the data

	Copying data from another dataset
	Assigning data directly
	Cloning a client dataset cursor

	Using a client dataset with a provider
	Specifying a data provider
	Getting parameters from the source dataset
	Passing parameters to the source dataset
	Sending query or stored procedure parameters
	Limiting records with parameters

	Specifying the command to execute on the server
	Requesting data from the source dataset
	Incremental fetching
	Fetch-on-demand

	Updating records
	Applying updates
	Reconciling update errors

	Refreshing records
	Communicating with providers using custom events

	Using an SQL client dataset
	When to use TSQLClientDataSet
	Setting up an SQL client dataset
	Configuring the internal provider

	Using a client dataset with file-based data
	Creating a new dataset
	Creating a new dataset using persistent fields
	Creating a dataset using field and index definitions
	Creating a dataset based on an existing table

	Loading data from a file or stream
	Merging changes into data
	Saving data to a file or stream

	Ch 21: Using provider components
	Determining the source of data
	Communicating with the client dataset
	Choosing how to apply updates
	Controlling what information is included in data packets
	Specifying what fields appear in data packets
	Setting options that influence the data packets
	Adding custom information to data packets

	Responding to client data requests
	Responding to client update requests
	Editing delta packets before updating the database
	Influencing how updates are applied
	Screening individual updates
	Resolving update errors on the provider
	Applying updates to datasets that do not represent a single table

	Responding to client-generated events

	Part III: Writing distributed applications
	Ch 22: Creating Internet server applications
	Terminology and standards
	Parts of a Uniform Resource Locator
	URI vs. URL

	HTTP request header information

	HTTP server activity
	Composing client requests
	Serving CGI requests
	Serving dynamic shared object requests

	Web server applications
	Types of Web server applications
	CGI stand-alone
	Apache DSO module

	Creating Web server applications
	The Web module
	The Web Application object

	The structure of a Web server application
	The Web dispatcher
	Adding actions to the dispatcher
	Dispatching request messages

	Action items
	Determining when action items fire
	The target URL
	The request method type
	Enabling and disabling action items
	Choosing a default action item

	Responding to request messages with action items
	Sending the response
	Using multiple action items

	Accessing client request information
	Properties that contain request header information
	Properties that identify the target
	Properties that describe the Web client
	Properties that identify the purpose of the request
	Properties that describe the expected response
	Properties that describe the content

	The content of HTTP request messages

	Creating HTTP response messages
	Filling in the response header
	Indicating the response status
	Indicating the need for client action
	Describing the server application
	Describing the content

	Setting the response content
	Sending the response

	Generating the content of response messages
	Using page producer components
	HTML templates
	Specifying the HTML template
	Converting HTML-transparent tags
	Using page producers from an action item
	Chaining page producers together

	Using database information in responses
	Adding a session to the Web module
	Representing database information in HTML
	Using dataset page producers
	Using table producers
	Specifying the table attributes
	Specifying the row attributes
	Specifying the columns
	Embedding tables in HTML documents
	Setting up a dataset table producer
	Setting up a query table producer

	Debugging server applications
	Debugging CGI applications
	Debugging as a shared object

	Debugging Apache DSO applications
	Compiling an Apache application for DSO support
	Debugging Apache DSO applications

	Ch 23: Working with sockets
	Implementing services
	Understanding service protocols
	Communicating with applications

	Services and ports

	Types of socket connections
	Client connections
	Listening connections
	Server connections

	Describing sockets
	Describing the host
	Choosing between a host name and an IP address

	Using ports

	Using socket components
	Using client sockets
	Specifying the target server
	Forming the connection
	Getting information about the connection
	Closing the connection

	Using server sockets
	Specifying the port
	Listening for client requests
	Connecting to clients
	Closing server connections

	Responding to socket events
	Error events
	Client events
	Server events
	Events when listening
	Events with client connections

	Reading and writing over socket connections
	Non-blocking connections
	Reading and writing events

	Blocking connections

	Part IV: Creating custom components
	Ch 24: Overview of component creation
	Component Library for Cross Platform (CLX)
	Components and classes
	How to create components?
	Modifying existing controls
	Creating controls
	Creating graphic controls
	Subclassing controls
	Creating nonvisual components

	What goes into a component?
	Removing dependencies
	Properties, methods, and events
	Properties
	Events
	Methods

	Graphics encapsulation
	Registration

	Creating a new component
	Using the Component wizard
	Creating a component manually
	Creating a unit file
	Deriving the component
	Registering the component

	Testing uninstalled components
	Testing installed components

	Ch 25: Object-oriented programming for component writers
	Defining new classes
	Deriving new classes
	To change class defaults to avoid repetition
	To add new capabilities to a class

	Declaring a new component class

	Ancestors, descendants, and class hierarchies
	Controlling access
	Hiding implementation details
	Defining the component writer’s interface
	Defining the runtime interface
	Defining the design-time interface

	Dispatching methods
	Static methods
	Virtual methods
	Overriding methods

	Abstract class members
	Classes and pointers

	Ch 26: Creating properties
	Why create properties?
	Types of properties
	Publishing inherited properties
	Defining properties
	The property declaration
	Internal data storage
	Direct access
	Access methods
	The read method
	The write method

	Default property values
	Specifying no default value

	Creating array properties
	Creating properties for subcomponents
	Creating properties for interfaces
	Storing and loading properties
	Using the store-and-load mechanism
	Specifying default values
	Determining what to store
	Initializing after loading
	Storing and loading unpublished properties
	Creating methods to store and load property values
	Overriding the DefineProperties method

	Ch 27: Creating events
	What are events?
	Events are method pointers
	Events are properties
	Event types are method-pointer types
	Event-handler types are procedures

	Event handlers are optional

	Implementing the standard events
	Identifying standard events
	Standard events for all controls
	Standard events for widget-based controls

	Making events visible
	Changing the standard event handling

	Defining your own events
	Triggering the event
	Two kinds of events

	Defining the handler type
	Simple notifications
	Event-specific handlers
	Returning information from the handler

	Declaring the event
	Event names start with “On”

	Calling the event

	Ch 28: Creating methods
	Avoiding dependencies
	Naming methods
	Protecting methods
	Methods that should be public
	Methods that should be protected
	Abstract methods

	Making methods virtual
	Declaring methods

	Ch 29: Using graphics in components
	Using the canvas
	Working with pictures
	Using a picture, graphic, or canvas
	Loading and storing graphics

	Off-screen bitmaps
	Creating and managing off-screen bitmaps
	Copying bitmapped images

	Responding to changes

	Ch 30: Making components available at design time
	Registering components
	Declaring the Register procedure
	Writing the Register procedure
	Specifying the components
	Specifying the palette page
	Using the RegisterComponents function

	Adding palette bitmaps
	Adding property editors
	Deriving a property-editor class
	Editing the property as text
	Displaying the property value
	Setting the property value

	Editing the property as a whole
	Specifying editor attributes
	Registering the property editor

	Property categories
	Registering one property at a time
	Registering multiple properties at once
	Specifying property categories
	Using the IsPropertyInCategory function

	Adding component editors
	Adding items to the context menu
	Specifying menu items
	Implementing commands

	Changing the double-click behavior
	Adding clipboard formats
	Registering the component editor

	Compiling components into packages

	Ch 31: Modifying an existing component
	Creating and registering the component
	Modifying the component class
	Overriding the constructor
	Specifying the new default property value

	Ch 32: Creating a graphic component
	Creating and registering the component
	Publishing inherited properties
	Adding graphic capabilities
	Determining what to draw
	Declaring the property type
	Declaring the property
	Writing the implementation method

	Overriding the constructor and destructor
	Changing default property values

	Publishing the pen and brush
	Declaring the class fields
	Declaring the access properties
	Initializing owned classes
	Setting owned classes’ properties

	Drawing the component image
	Refining the shape drawing

	Ch 33: Customizing a grid
	Creating and registering the component
	Publishing inherited properties
	Changing initial values
	Resizing the cells
	Filling in the cells
	Tracking the date
	Storing the internal date
	Accessing the day, month, and year
	Generating the day numbers
	Selecting the current day

	Navigating months and years
	Navigating days
	Moving the selection
	Providing an OnChange event
	Excluding blank cells

	Ch 34: Making a control data aware
	Creating a data-browsing control
	Creating and registering the component
	Making the control read-only
	Adding the ReadOnly property
	Allowing needed updates

	Adding the data link
	Declaring the class field
	Declaring the access properties
	An example of declaring access properties
	Initializing the data link

	Responding to data changes

	Creating a data-editing control
	Changing the default value of FReadOnly
	Handling mouse-down and key-down events
	Responding to mouse-down events
	Responding to key-down events

	Updating the field datalink class
	Modifying the Change method
	Updating the dataset

	Index

